1
|
Ni L, Zhu X, Zhao Q, Shen Y, Tao L, Zhang J, Lin H, Zhuge W, Cho YC, Cui R, Zhu W. Dihydroartemisinin, a potential PTGS1 inhibitor, potentiated cisplatin-induced cell death in non-small cell lung cancer through activating ROS-mediated multiple signaling pathways. Neoplasia 2024; 51:100991. [PMID: 38507887 PMCID: PMC10965827 DOI: 10.1016/j.neo.2024.100991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
Dihydroartemisinin (DHA) exerts an anti-tumor effect in multiple cancers, however, the molecular mechanism of DHA and whether DHA facilitates the anti-tumor efficacy of cisplatin in non-small cell lung cancer (NSCLC) are unclear. Here, we found that DHA potentiated the anti-tumor effects of cisplatin in NSCLC cells by stimulating reactive oxygen species (ROS)-mediated endoplasmic reticulum (ER) stress, C-Jun-amino-terminal kinase (JNK) and p38 MAPK signaling pathways both in vitro and in vivo. Of note, we demonstrated for the first time that DHA inhibits prostaglandin G/H synthase 1 (PTGS1) expression, resulting in enhanced ROS production. Importantly, silencing PTGS1 sensitized DHA-induced cell death by increasing ROS production and activating ER-stress, JNK and p38 MAPK signaling pathways. In summary, our findings provided new experimental basis and therapeutic prospect for the combined therapy with DHA and cisplatin in some NSCLC patients.
Collapse
Affiliation(s)
- Lianli Ni
- Cellular and Molecular Biology Laboratory, Affiliated Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang 316020, China;; Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China;; Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, South Korea
| | - Xinping Zhu
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qi Zhao
- Cellular and Molecular Biology Laboratory, Affiliated Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang 316020, China;; Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yiwei Shen
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lu Tao
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ji Zhang
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Han Lin
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Weishan Zhuge
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Young-Chang Cho
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, South Korea.
| | - Ri Cui
- Cellular and Molecular Biology Laboratory, Affiliated Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang 316020, China;; Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China;.
| | - Wangyu Zhu
- Cellular and Molecular Biology Laboratory, Affiliated Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang 316020, China;; Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China;.
| |
Collapse
|
2
|
Shukla S, Chopra D, Patel SK, Negi S, Srivastav AK, Ch R, Bala L, Dwivedi A, Ray RS. Superoxide anion radical induced phototoxicity of 2,4,5,6-Tetraminopyrimidine sulfate via mitochondrial-mediated apoptosis in human skin keratinocytes at ambient UVR exposure. Food Chem Toxicol 2022; 164:112990. [PMID: 35398180 DOI: 10.1016/j.fct.2022.112990] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/25/2022] [Accepted: 04/02/2022] [Indexed: 10/18/2022]
Abstract
2,4,5,6-Tetraaminopyrimidine sulfate (TAPS) is worldwide the most commonly used developer in hair dyes. As skin is the major organ, which is directly exposed to these permanent hair dyes, a comprehensive dermal safety assessment is needed. Hereto, we studied the photosensitization potential and mechanism involved in dermal phototoxicity of TAPS exposed to the dark and UVA/UVB/Sunlight by using different in-chemico and mammalian (HaCaT) cells, as test systems. Our experimental outcomes illustrate that TAPS get photodegraded (LC-MS/MS) and specifically generated superoxide anion radical (O2•-) under UVA and UVB via type-I photodynamic reaction. The phototoxic potential of TAPS is measured through MTT, NRU, and LDH assays that depicted a significant reduction in cell viability at the concentration of 25 μg/ml and higher. Different cellular stainings (PI uptake, AO/EB, JC-1, NR uptake) suggested the role of mitochondrial-mediated apoptosis. Further, the transcriptomics study revealed upregulation of Apaf-1, Bax, Caspase 3, Caspase 9, Cytochrome c and downregulation of Bcl-2 and Catalase by TAPS treated cells that strengthen our findings. Thus, the above findings suggest that chronic application of TAPS may be hazardous for human skin and promote various skin diseases.
Collapse
Affiliation(s)
- Saumya Shukla
- Photobiology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Department of Biochemistry, School of Dental Sciences, Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow, 226028, Uttar Pradesh, India
| | - Deepti Chopra
- Photobiology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Sunil Kumar Patel
- Photobiology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Sandeep Negi
- Photobiology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Department of Biochemistry, School of Dental Sciences, Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow, 226028, Uttar Pradesh, India
| | - Ajeet K Srivastav
- Photobiology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Department of Biochemistry, School of Dental Sciences, Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow, 226028, Uttar Pradesh, India
| | - Ratnasekhar Ch
- CSIR-Central Institute of Medicinal and Aromatic Plants, Kukrail, Picnic Spot Road, Lucknow, 226015, Uttar Pradesh, India
| | - Lakshmi Bala
- Department of Biochemistry, School of Dental Sciences, Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow, 226028, Uttar Pradesh, India
| | - Ashish Dwivedi
- Photobiology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| | - Ratan Singh Ray
- Photobiology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Department of Biochemistry, School of Dental Sciences, Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow, 226028, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
3
|
Zhao Y, Wang J, Liu X. TRPV4 induces apoptosis via p38 MAPK in human lung cancer cells. Braz J Med Biol Res 2021; 54:e10867. [PMID: 34669779 PMCID: PMC8521542 DOI: 10.1590/1414-431x2021e10867] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/22/2021] [Indexed: 02/02/2023] Open
Abstract
Lung cancer is one of the most common cancers worldwide. TRPV4 belongs to the ‘transient receptor potential' (TRP) superfamily. It has been identified to profoundly affect a variety of physiological processes, including nociception, heat sensation, and inflammation. Unlike other TRP superfamily channels, its roles in cancers are unknown. Here, we elucidated the effects of TRPV4 and molecular mechanisms in human lung cancer cells. The levels of TRPV4 were detected in human lung cancer tissues and the paired paracarcinoma tissues by real-time PCR and western blotting analysis. The proliferation of human lung cancer cells was determined by MTT assay. Cell apoptosis was determined by FACS assay. The results demonstrated that low levels of TRPV4 were detected in clinical lung carcinoma specimens. Over-expression of TRPV4 induced cell death and inhibited cell proliferation and migration in A549 cells and H460 cells. Moreover, over-expression of TRPV4 enhanced the activation of p38 MAPK signal pathway. Inhibition of p38 MAPK abolished the effects of TRPV4 on cell proliferation, apoptosis, and migration in A549 cells. Collectively, our findings indicated that TRPV4 induced apoptosis via p38 MAPK in human lung cancer cells and suggested that TRPV4 was a potential target for therapy of human lung cancers.
Collapse
Affiliation(s)
- Yanyan Zhao
- Department of Respiratory Medicine, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jiaying Wang
- Department of Respiratory Medicine, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xuehui Liu
- Department of Respiratory Medicine, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
4
|
Wang JR, Luo YH, Piao XJ, Zhang Y, Feng YC, Li JQ, Xu WT, Zhang Y, Zhang T, Wang SN, Xue H, Wang WZ, Cao LK, Jin CH. Mechanisms underlying isoliquiritigenin-induced apoptosis and cell cycle arrest via ROS-mediated MAPK/STAT3/NF-κB pathways in human hepatocellular carcinoma cells. Drug Dev Res 2019; 80:461-470. [PMID: 30698296 DOI: 10.1002/ddr.21518] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/30/2018] [Accepted: 01/14/2019] [Indexed: 12/13/2022]
Abstract
Isoliquiritigenin (ISL), a natural flavonoid isolated from plant licorice, has various pharmacological properties, including anticancer, anti-inflammatory, and antiviral effects. However, the underlying mechanisms and signaling pathways of ISL in human hepatocellular carcinoma (HCC) cells remain unknown. In this study, we evaluated the effects of ISL on the apoptosis of human HCC cells with a focus on reactive oxygen species (ROS) production. Our results showed that ISL exhibited cytotoxic effects on two human liver cancer cells in a dose-dependent manner. ISL significantly induced mitochondrial-related apoptosis and cell cycle arrest at the G2/M phase, which was accompanied by ROS accumulation in HepG2 cells. However, pretreatment with an ROS scavenger, N-acetyl-l-cysteine (NAC), inhibited ISL-induced apoptosis. In addition, ISL increased the phosphorylation levels of c-Jun N-terminal kinase (JNK), p38 kinase and inhibitor of NF-κB (IκB), and decreased the phosphorylation levels of extracellular signal-regulated kinase (ERK), signal transducer and activator of transcription 3 (STAT3), nuclear factor-kappa B (NF-κB), these effects were blocked by NAC and mitogen-activated protein kinase (MAPK) inhibitors. Taken together, the findings of this study indicate that ISL induced HepG2 cell apoptosis via ROS-mediated MAPK, STAT3, and NF-κB signaling pathways. Therefore, ISL may be a potential treatment for human HCC, as well as other cancer types.
Collapse
Affiliation(s)
- Jia-Ru Wang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Ying-Hua Luo
- Department of Grass Science, College of Animal Science & Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xian-Ji Piao
- Department of Gynaecology and Obstetrics, The Fifth Affiliated Hospital of Harbin Medical University, Daqing, China
| | - Yi Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yu-Chao Feng
- Department of Food Science and Engineering, College of Food Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jin-Qian Li
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Wan-Ting Xu
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yu Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Tong Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shi-Nong Wang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hui Xue
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Wen-Zhong Wang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Long-Kui Cao
- Department of Food Science and Engineering, College of Food Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Cheng-Hao Jin
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China.,Department of Food Science and Engineering, College of Food Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|