1
|
Sevimli TS, Ghorbani A, Gakhiyeva F, Cevizlidere BD, Sevimli M. Boric Acid Alters the Expression of DNA Double Break Repair Genes in MCF-7-Derived Breast Cancer Stem Cells. Biol Trace Elem Res 2024; 202:3980-3987. [PMID: 38087035 DOI: 10.1007/s12011-023-03987-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/28/2023] [Indexed: 07/18/2024]
Abstract
Breast cancer pathology ranks second in mortality among women worldwide due to the resistance of cancer stem cells in tumor tissue to radiotherapy and chemotherapy and their effective DNA damage response system (DDR). Targeting the expression of DNA double-strand break (DSB) repair genes in breast cancer stem cells (BC-SCs) is essential for facilitating their elimination with conventional therapies. This study aims to investigate the effects of boric acid (BA) on the expression of DNA DSB repair genes in BC-SCs, which has not been studied in the literature before. BS-SCs were isolated by the MACS method and characterized by flow cytometry. The effects of BA on BC-SCs' DNA DSB repair genes were deciphered by cell viability assay, inverted microscopy, and RT-qPCR. While the expression of the BRCA1 and BRCA2 was upregulated, the expression of the ATM (p < 0.001), RAD51 (p < 0.001), and KU70 (p < 0.001) was downregulated in dose-treated BC-SCs (p < 0.001) to the qPCR results. Consequently, BA affects some of the DNA DSB repair genes of breast cancer stem cells. Findings from this study could provide new insights into the potential therapeutic application of BA in BC-SC elimination and cancer intervention.
Collapse
Affiliation(s)
- Tuğba Semerci Sevimli
- Department of Cellular Therapy and Stem Cell Production, Application, and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, 26040, Turkey.
- Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, Eskisehir, 26040, Turkey.
| | - Aynaz Ghorbani
- Department of Cellular Therapy and Stem Cell Production, Application, and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, 26040, Turkey
- Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, Eskisehir, 26040, Turkey
| | - Fidan Gakhiyeva
- Department of Cellular Therapy and Stem Cell Production, Application, and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, 26040, Turkey
- Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, Eskisehir, 26040, Turkey
| | - Bahar Demir Cevizlidere
- Department of Cellular Therapy and Stem Cell Production, Application, and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, 26040, Turkey
- Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, Eskisehir, 26040, Turkey
| | - Murat Sevimli
- Department of Histology and Embryology, Faculty of Medicine, Eskişehir Osmangazi University, Eskisehir, 26040, Turkey
| |
Collapse
|
2
|
Kar E, Kar F, Can B, Çakır Gündoğdu A, Özbayer C, Koçak FE, Şentürk H. Prophylactic and Therapeutic Efficacy of Boric Acid on Lipopolysaccharide-Induced Liver and Kidney Inflammation in Rats. Biol Trace Elem Res 2024; 202:3701-3713. [PMID: 37910263 DOI: 10.1007/s12011-023-03941-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023]
Abstract
In our study, we aimed to examine possible prophylactic (P) or therapeutic (T) effects of boric acid (BA) on lipopolysaccharide (LPS) induced liver and kidney damages. Thirty-two rats were divided into four groups as control, LPS, BAP+LPS, and LPS+BAT. BA was given orally to the rats one hour before the intraperitoneal LPS administration in the BAP+LPS group and one hour after the LPS administration in the LPS+BAT group. Malondialdehyde (MDA), myeloperoxidase (MPO), interleukin-6 (IL-6), IL-10, reduced glutathione (GSH), total oxidant and antioxidant status (TOS and TAS), semaphorin-3A (SEMA3A), cytochrome c (CYCS), and caspase-3 (CASP3) parameters were determined by ELISA method to monitor inflammation, oxidative stress, and apoptosis in the liver and kidney tissues of rats. In addition, alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), urea, creatinine (CREA), C-reactive protein (CRP), gamma glutamyl transferase (GGT), glucose (GLU), sodium (Na), potassium (K), and chlorine (Cl) biochemical parameters were measured in rat serums to monitor liver and kidney functions. Liver and kidney tissues were also examined histopathologically and immunohistochemically. All data were statistically analyzed. Our histological, biochemical, inflammatory, oxidative stress, and apoptotic findings showed that LPS causes serious damage to liver and kidney tissues. Boric acid application brought about significant improvements on the parameters. However, this improvement was seen in the BAP+LPS group, and the results of the LPS+BAT group were insufficient to improve. Our results showed that boric acid administration is effective on severe liver and kidney damage caused by LPS. It has been concluded that prophylactic application is more effective, while therapeutic application is insufficient.
Collapse
Affiliation(s)
- Ezgi Kar
- Training and Research Center, Kutahya Health Sciences University, Kutahya, Turkey.
| | - Fatih Kar
- Department of Medical Biochemistry, Faculty of Medicine, Kutahya Health Sciences University, Kutahya, Turkey
| | - Betül Can
- Department of Medical Biochemistry, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Ayşe Çakır Gündoğdu
- Department of Histology and Embryology, Faculty of Medicine, Kutahya Health Sciences University, Kutahya, Turkey
| | - Cansu Özbayer
- Department of Medical Biology, Faculty of Medicine, Kutahya Health Sciences University, Kutahya, Turkey
| | - Fatma Emel Koçak
- Department of Medical Biochemistry, Faculty of Medicine, Kutahya Health Sciences University, Kutahya, Turkey
| | - Hakan Şentürk
- Department of Biology, Faculty of Art and Sciences, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
3
|
Gündoğdu AÇ, Özbayer C, Kar F. Boric Acid Alleviates Gastric Ulcer by Regulating Oxidative Stress and Inflammation-Related Multiple Signaling Pathways. Biol Trace Elem Res 2024; 202:2124-2132. [PMID: 37606879 DOI: 10.1007/s12011-023-03817-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023]
Abstract
Oxidative stress and inflammation have pivotal roles in gastric ulcer development caused by alcohol consumption. Trace element boric acid taken into the human and animal body from dietary sources displays strong antioxidant and anti-inflammatory functions. However, the mechanisms underlying these actions of boric acid remain unclear, and its effectiveness in preventing gastric lesions is unknown. Therefore, the present study was undertaken to evaluate the protective effects of boric acid in alcohol-induced gastric ulcer and elucidate its potential mechanisms. Gastric ulcer was induced by 75% oral ethanol administration in rats, and the effectiveness of prophylactic boric acid treatment at 100 mg/kg concentration was assessed by histopathological examination, ELISA assay and qRT-PCR. Gross macroscopic and histopathological evaluations revealed that boric acid alleviated gastric mucosal lesions. Boric acid decreased reactive oxygen species (ROS) and malondialdehyde (MDA) concentration and the overall oxidation state of the body while improving antioxidant status. It reduced the concentration of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6). The mRNA expression of JAK2 and STAT3 was decreased while the expression of AMPK was increased with boric acid pretreatment. Moreover, Sema3A and PlexinA1 levels were elevated upon boric acid pretreatment, and homocysteine levels were reduced. Our results demonstrated that boric acid protects gastric mucosa from ethanol-induced damage by regulating oxidative and inflammatory responses. In addition, our findings suggested that the gastroprotective activity of boric acid could be attributed to its regulatory function in the IL-6/JAK2/STAT3 signaling modulated by AMPK and that Sema3A/PlxnA1 axis and homocysteine are potentially involved in this process.
Collapse
Affiliation(s)
- Ayşe Çakır Gündoğdu
- Department of Histology and Embryology, Faculty of Medicine, Kütahya Health Sciences University, Kütahya, Türkiye
| | - Cansu Özbayer
- Department of Medical Biology, Faculty of Medicine, Kütahya Health Sciences University, Kütahya, Türkiye
| | - Fatih Kar
- Department of Medical Biochemistry, Faculty of Medicine, Kütahya Health Sciences University, Evliya Çelebi Campus, 10th km of the Tavşanlı Road, 43100, Kütahya, Türkiye.
| |
Collapse
|
4
|
Hacioglu C, Oral D. Borax affects cellular viability by inducing ER stress in hepatocellular carcinoma cells by targeting SLC12A5. J Cell Mol Med 2024; 28:e18380. [PMID: 38780503 PMCID: PMC11114215 DOI: 10.1111/jcmm.18380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 04/22/2024] [Accepted: 04/27/2024] [Indexed: 05/25/2024] Open
Abstract
Hepatocellular carcinoma (HCC) presents a persistent challenge to conventional therapeutic approaches. SLC12A5 is implicated in an oncogenic capacity and facilitates the progression of cancer. The objective of this investigation is to scrutinize the inhibitory effects of borax on endoplasmic reticulum (ER)-stress and apoptosis mediated by SLC12A5 in HepG2 cells. Initially, we evaluated the cytotoxic impact of borax on both HL-7702 and HepG2 cell lines. Subsequently, the effects of borax on cellular morphology and the cell cycle of these lines were examined. Following this, we explored the impact of borax treatment on the mRNA and protein expression levels of SLC12A5, C/EBP homologous protein (CHOP), glucose-regulated protein-78 (GRP78), activating transcription factor-6 (ATF6), caspase-3 (CASP3), and cytochrome c (CYC) in these cellular populations. The determined IC50 value of borax for HL-7702 cells was 40.8 mM, whereas for HepG2 cells, this value was 22.6 mM. The concentrations of IC50 (22.6 mM) and IC75 (45.7 mM) of borax in HepG2 cells did not manifest morphological aberrations in HL-7702 cells. Conversely, these concentrations in HepG2 cells induced observable morphological and nuclear abnormalities, resulting in cell cycle arrest in the G1/G0 phase. Additionally, the levels of SLC12A5, ATF6, CHOP, GRP78, CASP3, and CYC were elevated in HepG2 cells in comparison to HL-7702 cells. Moreover, SLC12A5 levels decreased following borax treatment in HepG2 cells, whereas ATF6, CHOP, GRP78, CASP3, and CYC levels exhibited a significant increase. In conclusion, our data highlight the potential therapeutic effects of borax through the regulation of ER stress in HCC by targeting SLC12A5.
Collapse
Affiliation(s)
- Ceyhan Hacioglu
- Faculty of Pharmacy, Department of BiochemistryDüzce UniversityDüzceTurkey
- Faculty of Medicine, Department of Medical BiochemistryDüzce UniversityDüzceTurkey
| | - Didem Oral
- Faculty of Pharmacy, Department of Pharmaceutical ToxicologyDüzce UniversityDüzceTurkey
| |
Collapse
|
5
|
Zhao J, Zang F, Huo X, Zheng S. Novel approaches targeting ferroptosis in treatment of glioma. Front Neurol 2023; 14:1292160. [PMID: 38020609 PMCID: PMC10659054 DOI: 10.3389/fneur.2023.1292160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Glioma is a malignant brain tumor with a high mortality rate; hence novel treatment approaches are being explored to improve patient outcomes. Ferroptosis, a newly described form of regulated cell death, is emerging as a potential therapeutic target in glioma. Ferroptosis is characterized by the accumulation of lipid peroxides due to a loss of intracellular antioxidant systems represented by the depletion of glutathione and decreased activity of glutathione peroxidase 4 (GPX4). Since glioma cells have a high demand for iron and lipid metabolism, modulation of ferroptosis may represent a promising therapeutic approach for this malignancy. Recent studies indicate that ferroptosis inducers like erastin and RSL3 display potent anticancer activity in a glioma model. In addition, therapeutic strategies, including GPX4 targeting, lipid metabolism modulation, inhibition of amino acid transporters, and ferroptosis targeting natural compounds, have shown positive results in preclinical studies. This review will provide an overview of the functions of ferroptosis in glioma and its potential as a suitable target for glioma therapy.
Collapse
Affiliation(s)
| | | | | | - Shengzhe Zheng
- Department of Neurology, Affiliated Hospital of Yanbian University, Yanbian Korean Autonomous Prefecture, Jilin, China
| |
Collapse
|
6
|
Lan Y, Yang T, Yue Q, Wang Z, Zhong X, Luo X, Zuo B, Zhang M, Zeng T, Liu B, Guo H. IRP1 mediated ferroptosis reverses temozolomide resistance in glioblastoma via affecting LCN2/FPN1 signaling axis depended on NFKB2. iScience 2023; 26:107377. [PMID: 37520713 PMCID: PMC10374607 DOI: 10.1016/j.isci.2023.107377] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/06/2023] [Accepted: 07/08/2023] [Indexed: 08/01/2023] Open
Abstract
The prognosis of glioblastoma (GBM) patients is poor, and temozolomide (TMZ) resistance has become an important obstacle to its treatment effect. A growing number of researches have revealed the special characteristics of iron metabolism in GBM chemosensitivity. Iron regulatory protein 1 (IRP1) is an important protein for maintaining intracellular iron homeostasis. IRP1 has been indicated to have additional vital roles beyond its conventional metabolic activity, but the underlying mechanisms and biological consequences remain elusive. Here, we unprecedentedly demonstrated that amplifying IRP1 signals can reverse TMZ resistance and suppress tumor growth in vivo via inhibiting NFKB2 in the noncanonical NF-κB signaling pathway. In addition, we identified that NFKB2 affected TMZ sensitivity of GBM by modulating the expression of LCN2 and FPN1. Taken together, this study established a role for the IRP1/NFKB2 pathway in regulating LCN2/FPN1 signaling axis among the progression of TMZ resistance, suggesting a potential innovative GBM therapeutic strategy.
Collapse
Affiliation(s)
- Yufei Lan
- Department of Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Tao Yang
- Department of Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Qu Yue
- Department of Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Zhao Wang
- Department of Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Xiangyang Zhong
- Department of Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Xin Luo
- Department of Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Boming Zuo
- Department of Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Manqing Zhang
- Department of Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Tianci Zeng
- Department of Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Boyang Liu
- Department of Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Hongbo Guo
- Department of Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| |
Collapse
|
7
|
Wang K, Guo H, Tian X, Miao Y, Han P, Jin F. Efficacy of three-dimensional arterial spin labeling and how it compares against that of contrast enhanced magnetic resonance imaging in preoperative grading of brain gliomas. ENVIRONMENTAL TOXICOLOGY 2023; 38:1723-1731. [PMID: 37040330 DOI: 10.1002/tox.23800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
PURPOSE To evaluate the efficacy of three-dimensional arterial spin labeling (3D-ASL) imaging in preoperative grading of brain gliomas, and compare the discrepancy between images obtained from 3D-ASL and contrast enhanced magnetic resonance imaging (CE-MRI) in grading of gliomas. METHODS Fifty-one patients with brain gliomas received plain MRI, CE-MRI and 3D-ASL scanning before surgery. In 3D-ASL images, the maximum tumor blood flow (TBF) of tumor parenchyma was measured, relative TBF-M and rTBF-WM were calculated. The cases were categorized into "ASL dominant" and "CE dominant" to compare the discrepancy between 3D-ASL and CE-MRI results. Independent samples t test, Mann-Whitney and U test and one-way analysis of variance (ANOVA) were performed to test the differences of TBF, rTBF-M and rTBF-WM values among brain gliomas with different grades. Spearman rank correlation analysis was performed to assess the correlation between TBF, rTBF-M, rTBF-WM and glioma grades respectively. To compare the discrepancy between 3D-ASL and CE-MRI results. RESULTS In high-grade gliomas (HGG) group, TBF, rTBF-M and rTBF-WM values were higher than those in low-grade gliomas (LGG) group (p < .05). Multiple comparison showed TBF and rTBF-WM values were different between grade I and IV gliomas, grade II and IV gliomas (both p < .05), the rTBF-M value was different between grade I and IV gliomas (p < .05). The values of all 3D-ASL derived parameters were positively correlated with gliomas grading (all p < .001). TBF showed highest specificity (89.3%) and rTBF-WM showed highest sensitivity (96.4%) when discriminating LGG and HGG using ROC curve. There were 29 CE dominant cases (23 cases were HGG), 9 ASL dominant cases (4 cases were HGG). CONCLUSION: 3D-ASL is of significance to preoperative grading of brain gliomas and might be more sensitive than CE-MRI in detection of tumor perfusion.
Collapse
Affiliation(s)
- Kai Wang
- Department of Neurosurgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Huanxuan Guo
- Department of Radiology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Xiaoyan Tian
- Department of Radiology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yanping Miao
- Department of Radiology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Ping Han
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Jin
- Department of Radiology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
8
|
Paties Montagner G, Dominici S, Piaggi S, Pompella A, Corti A. Redox Mechanisms Underlying the Cytostatic Effects of Boric Acid on Cancer Cells-An Issue Still Open. Antioxidants (Basel) 2023; 12:1302. [PMID: 37372032 DOI: 10.3390/antiox12061302] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Boric acid (BA) is the dominant form of boron in plasma, playing a role in different physiological mechanisms such as cell replication. Toxic effects have been reported, both for high doses of boron and its deficiency. Contrasting results were, however, reported about the cytotoxicity of pharmacological BA concentrations on cancer cells. The aim of this review is to briefly summarize the main findings in the field ranging from the proposed mechanisms of BA uptake and actions to its effects on cancer cells.
Collapse
Affiliation(s)
- Giulia Paties Montagner
- Department of Translational Research NTMS, University of Pisa Medical School, 56126 Pisa, Italy
| | - Silvia Dominici
- Department of Translational Research NTMS, University of Pisa Medical School, 56126 Pisa, Italy
| | - Simona Piaggi
- Department of Translational Research NTMS, University of Pisa Medical School, 56126 Pisa, Italy
| | - Alfonso Pompella
- Department of Translational Research NTMS, University of Pisa Medical School, 56126 Pisa, Italy
| | - Alessandro Corti
- Department of Translational Research NTMS, University of Pisa Medical School, 56126 Pisa, Italy
| |
Collapse
|
9
|
Cao W, Li Y, Zeng Z, Lei S. Terpinen-4-ol Induces Ferroptosis of Glioma Cells via Downregulating JUN Proto-Oncogene. Molecules 2023; 28:4643. [PMID: 37375197 DOI: 10.3390/molecules28124643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
According to previous research, turmeric seeds exhibit anti-inflammatory, anti-malignancy, and anti-aging properties due to an abundance of terpinen-4-ol (T4O). Although it is still unclear how T4O works on glioma cells, limited data exist regarding its specific effects. In order to determine whether or not glioma cell lines U251, U87, and LN229 are viable, CCK8 was used as an assay and a colony formation assay was performed using different concentrations of T4O (0, 1, 2, and 4 μM). The effect of T4O on the proliferation of glioma cell line U251 was detected through the subcutaneous implantation of the tumor model. Through high-throughput sequencing, a bioinformatic analysis, and real-time quantitative polymerase chain reactions, we identified the key signaling pathways and targets of T4O. Finally, for the measurement of the cellular ferroptosis levels, we examined the relationship between T4O, ferroptosis, and JUN and the malignant biological properties of glioma cells. T4O significantly inhibited glioma cell growth and colony formation and induced ferroptosis in the glioma cells. T4O inhibited the subcutaneous tumor proliferation of the glioma cells in vivo. T4O suppressed JUN transcription and significantly reduced its expression in the glioma cells. The T4O treatment inhibited GPX4 transcription through JUN. The overexpression of JUN suppressed ferroptosis in the cells rescued through T4O treatment. Taken together, our data suggest that the natural product T4O exerts its anti-cancer effects by inducing JUN/GPX4-dependent ferroptosis and inhibiting cell proliferation, and T4O will hope-fully serve as a prospective compound for glioma treatment.
Collapse
Affiliation(s)
- Wenpeng Cao
- Department of Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Yumei Li
- Department of Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Zhirui Zeng
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Shan Lei
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
10
|
Ye Y, Chen Y, Wu H, Fu Y, Sun Y, Wang X, Li P, Wu Z, Wang J, Yang Z, Zhou E. Investigations into ferroptosis in methylmercury-induced acute kidney injury in mice. ENVIRONMENTAL TOXICOLOGY 2023; 38:1372-1383. [PMID: 36880449 DOI: 10.1002/tox.23770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 05/18/2023]
Abstract
Methylmercury (MeHg) is a highly poisonous form of mercury and a risk factor for kidney impairment in humans that currently has no effective means of therapy. Ferroptosis is a non-apoptotic metabolic cell death linked to numerous diseases. It is currently unknown whether ferroptosis takes part in MeHg-induced kidney damage. Here, we established a model of acute kidney injury (AKI) in mice by gavage with different doses of MeHg (0, 40, 80, 160 μmol/kg). Serological analysis revealed elevated levels of UA, UREA, and CREA; H&E staining showed variable degrees of renal tubule injury; qRT-PCR detection displayed increased expression of KIM-1 and NGAL in the groups with MeHg treatment, indicated that MeHg successfully induced AKI. Furthermore, MDA levels enhanced in renal tissues of mice with MeHg exposure whereas GSH levels decreased; ACSL4 and PTGS2 nucleic acid levels elevated while SLC7A11 levels reduced; transmission electron microscopy illustrated that the density of the mitochondrial membrane thickened and the ridge reduced considerably; protein levels for 4HNE and TfR1 improved since GPX4 levels declined, all these results implying the involvement of ferroptosis as a result of MeHg exposure. Additionally, the observed elevation in the protein levels of NLRP3, p-p65, p-p38, p-ERK1/2, and KEAP1 in tandem with downregulated Nrf2 expression levels indicate the involvement of the NF-κB/NLRP3/MAPK/Nrf2 pathways. All the above findings suggested that ferroptosis and the NF-κB/NLRP3/MAPK/Nrf2 pathways are implicated in MeHg-induced AKI, thereby providing a theoretical foundation and reference for future investigations into the prevention and treatment of MeHg-induced kidney injury.
Collapse
Affiliation(s)
- Yingrong Ye
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, People's Republic of China
| | - Yichun Chen
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, People's Republic of China
| | - Hanpeng Wu
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, People's Republic of China
| | - Yiwu Fu
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, People's Republic of China
| | - Youpeng Sun
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, People's Republic of China
| | - Xia Wang
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, People's Republic of China
| | - Peixuan Li
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, People's Republic of China
| | - Zhikai Wu
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, People's Republic of China
| | - Jingjing Wang
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, People's Republic of China
| | - Zhengtao Yang
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, People's Republic of China
| | - Ershun Zhou
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, People's Republic of China
| |
Collapse
|
11
|
Hacioglu C, Kar F, Davran F, Tuncer C. Borax regulates iron chaperone- and autophagy-mediated ferroptosis pathway in glioblastoma cells. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 36988300 DOI: 10.1002/tox.23797] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/14/2023] [Accepted: 03/19/2023] [Indexed: 06/19/2023]
Abstract
Glioblastoma (GBM) is classified as a stage-IV glioma. Unfortunately, there are currently no curative treatments for GBM. Poly(rC)-binding protein 1 (PCBP1) is a cytosolic iron chaperone with diverse functions. PCBP1 is also known to regulate autophagy, but the role of PCBP1 in ferroptosis, iron-dependent cell death pathway, remains unrevealed in GBM cells. Here, we investigated the effects of borax, a boron compound, on the ferroptosis signaling pathway mediated by PCBP1 and autophagy. The study analyzed cell viability, proliferation, and cell cycle on U87-MG and HMC3 cells to investigate the effects of borax. After determining the cytotoxic concentrations of borax, morphological analyzes and measurement of PCBP1, Beclin1, malondialdehyde (MDA), glutathione (GSH), glutathione peroxidase 4 (GPx4) and acyl-CoA synthetase long chain family member 4 (ACSL4) levels were performed. Finally, expression levels of PCBP1, Beclin1, GPx4 and ACSL4, and caspase-3/7 activity were determined. We found that borax reduced U87-MG cell viability in a concentration- and time-dependent manner. Additionally, borax altered cell proliferation and remarkably reduced S phase in the U87-MG cells and exhibited selectivity by having an opposite effect on normal cells (HMC3). According to DAPI staining, borax caused nuclear deficits in U87-MG cells. The result showed that borax in U87-MG cells induced reduction of the PCBP1, GSH, and GPx4 and enhancement of Beclin1, MDA, and ACSL4. Furthermore, borax triggered apoptosis by activating caspase 3/7 in U87-MG cells. Our study indicated that the borax has potential as an anticancer treatment for GBM via regulating PCBP1/Beclin1/GPx4/ACSL4 signaling pathways.
Collapse
Affiliation(s)
- Ceyhan Hacioglu
- Department of Biochemistry, Faculty of Pharmacy, Duzce University, Duzce, Turkey
- Department of Medical Biochemistry, Faculty of Medicine, Duzce University, Duzce, Turkey
| | - Fatih Kar
- Department of Medical Biochemistry, Faculty of Medicine, Kütahya Health Sciences University, Kütahya, Turkey
| | - Fatih Davran
- Department of Medical Biochemistry, Faculty of Medicine, Duzce University, Duzce, Turkey
| | - Cengiz Tuncer
- Department of Neurosurgery, Faculty of Medicine, Duzce University, Duzce, Turkey
| |
Collapse
|
12
|
Yang HL, Chang YH, Pandey S, Bhat AA, Vadivalagan C, Lin KY, Hseu YC. Antrodia camphorata and coenzyme Q 0 , a novel quinone derivative of Antrodia camphorata, impede HIF-1α and epithelial-mesenchymal transition/metastasis in human glioblastoma cells. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 36947447 DOI: 10.1002/tox.23785] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/01/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Antrodia camphorata (AC) and Coenzyme Q0 (CoQ0 ), a novel quinone derivative of AC, exhibits antitumor activities. The present study evaluated EMT/metastasis inhibition and autophagy induction aspects of AC and CoQ0 in human glioblastoma (GBM8401) cells. Our findings revealed that AC treatment (0-150 μg/mL) hindered tumor cell proliferation and migration/invasion in GBM8401 cells. Notably, AC treatment inhibited HIF-1α and EMT by upregulating epithelial marker protein E-cadherin while downregulating mesenchymal proteins Twist, Slug, Snail, and β-catenin. There was an appearance of the autophagy markers LC3-II and p62/SQSTM1, while ATG4B was downregulated by AC treatment. We also found that CoQ0 (0-10 μM) could inhibit migration and invasion in GBM8401 cells. In particular, E-cadherin was elevated and N-cadherin, Vimentin, Twist, Slug, and Snail, were reduced upon CoQ0 treatment. In addition, MMP-2/-9 expression and Wnt/β-catenin pathways were downregulated. Furthermore, autophagy inhibitors 3-MA or CQ reversed the CoQ0 -elicited suppression of migration/invasion and metastasis-related proteins (Vimentin, Snail, and β-catenin). Results suggested autophagy-mediated antiEMT and antimetastasis upon CoQ0 treatment. CoQ0 inhibited HIF-1α and metastasis in GBM8401 cells under normoxia and hypoxia. HIF-1α knockdown using siRNA accelerated CoQ0 -inhibited migration. Finally, CoQ0 exhibited a prolonged survival rate in GBM8401-xenografted mice. Treatment with Antrodia camphorata/CoQ0 inhibited HIF-1α and EMT/metastasis in glioblastoma.
Collapse
Affiliation(s)
- Hsin-Ling Yang
- Institute of Nutrition, College of Pharmacy, China Medical University, Taichung, 40402, Taiwan
| | - Yao-Hsien Chang
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung, 40402, Taiwan
| | - Sudhir Pandey
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung, 40402, Taiwan
| | - Asif Ali Bhat
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung, 40402, Taiwan
| | - Chithravel Vadivalagan
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung, 40402, Taiwan
| | - Kai-Yuan Lin
- Department of Medical Research, Chi-Mei Medical Center, Tainan, 710, Taiwan
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan, 71710, Taiwan
| | - You-Cheng Hseu
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung, 40402, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung City, 41354, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, 40402, Taiwan
- Research Center of Chinese Herbal Medicine, China Medical University, Taichung, 40402, Taiwan
| |
Collapse
|
13
|
Feng J, Li Y, He F, Zhang F. RBM15 silencing promotes ferroptosis by regulating the TGF-β/Smad2 pathway in lung cancer. ENVIRONMENTAL TOXICOLOGY 2023; 38:950-961. [PMID: 36715115 DOI: 10.1002/tox.23741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVE We assessed the function and mechanism of RNA binding motif protein 15 (RBM15) silencing in lung cancer development. METHODS The effects of RBM15 knockdown on A549 and H1299 cells were evaluated by MTT, EdU, wound healing, and transwell assay. We then detected the functions of RBM15 silencing on lipid peroxidation, labile iron pool (LIP), ferrous iron (Fe2+ ), and ferroptosis-related genes. RNA sequencing was performed after RBM15 knockout in lung cancer cells, followed by differentially expressed genes (DEGs), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed. Finally, the expression of RBM15 and pathway-related genes was determined by western blot. RESULTS RBM15 was highly expressed in lung cancer cells. RBM15 silencing reduced the viability, inhibited cell proliferation, invasion, and migration, and suppressed tumor growth in the xenograft mouse model. Knockout of RBM15 regulated ferroptosis-related gene expression. LIP, Fe2+ , and lipid peroxidation were distinctly increased by the knockout of RBM15. RNA-seq sequencing revealed that there are 367 up-regulated and 368 down-regulated DEGs, which were enriched in molecular functions, biological processes, and cellular components. RBM15 silencing reduced the expression of TGF-β/Smad2, and TGF-β activator (SRI-011381) reversed the inhibitory effect of RBM15 silencing on tumor cell growth. CONCLUSION We demonstrated that RBM15 silencing promoted ferroptosis in lung cancer cells by TGF-β/Smad2 pathway, thereby inhibiting lung cancer cell growth, which may provide new light for lung cancer treatment.
Collapse
Affiliation(s)
- Jing Feng
- Department of Thoracic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Yaling Li
- Department of Thoracic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Fen He
- Department of Thoracic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Fuwei Zhang
- Department of Thoracic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, China
| |
Collapse
|
14
|
Yao Y, Ji P, Chen H, Ge J, Xu Y, Wang P, Xu L, Yan Z. Ferroptosis-based drug delivery system as a new therapeutic opportunity for brain tumors. Front Oncol 2023; 13:1084289. [PMID: 36910646 PMCID: PMC9996339 DOI: 10.3389/fonc.2023.1084289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
The brain tumor is a kind of malignant tumor with brutal treatment, high recurrence rate, and poor prognosis, and the incidence and death rate is increasing yearly. Surgery is often used to remove the primary tumor, supplemented by radiotherapy and chemotherapy, which have highly toxic side effects. Therefore, there is an urgent need to explore new strategies, methods, and technologies that can genuinely improve the treatment of brain tumors. Ferroptosis differs from traditional apoptosis's morphological and biochemical characteristics, and ferroptosis possesses its unique characteristics and mechanisms, opening up a new field of ferroptosis treatment for cancer. It has been found that there is a close relationship between ferroptosis and brain tumors, and a novel nano-drug delivery system based on ferroptosis has been used for the ferroptosis treatment of brain tumors with remarkable effects. This review firstly analyzes the characteristics of ferroptosis, summarizes the mechanism of its occurrence and some factors that can be involved in the regulation of ferroptosis, introduces the potential link between ferroptosis and brain tumors, and clarifies the feasibility of ferroptosis in the treatment of brain tumors. It then presents the ferroptosis nano drug delivery systems developed under different metabolic pathways for ferroptosis treatment of brain tumors. Finally, it summarizes the current problems and solutions of ferroptosis nano drugs for brain tumor treatment, aiming to provide a reference for developing ferroptosis nano drugs against brain tumors.
Collapse
Affiliation(s)
- Yansheng Yao
- Department of Endocrinology, The Affiliated Taixing People's Hospital of Medical College, Yangzhou University, Taixing, China
| | - Peng Ji
- College of Pharmacy and Chemistry & Chemical Engineering, Jiangsu Provincial Key Laboratory of Chiral Pharmaceutical Chemicals Biologically Manufacturing, Taizhou University, Taizhou, China
| | - Hao Chen
- College of Pharmacy and Chemistry & Chemical Engineering, Jiangsu Provincial Key Laboratory of Chiral Pharmaceutical Chemicals Biologically Manufacturing, Taizhou University, Taizhou, China
| | - Jianwen Ge
- College of Pharmacy and Chemistry & Chemical Engineering, Jiangsu Provincial Key Laboratory of Chiral Pharmaceutical Chemicals Biologically Manufacturing, Taizhou University, Taizhou, China
| | - Yajing Xu
- College of Pharmacy and Chemistry & Chemical Engineering, Jiangsu Provincial Key Laboratory of Chiral Pharmaceutical Chemicals Biologically Manufacturing, Taizhou University, Taizhou, China
| | - Peng Wang
- College of Pharmacy and Chemistry & Chemical Engineering, Jiangsu Provincial Key Laboratory of Chiral Pharmaceutical Chemicals Biologically Manufacturing, Taizhou University, Taizhou, China
| | - Li Xu
- Department of Nursing, Liaoning Vocational College of Medicine, Shenyang, China
| | - Zhirong Yan
- Department of Anesthesiology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian, China
| |
Collapse
|
15
|
Chi H, Li B, Wang Q, Gao Z, Feng B, Xue H, Li G. Opportunities and challenges related to ferroptosis in glioma and neuroblastoma. Front Oncol 2023; 13:1065994. [PMID: 36937406 PMCID: PMC10021024 DOI: 10.3389/fonc.2023.1065994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
A newly identified form of cell death known as ferroptosis is characterized by the peroxidation of lipids in response to iron. Rapid progress in research on ferroptosis in glioma and neuroblastoma has promoted the exploitation of ferroptosis in related therapy. This manuscript provides a review of the findings on ferroptosis-related therapy in glioblastoma and neuroblastoma and outlines the mechanisms involved in ferroptosis in glioma and neuroblastoma. We summarize some recent data on traditional drugs, natural compounds and nanomedicines used as ferroptosis inducers in glioma and neuroblastoma, as well as some bioinformatic analyses of genes involved in ferroptosis. Moreover, we summarize some data on the associations of ferroptosis with the tumor immunotherapy and TMZ drug resistance. Finally, we discuss future directions for ferroptosis research in glioma and neuroblastoma and currently unresolved issues.
Collapse
Affiliation(s)
- Huizhong Chi
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Boyan Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Qingtong Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Zijie Gao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Bowen Feng
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
- *Correspondence: Hao Xue, ; Gang Li,
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
- *Correspondence: Hao Xue, ; Gang Li,
| |
Collapse
|