1
|
Ji T, Ye L, Xi E, Liu Y, Wang X, Wang S. Sinensetin Inhibits Angiogenesis in Lung Adenocarcinoma via the miR-374c-5p/VEGF-A/VEGFR-2/AKT Axis. Cell Biochem Biophys 2024; 82:2413-2425. [PMID: 39030333 DOI: 10.1007/s12013-024-01352-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2024] [Indexed: 07/21/2024]
Abstract
Sinensetin is a product isolated from Orthosiphon aristatus, and its antitumor activities have been well established. This study focused on the role and mechanism of sinensetin in lung adenocarcinoma (LUAD). LUAD cells were treated with various concentrations of sinensetin. The proliferation, migration, invasion, and angiogenesis of LUAD cells were detected using colony formation, transwell, and tube formation assays, respectively. The protein levels of VEGF-A, VEGFR-2, and phosphorylated AKT (ser473) were measured by western blotting. The targeted relationship between VEGF-A and miR-374c-5p was verified by luciferase reporter assay. BALB/c nude mice inoculated with A549 cells were treated with sinensetin (40 mg/kg/day) by gavage for 21 days to investigate the effect of sinensetin on tumor growth and angiogenesis in vivo. We found that sinensetin reduced proliferation, migration, invasion, angiogenesis, and cancer stem characteristics of LUAD cells. Sinensetin also suppressed LUAD tumor growth and angiogenesis in vivo. Sinensetin downregulated VEGF-A expression in LUAD cells by enhancing miR-374c-5p expression. MiR-374c-5p inhibited the VEGF-A/VEGFR-2/AKT pathway in LUAD cells. The antitumor effect of sinensetin was reversed by overexpression of VEGF-A or inhibition of miR-374c-5p. Overall, sinensetin upregulates miR-374c-5p to inhibit the VEGF-A/VEGFR-2/AKT pathway, thereby exerting antitumor effect on LUAD.
Collapse
Affiliation(s)
- Tao Ji
- Department of Cardiothoracic Surgery, General Hospital of Central Theater Command, Wuhan, 430070, China
| | - Lin Ye
- Department of Cardiothoracic Surgery, General Hospital of Central Theater Command, Wuhan, 430070, China
| | - Erping Xi
- Department of Cardiothoracic Surgery, General Hospital of Central Theater Command, Wuhan, 430070, China
| | - Ying Liu
- Department of Cardiothoracic Surgery, General Hospital of Central Theater Command, Wuhan, 430070, China
| | - Xiumei Wang
- Department of Cardiothoracic Surgery, General Hospital of Central Theater Command, Wuhan, 430070, China
| | - Sha Wang
- Department of Dermatology, General Hospital of Central Theater Command, Wuhan, 430070, China.
| |
Collapse
|
2
|
Iwaya C, Yu S, Iwata J. Genes Related to Frontonasal Malformations Are Regulated by miR-338-5p, miR-653-5p, and miR-374-5p in O9-1 Cells. J Dev Biol 2024; 12:19. [PMID: 39051201 PMCID: PMC11270360 DOI: 10.3390/jdb12030019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024] Open
Abstract
Frontonasal malformations are caused by a failure in the growth of the frontonasal prominence during development. Although genetic studies have identified genes that are crucial for frontonasal development, it remains largely unknown how these genes are regulated during this process. Here, we show that microRNAs, which are short non-coding RNAs capable of targeting their target mRNAs for degradation or silencing their expression, play a crucial role in the regulation of genes related to frontonasal development in mice. Using the Mouse Genome Informatics (MGI) database, we curated a total of 25 mouse genes related to frontonasal malformations, including frontonasal hypoplasia, frontonasal dysplasia, and hypotelorism. MicroRNAs regulating the expression of these genes were predicted through bioinformatic analysis. We then experimentally evaluated the top three candidate miRNAs (miR-338-5p, miR-653-5p, and miR-374c-5p) for their effect on cell proliferation and target gene regulation in O9-1 cells, a neural crest cell line. Overexpression of these miRNAs significantly inhibited cell proliferation, and the genes related to frontonasal malformations (Alx1, Lrp2, and Sirt1 for miR-338-5p; Alx1, Cdc42, Sirt1, and Zic2 for miR-374c-5p; and Fgfr2, Pgap1, Rdh10, Sirt1, and Zic2 for miR-653-5p) were directly regulated by these miRNAs in a dose-dependent manner. Taken together, our results highlight miR-338-5p, miR-653-5p, and miR-374c-5p as pathogenic miRNAs related to the development of frontonasal malformations.
Collapse
Affiliation(s)
- Chihiro Iwaya
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (C.I.); (S.Y.)
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Sunny Yu
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (C.I.); (S.Y.)
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Junichi Iwata
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (C.I.); (S.Y.)
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
3
|
Ali FEM, Ibrahim IM, Althagafy HS, Hassanein EHM. Role of immunotherapies and stem cell therapy in the management of liver cancer: A comprehensive review. Int Immunopharmacol 2024; 132:112011. [PMID: 38581991 DOI: 10.1016/j.intimp.2024.112011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
Liver cancer (LC) is the sixth most common disease and the third most common cause of cancer-related mortality. The WHO predicts that more than 1 million deaths will occur from LC by 2030. Hepatocellular carcinoma (HCC) is a common form of primary LC. Today, the management of LC involves multiple disciplines, and multimodal therapy is typically selected on an individual basis, considering the intricate interactions between the patient's overall health, the stage of the tumor, and the degree of underlying liver disease. Currently, the treatment of cancers, including LC, has undergone a paradigm shift in the last ten years because of immuno-oncology. To treat HCC, immune therapy approaches have been developed to enhance or cause the body's natural immune response to specifically target tumor cells. In this context, immune checkpoint pathway inhibitors, engineered cytokines, adoptive cell therapy, immune cells modified with chimeric antigen receptors, and therapeutic cancer vaccines have advanced to clinical trials and offered new hope to cancer patients. The outcomes of these treatments are encouraging. Additionally, treatment using stem cells is a new approach for restoring deteriorated tissues because of their strong differentiation potential and capacity to release cytokines that encourage cell division and the formation of blood vessels. Although there is no proof that stem cell therapy works for many types of cancer, preclinical research on stem cells has shown promise in treating HCC. This review provides a recent update regarding the impact of immunotherapy and stem cells in HCC and promising outcomes.
Collapse
Affiliation(s)
- Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt; Michael Sayegh, Faculty of Pharmacy, Aqaba University of Technology, Aqaba 77110, Jordan.
| | - Islam M Ibrahim
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt
| |
Collapse
|
4
|
Zhong D, Wang Z, Ye Z, Wang Y, Cai X. Cancer-derived exosomes as novel biomarkers in metastatic gastrointestinal cancer. Mol Cancer 2024; 23:67. [PMID: 38561768 PMCID: PMC10983767 DOI: 10.1186/s12943-024-01948-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/26/2024] [Indexed: 04/04/2024] Open
Abstract
Gastrointestinal cancer (GIC) is the most prevalent and highly metastatic malignant tumor and has a significant impact on mortality rates. Nevertheless, the swift advancement of contemporary technology has not seamlessly aligned with the evolution of detection methodologies, resulting in a deficit of innovative and efficient clinical assays for GIC. Given that exosomes are preferentially released by a myriad of cellular entities, predominantly originating from neoplastic cells, this confers exosomes with a composition enriched in cancer-specific constituents. Furthermore, exosomes exhibit ubiquitous presence across diverse biological fluids, endowing them with the inherent advantages of non-invasiveness, real-time monitoring, and tumor specificity. The unparalleled advantages inherent in exosomes render them as an ideal liquid biopsy biomarker for early diagnosis, prognosticating the potential development of GIC metastasis.In this review, we summarized the latest research progress and possible potential targets on cancer-derived exosomes (CDEs) in GIC with an emphasis on the mechanisms of exosome promoting cancer metastasis, highlighting the potential roles of CDEs as the biomarker and treatment in metastatic GIC.
Collapse
Affiliation(s)
- Danyang Zhong
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Ziyuan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Zhichao Ye
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Yifan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China.
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou, 310016, China.
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Hangzhou, 310016, China.
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China.
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou, 310016, China.
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Hangzhou, 310016, China.
| |
Collapse
|
5
|
Abbasi-Malati Z, Azizi SG, Milani SZ, Serej ZA, Mardi N, Amiri Z, Sanaat Z, Rahbarghazi R. Tumorigenic and tumoricidal properties of exosomes in cancers; a forward look. Cell Commun Signal 2024; 22:130. [PMID: 38360641 PMCID: PMC10870553 DOI: 10.1186/s12964-024-01510-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/01/2024] [Indexed: 02/17/2024] Open
Abstract
In recent decades, emerging data have highlighted the critical role of extracellular vesicles (EVs), especially (exosomes) Exos, in the progression and development of several cancer types. These nano-sized vesicles are released by different cell lineages within the cancer niche and maintain a suitable platform for the interchange of various signaling molecules in a paracrine manner. Based on several studies, Exos can transfer oncogenic factors to other cells, and alter the activity of immune cells, and tumor microenvironment, leading to the expansion of tumor cells and metastasis to the remote sites. It has been indicated that the cell-to-cell crosstalk is so complicated and a wide array of factors are involved in this process. How and by which mechanisms Exos can regulate the behavior of tumor cells and non-cancer cells is at the center of debate. Here, we scrutinize the molecular mechanisms involved in the oncogenic behavior of Exos released by different cell lineages of tumor parenchyma. Besides, tumoricidal properties of Exos from various stem cell (SC) types are discussed in detail.
Collapse
Affiliation(s)
- Zahra Abbasi-Malati
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Ghader Azizi
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Soheil Zamen Milani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Aliyari Serej
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Mardi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Amiri
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Sanaat
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Jiang X, Xu Z, Jiang S, Wang H, Xiao M, Shi Y, Wang K. PDZ and LIM Domain-Encoding Genes: Their Role in Cancer Development. Cancers (Basel) 2023; 15:5042. [PMID: 37894409 PMCID: PMC10605254 DOI: 10.3390/cancers15205042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
PDZ-LIM family proteins (PDLIMs) are a kind of scaffolding proteins that contain PDZ and LIM interaction domains. As protein-protein interacting molecules, PDZ and LIM domains function as scaffolds to bind to a variety of proteins. The PDLIMs are composed of evolutionarily conserved proteins found throughout different species. They can participate in cell signal transduction by mediating the interaction of signal molecules. They are involved in many important physiological processes, such as cell differentiation, proliferation, migration, and the maintenance of cellular structural integrity. Studies have shown that dysregulation of the PDLIMs leads to tumor formation and development. In this paper, we review and integrate the current knowledge on PDLIMs. The structure and function of the PDZ and LIM structural domains and the role of the PDLIMs in tumor development are described.
Collapse
Affiliation(s)
| | | | | | | | | | - Yueli Shi
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China; (X.J.); (Z.X.); (S.J.); (H.W.); (M.X.)
| | - Kai Wang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China; (X.J.); (Z.X.); (S.J.); (H.W.); (M.X.)
| |
Collapse
|
7
|
Ghionescu AV, Sorop A, Dima SO. The pivotal role of EMT-related noncoding RNAs regulatory axes in hepatocellular carcinoma. Front Pharmacol 2023; 14:1270425. [PMID: 37767397 PMCID: PMC10520284 DOI: 10.3389/fphar.2023.1270425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) remains a major health problem worldwide, being the leading cause of cancer-related deaths, with limited treatment options, especially in its advanced stages. Tumor resistance is closely associated with the activation of the EMT phenomenon and its reversal, being modulated by different molecules, including noncoding RNAs (ncRNAs). Noncoding RNAs have the potential to function as both tumor suppressors and oncogenic molecules, controlling the malignant potential of HCC cells. Basically, these molecules circulate in the tumor microenvironment, encapsulated in exosomes. Their impact on cell biology is more significant than originally expected, which makes related research rather complex. The temporal and spatial expression patterns, precise roles and mechanisms of specific ncRNAs encapsulated in exosomes remain primarily unknown in different stages of the disease. This review aims to highlight the recent advances in ncRNAs related to EMT and classifies the described mechanism as direct and indirect, for a better summarization. Moreover, we provide an overview of current research on the role of ncRNAs in several drug resistance-related pathways, including the emergence of resistance to sorafenib, doxorubicin, cisplatin and paclitaxel therapy. Nevertheless, we comprehensively discuss the underlying regulatory mechanisms of exosomal ncRNAs in EMT-HCC via intercellular communication pathways.
Collapse
Affiliation(s)
| | - Andrei Sorop
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
| | - Simona Olimpia Dima
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
- Digestive Diseases and Liver Transplantation Center, Fundeni Clinical Institute, Bucharest, Romania
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|