1
|
Abdelrahaman D, Habotta OA, Ateya A, Aldarmahi AA, El-Shafei RA, Badawy MM, El-Mansy AA, A-Elgadir TM, Nada AM, Elhadidy MG, Hamza E, Alwutayed KM, El-Sherbiny M, Fericean L, Imbrea F, Abdeen A. Nootkatone Counteracts Melamine-Mediated Nephrotoxicity via Modulation of Intermediate Filament Proteins, Oxidative, Inflammatory, and Apoptotic Events. Drug Des Devel Ther 2024; 18:2989-3004. [PMID: 39050805 PMCID: PMC11268755 DOI: 10.2147/dddt.s466286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Background Nootkatone (NK), a bioactive sesquiterpene ketone, is a major ingredient in grapefruit that has distinguished biological activities. Melamine (MM), a food adulterant, was reported to induce toxic effects including renal disorders. Hence, this protocol was devoted to evaluate the renoprotective impact of NK toward MM-evoked renal damage. Methods Rats were either exposed to MM (700 mg/kg) or a combination of MM and two doses of NK (5 and 10 mg/kg). Results The results showed that NK therapy notably decreased the kidney functional parameters, along with KIM-1 and NGAL expressions of MM group. Furthermore, a decrease in MDA and NO levels as well as an elevation in SOD, CAT, GSH, and SOD and NRF2 mRNA expression in the NK group demonstrated NK's ability to enhance the renal antioxidant defense of the MM group. Significant suppression in renal inflammatory markers was achieved by NK via lessening of IL-1β and TNF-α, besides downregulation of NF-κB and IL-1β expressions. NK also downregulated vimentin, nestin, and desmin in the MM group. Additionally, in response to the MM exposure, NK hindered renal apoptosis by decreasing caspase-3 expression and restoring renal histopathological features. Conclusion These outcomes suggest that NK can be considered as a prospective candidate to guard against MM exposure-mediated renal toxic effects.
Collapse
Affiliation(s)
- Doaa Abdelrahaman
- Department of Internal Medicine, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed Ateya
- Department of Animal Husbandry and Wealth Development, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed A Aldarmahi
- Department of Basic Science, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- National Guard- Health Affairs, King Abdullah International Medical Research Centre, Jeddah, 21582, Saudi Arabia
| | - Reham A El-Shafei
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed M Badawy
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Delta University for Science and Technology, Gamasa, Egypt
| | - Ahmed A El-Mansy
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Thoraya M A-Elgadir
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Aml M Nada
- Department of Internal Medicine and Endocrinology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mona G Elhadidy
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Medical Physiology, Faculty of Medicine, Al-Baha University, Al Aqiq, Saudi Arabia
| | - Eman Hamza
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Medical Biochemistry and Molecular Biology, Horus University, Damietta, Egypt
| | - Khairiah M Alwutayed
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, 11597, Saudi Arabia
| | - Liana Fericean
- Department of Biology and Plant Protection, Faculty of Agriculture, University of Life Sciences “king Michael I” from Timișoara, Calea Aradului, Romania
| | - Florin Imbrea
- Department of Crop Science, Faculty of Agriculture, University of Life Sciences “King Mihai I” from Timisoara, Calea Aradului, Romania
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| |
Collapse
|
2
|
Zhang X, Bao M, Zhang J, Zhu L, Wang D, Liu X, Xu L, Luan L, Liu Y, Liu Y. Neuroprotective mechanism of ribisin A on H 2O 2-induced PC12 cell injury model. Tissue Cell 2024; 87:102322. [PMID: 38367324 DOI: 10.1016/j.tice.2024.102322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/19/2024]
Abstract
Ribisin A has been shown to have neurotrophic activity. The aim of this study was to evaluate the neuroprotective effect of ribisin A on injured PC12 cells and elucidate its mechanism. In this project, PC12 cells were induced by H2O2 to establish an injury model. After treatment with ribisin A, the neuroprotective mechanism of ribisin A was investigated by methyl tetrazolium (MTT) assay, Enzyme-linked immunosorbent assay (ELISA), flow cytometric analysis, fluorescent probe analysis, and western blot. We found that ribisin A decreased the rate of lactate dehydrogenase (LDH) release, increased cellular superoxide dismutase (SOD) level, decreased the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), Ca2+ expression and reactive oxygen species (ROS). Moreover, ribisin A significantly increased mitochondrial membrane potential (MMP) and inhibited apoptosis of PC12 cells. Meanwhile, ribisin A activated the phosphorylation of ERK1/2 and its downstream molecule CREB by upregulating the expression of Trk A and Trk B, the upstream molecules of the ERK signaling pathway.
Collapse
Affiliation(s)
- Xin Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Medicinal Fungi and Resource Development in Shandong Province, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Mengyu Bao
- School of Pharmaceutical Sciences, Key Laboratory of Medicinal Fungi and Resource Development in Shandong Province, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jingyi Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Medicinal Fungi and Resource Development in Shandong Province, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lihao Zhu
- Sishui Siheyuan Culture and Tourism Development Company, Ltd, Sishui 273200, China
| | - Di Wang
- School of Pharmaceutical Sciences, Key Laboratory of Medicinal Fungi and Resource Development in Shandong Province, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xin Liu
- School of Pharmaceutical Sciences, Key Laboratory of Medicinal Fungi and Resource Development in Shandong Province, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lingchuan Xu
- School of Pharmaceutical Sciences, Key Laboratory of Medicinal Fungi and Resource Development in Shandong Province, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lijuan Luan
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China.
| | - Yuguo Liu
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China.
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Key Laboratory of Medicinal Fungi and Resource Development in Shandong Province, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
3
|
Habotta OA, Abdeen A, Roomi AB, Elgndy AI, Sorour SM, Morsi MH, Kamal KM, Ibrahim SF, Abdelrahaman D, Fericean L, Banatean-Dunea I, Ghamry HI, El-Nablaway M, Atawia RT, Abdelhady D. Nootkatone Mitigated Melamine-Evoked Hepatotoxicity by Featuring Oxidative Stress and Inflammation Interconnected Mechanisms: In Vivo and In Silico Approaches. TOXICS 2023; 11:784. [PMID: 37755794 PMCID: PMC10535958 DOI: 10.3390/toxics11090784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023]
Abstract
Melamine (ML) is a common environmental contaminant, commonly used in food fraud, representing a serious health hazard and jeopardizing human and animal health. Recently, nootkatone (NK), a naturally occurring sesquiterpenoid, has garnered considerable attention due to its potential therapeutic advantages. We investigated the potential mechanisms underlying the protective effects of NK against ML-induced liver injury in rats. Five groups were utilized: control, ML, NK10, ML-NK5, and ML-NK10. ML induced substantial hepatotoxicity, including considerable alterations in biochemical parameters and histology. The oxidative distress triggered by ML increased the generation of malondialdehyde (MDA) and nitric oxide (NO) and decreased levels of reduced glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD) activities. In addition, decreased expression of nuclear factor-erythroid 2-related factor 2 (Nrf2) and increased nuclear factor kappa beta (NF-κB) expression levels were observed in hepatocytes, which indicated the occurrence of inflammatory changes following ML exposure. These alterations were alleviated by NK supplementation in a dose-dependent manner. The data revealed that the favorable effects of NK were attributed, at least in part, to its antioxidant and anti-inflammatory properties. Moreover, our results were supported by molecular docking studies that revealed a good fit and interactions between NK and antioxidant enzymes. Thus, the current study demonstrated that NK is a potential new food additive for the prevention or treatment of ML-induced toxicity.
Collapse
Affiliation(s)
- Ola A. Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt
| | - Ali B. Roomi
- Department of Quality Assurance, University of Thi-Qar, Thi-Qar, Nasiriyah 64001, Iraq
- Department of Medical Laboratory, College of Health and Medical Technology, National University of Science and Technology, Thi-Qar, Nasiriyah 64001, Iraq
| | - Afnan I. Elgndy
- Department of Physiology, Faculty of Medicine, Benha University, Benha 13518, Egypt
| | - Safwa M. Sorour
- Department of Pharmacology, Faculty of Medicine, Benha University, Benha 13518, Egypt
| | - Maha H. Morsi
- Department of Clinical and Chemical Pathology, Faculty of Applied Health Sciences Technology, Misr University for Science and Technology, Giza 3236101, Egypt
| | - Kamal M. Kamal
- Department of Anatomy and Embryology, Faculty of Medicine, Benha University, Benha 13518, Egypt
| | - Samah F. Ibrahim
- Department of Clinical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Doaa Abdelrahaman
- Department of Basic Sciences, Faculty of Medicine, Al-Azhar University, Cairo 11751, Egypt
| | - Liana Fericean
- Department of Biology and Plant Protection, Faculty of Agriculture, University of Life Sciences “King Michael I” from Timișoara, Calea Aradului 119, CUI 3487181, 300645 Timisoara, Romania
| | - Ioan Banatean-Dunea
- Department of Biology and Plant Protection, Faculty of Agriculture, University of Life Sciences “King Michael I” from Timișoara, Calea Aradului 119, CUI 3487181, 300645 Timisoara, Romania
| | - Heba I. Ghamry
- Nutrition and Food Sciences, Department of Home Economics, Faculty of Home Economics, King Khalid University, P.O. Box 960, Abha 61421, Saudi Arabia
| | - Mohammad El-Nablaway
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | - Reem T. Atawia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
- Department of Pharmaceutical Sciences, College of Pharmacy, Southwestern Oklahoma State University, Weatherford, OK 73096, USA
| | - Dania Abdelhady
- Department of Physiology, Faculty of Medicine, Benha University, Benha 13518, Egypt
| |
Collapse
|
4
|
Habotta O, Ateya A, Saleh RM, El-Ashry ES. Thiamethoxam Evoked Neural Oxido-inflammatory Stress in Male Rats Through Modulation of Nrf2/NF-kB/iNOS Signaling and Inflammatory Cytokines: Neuroprotective Effect of Silymarin. Neurotoxicology 2023; 96:28-36. [PMID: 36958429 DOI: 10.1016/j.neuro.2023.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 03/25/2023]
Abstract
Thiamethoxam (TMX), a neonicotinoid insecticide, is a widely used insecticide with neurotoxic potential. Silymarin (SM), a milk thistle-derived flavonoid, is known with its promising biological activities. This study explored the neuroprotective effects of SM against TMX-triggered cortical injury in male rats. Animals were divided into four groups and treated daily either with SM (150mg/kg), TMX (78.15mg/kg), or both at the aforementioned doses for 28 days. Our results revealed marked declines in cortical SOD and CAT activities with elevations in MDA, IL-1b and TNF-α levels in TMX-treated rats. Further, TMX induced down-regulation in the gene expressions of Sod, Cat, Gpx, and Nrf-2, with up-regulation in the gene expressions of IL-1b, IL-6, iNOS, TNF-α and NF-kB. Interestingly, pre-treatment with SM provided a notable neuroprotective action against TMX-mediated cortical damage that indicates its promising antioxidant and anti-inflammatory activities. This effect may be mediated by Nrf2/NF-kB/iNOS signalling and suppression of excess free radicals and production of inflammatory cytokines. In brief, SM could be a promising therapeutic agent against TMX-mediated neural complication via its antioxidant and anti-inflammatory properties. PRACTICAL APPLICATIONS: The using of neonicotinoids as thiamethoxam is recently increased and is associated with brain damage. TMX induced excessive oxidative and inflammatory damage. Therefore, new therapeutic approaches are needed to counteract its adverse effects on the nervous system. SM, a flavonoid, is extracted from the seeds and fruits of milk thistle. Due to its potent antioxidative activity, SM have been applied to mitigate the oxidative stress as well as inflammatory disorders. Herein, we examined the potential therapeutic role of SM against TMX-induced brain oxidative stress and inflammation in rats through evaluating oxidative markers, inflammatory response, and histopathological changes in the brain cortical tissue.
Collapse
Affiliation(s)
- Ola Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed Ateya
- Department of Animal Husbandry and Wealth Development Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Rasha M Saleh
- Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Eman S El-Ashry
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|