1
|
Wu Y, Ma Y, Zhong W, Shen H, Ye J, Du S, Li P. Alleviation of endothelial dysfunction of Pheretima guillemi (Michaelsen)-derived protein DPf3 in ponatinib-induced thrombotic zebrafish and mechanisms explored through ox-LDL-induced HUVECs and TMT-based proteomics. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117669. [PMID: 38159828 DOI: 10.1016/j.jep.2023.117669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Thrombus generation is one of the leading causes of death in human, and vascular endothelial dysfunction is a major contributor to thrombosis. Pheretima guillemi (Michaelsen), a traditional medicinal animal known as "Dilong", has been utilized to cure thrombotic disorders for many years. DPf3, a group of functional proteins extracted from P. guillemi, has been characterized and identified to possess antithrombotic bioactivity via in vitro and ex vivo experiments. AIM OF THE STUDY This study is aimed to investigate the vascular-protection activity and related mechanism of antithrombotic protein DPf3 purified from Pheretima guillelmi systematically. MATERIALS AND METHODS The antithrombotic activity and vascular endothelium protection effect of DPf3 was explored in vivo using ponatinib-induced vascular endothelial injury zebrafish thrombus model. Then, (hi) ox-LDL-induced HUVECs was applied to investigate the protection mechanism of DPf3 against the injury of vascular endothelium. In addition, TMT-based proteomics analysis was used to study the biomarkers, biological processes and signal pathways involved in the antithrombotic and vascular protective effects of DPf3 holistically. RESULTS DPf3 exerted robust in vivo antithrombosis and vascular endothelial protection ability. DPf3 was identified to prevent HUVECs from damage by reducing ROS production, and to reduce monocyte adhesion by decreasing the protein content of adhesion factor VCAM 1. DPf3 was also observed to weaken the migration ability of injured cells and inhibit abnormal angiogenesis. The mechanism of DPf3's antithrombotic and vascular protective activity was mainly related to the regulation of lipid metabolism, energy metabolism, complement and coagulation system, ECM receptor interaction, MAPK signal pathway, etc. CONCLUSIONS: This study demonstrates that DPf3 has strong antithrombotic and endothelial protective effects. The endothelial protective ability and related mechanisms of DPf3 provide a scientific reference for the traditional use of earthworms in the treatment of thrombosis.
Collapse
Affiliation(s)
- Yali Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China; Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China.
| | - Yunnan Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Wanling Zhong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Huijuan Shen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Jinhong Ye
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Shouying Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Pengyue Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
2
|
Yue Y, Sun X, Tian S, Yan S, Sun W, Miao J, Huang S, Diao J, Zhou Z, Zhu W. Multi-omics and gut microbiome: Unveiling the pathogenic mechanisms of early-life pesticide exposure. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 199:105770. [PMID: 38458664 DOI: 10.1016/j.pestbp.2024.105770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 03/10/2024]
Abstract
The extensive application of pesticides in agricultural production has raised significant concerns about its impact on human health. Different pesticides, including fungicides, insecticides, and herbicides, cause environmental pollution and health problems for non-target organisms. Infants and young children are so vulnerable to the harmful effects of pesticide exposure that early-life exposure to pesticides deserves focused attention. Recent research lays emphasis on understanding the mechanism between negative health impacts and early-life exposure to various pesticides. Studies have explored the impacts of exposure to these pesticides on model organisms (zebrafish, rats, and mice), as well as the mechanism of negative health effects, based on advanced methodologies like gut microbiota and multi-omics. These methodologies help comprehend the pathogenic mechanisms associated with early-life pesticide exposure. In addition to presenting health problems stemming from early-life exposure to pesticides and their pathogenic mechanisms, this review proposes expectations for future research. These proposals include focusing on identifying biomarkers that indicate early-life pesticide exposure, investigating transgenerational effects, and seeking effective treatments for diseases arising from such exposure. This review emphasizes how to understand the pathogenic mechanisms of early-life pesticide exposure through gut microbiota and multi-omics, as well as the adverse health effects of such exposure.
Collapse
Affiliation(s)
- Yifan Yue
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xiaoxuan Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Sinuo Tian
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Sen Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Wei Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Jiyan Miao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Shiran Huang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Jinling Diao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Wentao Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Kizilkaya S, Akpinar G, Sesal NC, Kasap M, Gokalsin B, Kayhan FE. Using proteomics, q-PCR and biochemical methods complementing as a multiapproach to elicit the crucial responses of zebrafish liver exposed to neonicotinoid pesticide. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 47:101103. [PMID: 37399785 DOI: 10.1016/j.cbd.2023.101103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/10/2023] [Accepted: 06/10/2023] [Indexed: 07/05/2023]
Abstract
Pesticides enter the environment through runoff and leaching and this raises public concern about effects on non-target organisms. Imidacloprid (IMI) a synthetic pesticide, has an unstable half-life, metabolized in minutes to weeks in the water. To evaluate the effects of IMI on the zebrafish liver, we conducted proteomic, molecular and biochemical analysis in a multi-level approach, to highlight the complementary features regarding the results of each method. Adult zebrafish were exposed to 60 mg/L IMI for 48 h and were evaluated using nLC-MS/MS for proteins, q-PCR analysis for expression of cat, gpx, pxr, ache, along with CAT and AChE enzyme activities and GSH and MDA assays. Based on proteomics, the regulation of antioxidant and immune responses, as well as gene transcription were significant processes affected. Apoptosis and ER stress pathways were upregulated and there was a down-regulation of cat and gpx genes. There was also elevated CAT activity and GSH and decreased MDA. Additionally, elevated AChE activity and up regulation of ache expression was observed. The multi-approach results included regulators of antioxidant, xenobiotic response and neuro-protective related proteins (genes and enzymes), which overall reflected harmful effects of IMI. Consequently, this study highlights the effects of IMI on zebrafish liver and reveals new potential biomarkers. In this respect, evaluated outcomes reveal the complementary features emphasizing the importance of studying chemicals using several methods. Our study provides deeper insights for future work in ecotoxicological studies regarding IMI and contribute to existing toxicity literature.
Collapse
Affiliation(s)
- Seyma Kizilkaya
- Marmara University Institute of Pure and Applied Sciences, Istanbul 34722, Turkiye.
| | - Gurler Akpinar
- Kocaeli University Faculty of Medicine, Department of Medical Biology, Kocaeli 41001, Turkiye
| | - Nuzhet Cenk Sesal
- Marmara University Faculty of Science, Department of Biology, Istanbul 34722, Turkiye
| | - Murat Kasap
- Kocaeli University Faculty of Medicine, Department of Medical Biology, Kocaeli 41001, Turkiye
| | - Baris Gokalsin
- Marmara University Faculty of Science, Department of Biology, Istanbul 34722, Turkiye
| | - Figen Esin Kayhan
- Marmara University Faculty of Science, Department of Biology, Istanbul 34722, Turkiye
| |
Collapse
|
4
|
Gonçalves ÍFS, Gomes CDS, Almeida Filho LCP, Souza JADCR, Rocha BAM, de Souza PFN, de Freitas Júnior ACV, Carvalho AFU, Farias D. An innovative insecticidal approach based on plant protease inhibitor and Bt protoxins inhibits trypsin-like activity in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2023; 267:109576. [PMID: 36813018 DOI: 10.1016/j.cbpc.2023.109576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/13/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023]
Abstract
The Leucaena leucocephala trypsin inhibitor (LTI) + Bacillus thuringiensis (Bt) protoxins mix has been proposed as a novel larvicide agent in order to control the vector mosquito of dengue virus, Aedes aegypti, in their aquatic breeding sites. However, use of this insecticide formulation has raised concerns about its impacts on aquatic biota. In this context, this work aimed to assess the effects of LTI and Bt protoxins, separately or in combination, in zebrafish, in regard to the evaluation of toxicity at early life stages and to the presence of LTI inhibitory effects on intestinal proteases of this fish. Results showed that LTI and Bt concentrations (250 mg/L, and 0.13 mg/L, respectively), and LTI + Bt mix (250 mg/L + 0.13 mg/L) - 10 times superior to those with insecticidal action - did not cause death nor did it induce morphological changes during embryonic and larval development (3 to 144 h post-fertilization) of zebrafish. Molecular docking analyses highlighted a possible interaction between LTI and zebrafish trypsin, especially through hydrophobic interactions. In concentrations near to those with larvicidal action, LTI (0.1 mg/mL) was able to inhibit in vitro intestinal extracts of trypsin in female and male fish by 83 % and 85 %, respectively, while LTI + Bt mix promoted trypsin inhibition of 69 % in female and 65 % in male ones. These data show that the larvicidal mix can potentially promote deleterious effects to nutrition and survival in non-target aquatic organisms, especially those with trypsin-like dependent protein digestion.
Collapse
Affiliation(s)
- Íris Flávia Sousa Gonçalves
- Post-Graduation Program in Biochemistry, Department of Biochemistry and Molecular Biology, Building 907, Campus Pici, Federal University of Ceará, 60455-970 Fortaleza, Brazil; Department of Molecular Biology, Federal University of Paraíba, 58051-900 João Pessoa, Brazil
| | - Cleyton de Sousa Gomes
- Department of Molecular Biology, Federal University of Paraíba, 58051-900 João Pessoa, Brazil
| | | | | | - Bruno Anderson Matias Rocha
- Post-Graduation Program in Biochemistry, Department of Biochemistry and Molecular Biology, Building 907, Campus Pici, Federal University of Ceará, 60455-970 Fortaleza, Brazil
| | - Pedro Filho Noronha de Souza
- Post-Graduation Program in Biochemistry, Department of Biochemistry and Molecular Biology, Building 907, Campus Pici, Federal University of Ceará, 60455-970 Fortaleza, Brazil
| | | | - Ana Fontenele Urano Carvalho
- Post-Graduation Program in Biochemistry, Department of Biochemistry and Molecular Biology, Building 907, Campus Pici, Federal University of Ceará, 60455-970 Fortaleza, Brazil; Department of Biology, Building 909, Campus Pici, Federal University of Ceará, 60455-970 Fortaleza, Brazil
| | - Davi Farias
- Post-Graduation Program in Biochemistry, Department of Biochemistry and Molecular Biology, Building 907, Campus Pici, Federal University of Ceará, 60455-970 Fortaleza, Brazil; Department of Molecular Biology, Federal University of Paraíba, 58051-900 João Pessoa, Brazil.
| |
Collapse
|
5
|
Machikhin A, Huang CC, Khokhlov D, Galanova V, Burlakov A. Single-shot Mueller-matrix imaging of zebrafish tissues: In vivo analysis of developmental and pathological features. JOURNAL OF BIOPHOTONICS 2022; 15:e202200088. [PMID: 35582886 DOI: 10.1002/jbio.202200088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/05/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Zebrafish is a well-established animal model for developmental and disease studies. Its optical transparency at early developmental stages allows in vivo tissues visualization. Interaction of polarized light with these tissues provides information on their structure and properties. This approach is effective for muscle tissue analysis due to its birefringence. To enable real-time Mueller-matrix characterization of unanesthetized fish, we assembled a microscope for single-shot Mueller-matrix imaging. First, we performed a continuous observation of 48 species within the period of 2 to 96 hpf and measured temporal dependencies of the polarization features in different tissues. These measurements show that hatching was accompanied by a sharp change in the angle and degree of linearly polarized light after interaction with muscles. Second, we analyzed nine species with skeletal disorders and demonstrated that the spatial distribution of light depolarization features clearly indicated them. Obtained results demonstrated that real-time Mueller-matrix imaging is a powerful tool for label-free monitoring zebrafish embryos.
Collapse
Affiliation(s)
- Alexander Machikhin
- Laboratory of Acousto-optical Spectroscopy, Scientific and Technological Center of Unique Instrumentation, Russian Academy of Sciences, Moscow, Russia
| | - Chih-Chung Huang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Demid Khokhlov
- Laboratory of Acousto-optical Spectroscopy, Scientific and Technological Center of Unique Instrumentation, Russian Academy of Sciences, Moscow, Russia
| | - Victoria Galanova
- Laboratory of Acousto-optical Spectroscopy, Scientific and Technological Center of Unique Instrumentation, Russian Academy of Sciences, Moscow, Russia
- Department of Laser and Opto-Electronic Systems, Bauman Moscow State Technical University, Moscow, Russia
| | - Alexander Burlakov
- Laboratory of Acousto-optical Spectroscopy, Scientific and Technological Center of Unique Instrumentation, Russian Academy of Sciences, Moscow, Russia
- Department of Ichthyology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
6
|
Gao Z, Yu H, Li M, Li X, Lei J, He D, Wu G, Fu Y, Chen Q, Shi H. A battery of baseline toxicity bioassays directed evaluation of plastic leachates-Towards the establishment of bioanalytical monitoring tools for plastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154387. [PMID: 35276177 DOI: 10.1016/j.scitotenv.2022.154387] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
There are increasing concerns regarding the ecological risks of plastics to the natural environment, especially the potential effects of plastic leachates on organisms, which contain various toxic components. However, appropriate methods to assess the overall environmental risks of plastics are limited. In this study, five different plastic products (three conventional and two biodegradable plastics) were immersed in simulated freshwater, and their toxicity was assessed using a battery of bioassays. We evaluated the effects of plastic leachates effects on organisms from four trophic levels of species (nematodes, Caenorhabditis elegans; algae, Scenedesmus obliquus; daphnids, Daphnia magna; and fish, Danio rerio) by measuring their acute and chronic toxicity. Our results indicated that all plastic leachates exhibited poor acute and chronic toxicity to the organisms. The acute toxicity of conventional plastic leachates with EC20 values <1.6 g plastic/L was higher than that of the biodegradable polydioxanone (PPDO) leachate (EC20: 16.2-796.1 g plastic/L); however, the toxicity of PPDO-octane (EC20: 0.04-1.9 g plastic/L) was similar to that of polyethylene or polystyrene (excluding toxicity in D. magna). Similarly, the leachates of the three conventional plastics and PPDO-octane had obvious inhibitory effects on the growth of C. elegans at exposure concentrations higher than 0.01 g plastic/L; however, the toxicity of the PPDO leachates was at least an order of magnitude lower. Therefore, the environmental related concentration of the plastic leachates did not have significant toxic effects. Considering that a single bioassay does not provide comprehensive information on biological implications, this study provided a new integrated and efficient method for the environmental risk assessment (ERA) of plastic leachates. Moreover, the toxicity sensitivity of different organisms varied following exposure to different plastics, thus demonstrating that multiple organisms from different trophic levels should be included in the ERA for plastics.
Collapse
Affiliation(s)
- Zhuo Gao
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Hairui Yu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Mingyuan Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Xinyu Li
- School of Ecological and Environmental Sciences, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China
| | - Jin Lei
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Defu He
- School of Ecological and Environmental Sciences, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China
| | - Gang Wu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Ye Fu
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100037, China
| | - Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China.
| | - Huahong Shi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| |
Collapse
|
7
|
Liu SZ, Xu GX, He FM, Zhang WB, Wu Z, Li MY, Tang XX, Qiu YK. New Sorbicillinoids with Tea Pathogenic Fungus Inhibitory Effect from Marine-Derived Fungus Hypocrea jecorina H8. Mar Drugs 2022; 20:md20030213. [PMID: 35323512 PMCID: PMC8955853 DOI: 10.3390/md20030213] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 02/04/2023] Open
Abstract
Four new dimeric sorbicillinoids (1–3 and 5) and a new monomeric sorbicillinoid (4) as well as six known analogs (6–11) were purified from the fungal strain Hypocrea jecorina H8, which was obtained from mangrove sediment, and showed potent inhibitory activity against the tea pathogenic fungus Pestalotiopsis theae (P. theae). The planar structures of 1–5 were assigned by analyses of their UV, IR, HR-ESI-MS, and NMR spectroscopic data. All the compounds were evaluated for growth inhibition of tea pathogenic fungus P. theae. Compounds 5, 6, 8, 9, and 10 exhibited more potent inhibitory activities compared with the positive control hexaconazole with an ED50 of 24.25 ± 1.57 µg/mL. The ED50 values of compounds 5, 6, 8, 9, and 10 were 9.13 ± 1.25, 2.04 ± 1.24, 18.22 ± 1.29, 1.83 ± 1.37, and 4.68 ± 1.44 µg/mL, respectively. Additionally, the effects of these compounds on zebrafish embryo development were also evaluated. Except for compounds 5 and 8, which imparted toxic effects on zebrafish even at 0.625 μM, the other isolated compounds did not exhibit significant toxicity to zebrafish eggs, embryos, or larvae. Taken together, sorbicillinoid derivatives (6, 9, and 10) from H. jecorina H8 displayed low toxicity and high anti-tea pathogenic fungus potential.
Collapse
Affiliation(s)
- Shun-Zhi Liu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, South Xiang-An Road, Xiamen 361102, China; (S.-Z.L.); (F.-M.H.); (M.-Y.L.)
| | - Guang-Xin Xu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography State, Ministry of Natural Resources, Da-Xue Road, Xiamen 361005, China; (G.-X.X.); (Z.W.)
| | - Feng-Ming He
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, South Xiang-An Road, Xiamen 361102, China; (S.-Z.L.); (F.-M.H.); (M.-Y.L.)
| | - Wei-Bo Zhang
- State Key Laboratory of Marine Life, Ocean University of China, Yu-Shan Road, Qingdao 266100, China;
| | - Zhen Wu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography State, Ministry of Natural Resources, Da-Xue Road, Xiamen 361005, China; (G.-X.X.); (Z.W.)
| | - Ming-Yu Li
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, South Xiang-An Road, Xiamen 361102, China; (S.-Z.L.); (F.-M.H.); (M.-Y.L.)
| | - Xi-Xiang Tang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography State, Ministry of Natural Resources, Da-Xue Road, Xiamen 361005, China; (G.-X.X.); (Z.W.)
- Correspondence: (X.-X.T.); (Y.-K.Q.); Tel./Fax: +86-592-2189868 (Y.-K.Q.)
| | - Ying-Kun Qiu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, South Xiang-An Road, Xiamen 361102, China; (S.-Z.L.); (F.-M.H.); (M.-Y.L.)
- Correspondence: (X.-X.T.); (Y.-K.Q.); Tel./Fax: +86-592-2189868 (Y.-K.Q.)
| |
Collapse
|
8
|
Fan R, Zhang W, Jia L, Luo S, Liu Y, Jin Y, Li Y, Yuan X, Chen Y. Antagonistic Effects of Enrofloxacin on Carbendazim-Induced Developmental Toxicity in Zebrafish Embryos. TOXICS 2021; 9:349. [PMID: 34941783 PMCID: PMC8704853 DOI: 10.3390/toxics9120349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/19/2021] [Accepted: 11/29/2021] [Indexed: 12/19/2022]
Abstract
Carbendazim (CAR) and enrofloxacin (ENF) are frequently detected in fruits and meat products, respectively. Since most people consume fruits, vegetables, and meat products, combined exposure is possible, necessitating further evaluation of toxic interactions. In this study, the developmental toxicity of separate and combined exposure was examined in zebrafish embryos. Carbendazim exposure at 0.79 mg/L and above significantly affected developmental parameters, while enrofloxacin alone had no substantial effects on these developmental parameters within the selected concentration range (0.10-0.40 mg/L). Surprisingly, ENF antagonized the CAR-evoked reduction in the 48 hpf (hours post-fertilization) hatching rate and the increases in the 96 hpf malformation and lethality rates. The results revealed that the antagonism might be associated with reciprocal effects of these compounds on metabolism-related genes, such as cyp7a1 and apoa1a. These results reveal a complex interaction between ENF and CAR on metabolic regulation during development and highlight the importance of combined assessment for agents with the potential for simultaneous exposure.
Collapse
Affiliation(s)
- Ruiqi Fan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (R.F.); (W.Z.); (S.L.); (Y.L.); (Y.J.); (Y.L.)
- Center of Disease Control and Prevention, PLA, Beijing 100073, China; (L.J.); (X.Y.)
| | - Wanjun Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (R.F.); (W.Z.); (S.L.); (Y.L.); (Y.J.); (Y.L.)
- Center of Disease Control and Prevention, PLA, Beijing 100073, China; (L.J.); (X.Y.)
| | - Li Jia
- Center of Disease Control and Prevention, PLA, Beijing 100073, China; (L.J.); (X.Y.)
| | - Sunlin Luo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (R.F.); (W.Z.); (S.L.); (Y.L.); (Y.J.); (Y.L.)
| | - Ying Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (R.F.); (W.Z.); (S.L.); (Y.L.); (Y.J.); (Y.L.)
| | - Yongpeng Jin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (R.F.); (W.Z.); (S.L.); (Y.L.); (Y.J.); (Y.L.)
| | - Yongchen Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (R.F.); (W.Z.); (S.L.); (Y.L.); (Y.J.); (Y.L.)
| | - Xiaoyan Yuan
- Center of Disease Control and Prevention, PLA, Beijing 100073, China; (L.J.); (X.Y.)
- School of Nursing and Health, Henan University, Kaifeng 475000, China
| | - Yiqiang Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (R.F.); (W.Z.); (S.L.); (Y.L.); (Y.J.); (Y.L.)
| |
Collapse
|
9
|
Min EK, Lee AN, Lee JY, Shim I, Kim P, Kim TY, Kim KT, Lee S. Advantages of omics technology for evaluating cadmium toxicity in zebrafish. Toxicol Res 2021; 37:395-403. [PMID: 34631496 DOI: 10.1007/s43188-020-00082-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/10/2020] [Accepted: 12/17/2020] [Indexed: 12/21/2022] Open
Abstract
In the last decade, several advancements have been made in omics technologies and they have been applied extensively in diverse research areas. Especially in toxicological research, omics technology can efficiently and accurately generate relevant data on the molecular dynamics associated with adverse outcomes. Toxicomics is defined as the combination of toxicology and omics technologies and encompasses toxicogenomics, toxicoproteomics, and toxicometabolomics. This paper reviews the trend of applying omics technologies to evaluate cadmium (Cd) toxicity in zebrafish (D. rerio). Cd is a toxic heavy metal posing several environmental concerns; however, it is being used widely in everyday life. Zebrafish embryos and larvae are employed as standard models for many toxicity tests because they share 71.4% genetic homology with humans. This study summarizes the toxicity of Cd on the nerves, liver, heart, skeleton, etc. of zebrafish and introduces detailed omics techniques to understand the results of the toxicomic studies. Finally, the trend of toxicity evaluation in the zebrafish model of Cd based on omics technology is presented.
Collapse
Affiliation(s)
- Eun Ki Min
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea
| | - Ahn Na Lee
- College of Pharmacy, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Ji-Young Lee
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, 22689 Republic of Korea
| | - Ilseob Shim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, 22689 Republic of Korea
| | - Pilje Kim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, 22689 Republic of Korea
| | - Tae-Young Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| | - Ki-Tae Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea
| | - Sangkyu Lee
- College of Pharmacy, Kyungpook National University, Daegu, 41566 Republic of Korea
| |
Collapse
|
10
|
Hansen BH, Farkas J, Piarulli S, Vicario S, Kvæstad B, Williamson DR, Sørensen L, Davies EJ, Nordtug T. Atlantic cod ( Gadus morhua) embryos are highly sensitive to short-term 3,4-dichloroaniline exposure. Toxicol Rep 2021; 8:1754-1761. [PMID: 34703771 PMCID: PMC8523877 DOI: 10.1016/j.toxrep.2021.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/15/2021] [Accepted: 10/09/2021] [Indexed: 11/26/2022] Open
Abstract
3,4-dichloroaniline (3,4-DCA) is one of the most widely produced anilines world-wide, used in plastic packaging, fabrics, pharmaceuticals, pesticides, dyes and paints as well as being a degradation product of several pesticides. 3,4-DCA has been detected in freshwater, brackish and marine environments. Although freshwater toxicity thresholds exist, very little toxicological information is available on marine and cold-water species. In this study, we exposed Atlantic cod (Gadus morhua) embryos (3-7 days post fertilization) to 3,4-DCA concentrations ranging from 8-747 μg/L for 4 days followed by a recovery period in clean sea water until 14 days post fertilization (dpf). The cod embryos were significantly more sensitive to acute 3,4-DCA exposure compared to other species tested and reported in the literature. At the highest concentration (747 μg/L), no embryos survived until hatch, and even at the lowest concentration (8 μg/L), a small, but significant increase in mortality was observed at 14 dpf. Delayed and concentration-dependent effects on surviving yolk-sac larvae, manifested as cardiac, developmental and morphometric alterations, more than a week after exposure suggest potential long-term effects of transient embryonic exposure to low concentrations of 3,4-DCA.
Collapse
Affiliation(s)
| | | | | | - Silvia Vicario
- University of Milano-Bicocca, Piazza della Scienza 1, Milan, Italy
| | | | - David R. Williamson
- SINTEF Ocean, 7465, Trondheim, Norway
- Centre for Autonomous Marine Operations and System (AMOS), Department of Marine Technology, Norwegian University of Science and Technology, NTNU, Norway
| | | | | | | |
Collapse
|
11
|
Lai KP, Gong Z, Tse WKF. Zebrafish as the toxicant screening model: Transgenic and omics approaches. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 234:105813. [PMID: 33812311 DOI: 10.1016/j.aquatox.2021.105813] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/04/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
The production of large amounts of synthetic industrial and biomedical compounds, together with environmental pollutants, poses a risk to our ecosystem and induces negative effects on the health of wildlife and human beings. With the emergence of the global problem of chemical contamination, the adverse biological effects of these chemicals are gaining attention among the scientific communities, industry, governments, and the public. Among these chemicals, endocrine disrupting chemicals (EDCs) are regarded as one of the major global issues that potentially affecting our health. There is an urgent need of understanding the potential hazards of such chemicals. Zebrafish have been widely used in the aquatic toxicology. In this review, we first discuss the strategy of transgenic lines that used in the toxicological studies, followed by summarizing the current omics approaches (transcriptomics, proteomics, metabolomics, and epigenomics) on toxicities of EDCs in this model. We will also discuss the possible transgenerational effects in zebrafish and future prospective of the integrated omics approaches with customized transgenic organism. To conclude, we summarize the current findings in the field, and provide our opinions on future environmental toxicity research in the zebrafish model.
Collapse
Affiliation(s)
- Keng Po Lai
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin 541004, PR China; Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541004, PR China; Department of Chemistry, City University of Hong Kong, Hong Kong SAR, PR China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, PR China.
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, 117543, Singapore.
| | - William Ka Fai Tse
- Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|
12
|
Reproductive Toxicity of 3,4-dichloroaniline (3,4-DCA) on Javanese Medaka ( Oryziasjavanicus, Bleeker 1854). Animals (Basel) 2021; 11:ani11030798. [PMID: 33809309 PMCID: PMC8000808 DOI: 10.3390/ani11030798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/02/2021] [Accepted: 03/10/2021] [Indexed: 01/18/2023] Open
Abstract
Compound 3,4-dichloroaniline (3,4-DCA) is a metabolite of several urea herbicides and intermediate chemical of several industrial products. Moreover, 3,4-DCA has been frequently detected in aquatic ecosystems around the world. This aniline is more toxic than the parent chemicals, and it affects non-target organisms. This study evaluated a 21-day reproductive response of an emerging aquatic vertebrate model, Javanese medaka (Oryzias javanicus), exposed to 3,4-DCA. Fecundity and gonads histopathology were observed. The spawning rate and fertilisation reduced significantly in the highest exposed-group (250 µg/L). Gonadosomatic index (GSI) was significantly low in females exposed to 250 µg/L. No substantial structural alteration of male gonads. However, oocyte development and ovarian cell structure were disrupted in 250 µg/L exposed females. The gonadal developmental was not affected in the males; however, a significant reduction in the developmental of female gonads was observed at 250 µg/L. These results show that 3,4-DCA interfere with the reproduction of Javanese medaka through fecundity and alteration of gonadal tissues.
Collapse
|