1
|
Song S, Zhang H, Liu L, Li M, Wang X, Zeng H, Zhao M, Ran P, Shu Q, Yang P. Probiotic DNA regulates intestinal Th2 polarization by inducing epithelial cells to produce PD-L1. Apoptosis 2024:10.1007/s10495-024-02043-3. [PMID: 39633114 DOI: 10.1007/s10495-024-02043-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2024] [Indexed: 12/07/2024]
Abstract
Th2 polarization is a characteristic feature of many immune diseases; its pathogenesis is still being elucidated. Probiotics have immune regulatory effects. This study is aimed at testing the impact of Lactobacillus rhamnosus (LR) DNA on regulating Th2 polarization and elucidating its underlying mechanism. In this study, ovalbumin plus alum protocol was used to establish the Th2 polarization status in the mouse intestine. Mice received LR-DNA gavage daily for five days. The expression of programmed cell death ligand-1 (PD-L1) in intestinal epithelial cells was assessed using RT-qPCR, enzyme-linked immunosorbent assay, and immunohistochemistry. The results showed that the expression of PD-L1 was detected in mouse intestinal epithelial cells, which was up regulated by LR-DNA gavage daily for 5 days. The expression of PD-L1 was also detected in T84 cells, which could be increased by exposing them to LR-DNA in culture. RNA sequencing results showed that the gene activities of Kdm5a, foxo1 and Pdl1 could be upregulated by LR-DNA in mouse intestinal epithelial cells. The epithelial cell-derived PD-L1 induced the activated Th2 cell apoptosis by interacting with programmed cell death protein-1 (PD-1). Administration of LR-DNA, but not live probiotics, alleviated experimental Th2 polarization in a food allergy mouse model. In conclusion, LR-DNA induces intestinal epithelial cells to produce PD-L1, which induces the activated Th2 cell apoptosis. Administration of LR-DNA mitigated experimental Th2 polarization in the intestine.
Collapse
Affiliation(s)
- Shuo Song
- Department of General Practice Medicine, Third Affiliated Hospital, Shenzhen University and State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China
- Institute of Allergy & Immunology of Shenzhen University School of Medicine, Shenzhen, China
| | - Hanqing Zhang
- Institute of Allergy & Immunology of Shenzhen University School of Medicine, Shenzhen, China
| | - Le Liu
- Institute of Allergy & Immunology of Shenzhen University School of Medicine, Shenzhen, China
| | - Minyao Li
- Department of General Practice Medicine, Third Affiliated Hospital, Shenzhen University and State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China
- Institute of Allergy & Immunology of Shenzhen University School of Medicine, Shenzhen, China
| | - Xiangyu Wang
- Department of Gastroenterology, Shenzhen Second People's Hospital, Shenzhen, China
| | - Haotao Zeng
- Department of Clinical Chemistry and Allergy, Longgang ENT Hospital & Shenzhen ENT Institute, Shenzhen, China
| | - Miao Zhao
- Department of Clinical Chemistry and Allergy, Longgang ENT Hospital & Shenzhen ENT Institute, Shenzhen, China
| | - Pixin Ran
- Department of Allergy, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qing Shu
- Department of Gastroenterology, Shenzhen Second People's Hospital, Shenzhen, China.
- , Room A7-509 in Lihu Campus, 1066 Xueyuan Blvd, Shenzhen, 518055, China.
| | - Pingchang Yang
- Department of General Practice Medicine, Third Affiliated Hospital, Shenzhen University and State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China.
- Institute of Allergy & Immunology of Shenzhen University School of Medicine, Shenzhen, China.
| |
Collapse
|
2
|
Li X, Chen RY, Shi JJ, Li CY, Liu YJ, Gao C, Gao MR, Zhang S, Lu JF, Cao JF, Yang GJ, Chen J. Emerging role of Jumonji domain-containing protein D3 in inflammatory diseases. J Pharm Anal 2024; 14:100978. [PMID: 39315124 PMCID: PMC11417268 DOI: 10.1016/j.jpha.2024.100978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 09/25/2024] Open
Abstract
Jumonji domain-containing protein D3 (JMJD3) is a 2-oxoglutarate-dependent dioxygenase that specifically removes transcriptional repression marks di- and tri-methylated groups from lysine 27 on histone 3 (H3K27me2/3). The erasure of these marks leads to the activation of some associated genes, thereby influencing various biological processes, such as development, differentiation, and immune response. However, comprehensive descriptions regarding the relationship between JMJD3 and inflammation are lacking. Here, we provide a comprehensive overview of JMJD3, including its structure, functions, and involvement in inflammatory pathways. In addition, we summarize the evidence supporting JMJD3's role in several inflammatory diseases, as well as the potential therapeutic applications of JMJD3 inhibitors. Additionally, we also discuss the challenges and opportunities associated with investigating the functions of JMJD3 and developing targeted inhibitors and propose feasible solutions to provide valuable insights into the functional exploration and discovery of potential drugs targeting JMJD3 for inflammatory diseases.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ru-Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jin-Jin Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Chang Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ming-Rong Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Shun Zhang
- Ningbo No. 2 Hospital, Ningbo, Zhejiang, 315211, China
- China Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 315211, China
| | - Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jia-Feng Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
3
|
Shen R, Ding Y, Dong Q, Wang Y, Yu J, Pan C, Cai Y, Li Z, Zhang J, Yu K, Zeng Q. IL-4-Induced Gene 1: A Potential Player in Myocardial Infarction. Rev Cardiovasc Med 2024; 25:337. [PMID: 39355609 PMCID: PMC11440439 DOI: 10.31083/j.rcm2509337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/18/2024] [Accepted: 05/06/2024] [Indexed: 10/03/2024] Open
Abstract
Myocardial infarction (MI), a severe outcome of cardiovascular disease, poses a serious threat to human health. Uncontrolled inflammation and excessive cardiomyocyte death, following an infarction event, significantly contribute to both the mortality rate and complications associated with MI. The protein IL-4-induced gene 1 (IL4I1 or FIG1) serves as a natural inhibitor of innate and adaptive immunity, playing a crucial role in CD4+ T cell differentiation, macrophage polarization, and ferroptosis inhibition. Previous studies have linked IL4I1 to acute MI. This review summarizes evidence from both basic and clinical research, highlighting IL4I1 as a critical immunoregulatory enzyme that not only regulates inflammatory responses, but also potentially mitigates MI-induced damage.
Collapse
Affiliation(s)
- Rui Shen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
| | - Yan Ding
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
| | - Qian Dong
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
| | - Yue Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
| | - Jian Yu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
| | - Chengliang Pan
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
| | - Yifan Cai
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
| | - Zhiyang Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
| | - Jiangmei Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
| | - Kunwu Yu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
| | - Qiutang Zeng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
| |
Collapse
|
4
|
Qin R, Wang P, Li L. Knockdown of JMJD3 ameliorates cigarette smoke extract-triggered bronchial epithelial cell injury via ACSL4-dependent ferroptosis. Toxicol In Vitro 2024; 94:105731. [PMID: 37967773 DOI: 10.1016/j.tiv.2023.105731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/17/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023]
Abstract
Chronic obstructive pulmonary disease (COPD), a heterogeneity of chronic respiratory disease pattern, presents considerable prevalence and mortality. We aimed to explore the role and mechanisms of Jumonji domain-containing protein-3 (JMJD3) in COPD. The viability and JMJD3 expression in human bronchial epithelial cell line BEAS-2B were respectively assayed by CCK-8 assay and Western blot following stepwise exposure to increasing concentrations of cigarette smoke extract (CSE). After JMJD3 was silenced and acyl-CoA synthetase long-chain family member 4 (ACSL4) was overexpressed in CSE-treated BEAS-2B cells, cell viability, cytotoxicity, oxidative stress and total iron level were estimated using kits. ELISA estimated inflammatory levels. DCFH-DA probe and BODIPY 581/591 C11 probe were exposed to assess ROS production and lipid peroxidation. Western blot tested the expressions of ferroptosis-associated proteins. Besides, H3K27me3 and ACSL4 expressions were tested by Western blot and immunofluorescence staining. In CSE-induced BEAS-2B cells, JMJD3 expression was increased and deletion of JMJD3 improved cell viability, reduced LDH release, mitigated inflammation, oxidative stress and inhibited ferroptosis. Moreover, JMJD3 interference raised H3K27me3 expression whereas lessened ACSL4 expression in CSE-treated BEAS-2B cells. CSE exposure reduced the abundance of ACSL4 in H3K27me3 antibody. Further ACSL4 elevation reversed the impacts of JMJD3 silencing on the damage of CSE-induced BEAS-2B cells. Collectively, JMJD3 depletion might suppress ferroptosis mediated by ACSL4 to alleviate CSE-triggered inflammation and oxidative stress in BEAS-2B cells.
Collapse
Affiliation(s)
- Ruijun Qin
- Department of Respiratory and Critical Care Medicine, Taiyuan Central Hospital, Taiyuan, Shanxi 030009, China..
| | - Ping Wang
- Department of Respiratory and Critical Care Medicine, Taiyuan Central Hospital, Taiyuan, Shanxi 030009, China
| | - Lingzhi Li
- Department of Respiratory and Critical Care Medicine, Taiyuan Central Hospital, Taiyuan, Shanxi 030009, China
| |
Collapse
|
5
|
Ye F, Wang L, Li Y, Dong C, Zhou L, Xu J. IL4I1 in M2-like macrophage promotes glioma progression and is a promising target for immunotherapy. Front Immunol 2024; 14:1338244. [PMID: 38250074 PMCID: PMC10799346 DOI: 10.3389/fimmu.2023.1338244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024] Open
Abstract
Background Glioma is the prevailing malignant intracranial tumor, characterized by an abundance of macrophages. Specifically, the infiltrating macrophages often display the M2 subtype and are known as tumor-associated macrophages (TAMs). They have a critical role in promoting the oncogenic properties of tumor cells. Interleukin-4-induced-1 (IL4I1) functions as an L-phenylalanine oxidase, playing a key part in regulating immune responses and the progression of various tumors. However, there is limited understanding of the IL4I1-mediated cross-talk function between TAMs and glioma cell in the glioma microenvironment. Methods TCGA, GTEx, and HPA databases were applied to assess the IL4I1 expression, clinical characteristics, and prognostic value of pan-cancer. The link between IL4I1 levels and the prognosis, methylation, and immune checkpoints (ICs) in gliomas were explored through Kaplan-Meier curve, Cox regression, and Spearman correlation analyses. The IL4I1 levels and their distribution were investigated by single-cell analysis and the TIMER 2 database. Additionally, validation of IL4I1 expression was performed by WB, RT-qPCR, IHC, and IF. Co-culture models between glioma cells and M2-like macrophages were used to explore the IL4I1-mediated effects on tumor growth, invasion, and migration of glioma cells. Moreover, the function of IL4I1 on macrophage polarization was evaluated by ELISA, RT-qPCR, WB, and siRNA transfection. Results Both transcriptome and protein levels of IL4I1 were increased obviously in various tumor types, and correlated with a dismal prognosis. Specifically, IL4I1 was implicated in aggressive progression and a dismal prognosis for patients with glioma. A negative association was noticed between the glioma grade and DNA promoter methylation of IL4I1. Enrichment analyses in glioma patients suggested that IL4I1 was linked to cytokine and immune responses, and was positively correlated with ICs. Single-cell analysis, molecular experiments, and in vitro assays showed that IL4I1 was significantly expressed in TAMs. Importantly, co-culture models proved that IL4I1 significantly promoted the invasion and migration of glioma cells, and induced the polarization of M2-like macrophages. Conclusion IL4I1 could be a promising immunotherapy target for selective modulation of TAMs and stands as a novel macrophage-related prognostic biomarker in glioma.
Collapse
Affiliation(s)
| | | | | | | | - Liangxue Zhou
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jianguo Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|