1
|
Sunvittayakul P, Wonnapinij P, Wannitikul P, Phanthanong P, Changwitchukarn K, Suttangkakul A, Utthiya S, Phraemuang A, Kongsil P, Prommarit K, Ceballos H, Gomez LD, Kittipadakul P, Vuttipongchaikij S. Genome-wide association studies unveils the genetic basis of cell wall composition and saccharification of cassava pulp. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 218:109312. [PMID: 39579720 DOI: 10.1016/j.plaphy.2024.109312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/27/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
Cassava (Manihot esculenta Crantz) is a key crop for starch and biofuels production. This study focuses on the polysaccharide composition and saccharification efficiency in cassava pulp through genome-wide association studies (GWAS), targeting the improvement of root characteristics for industrial use. We analyzed 135 partially inbred lines population, performing monosaccharide composition and saccharification analyses to reveal substantial variability in storage root biomass. Among 33 traits examined, 128 significant SNPs were associated with 23 biomass traits, highlighting a complex genetic architecture. Saccharification potential varied from 39 to 95 nmol Glu mg-1 h-1, with high broad-sense heritability for saccharification and several monosaccharide traits, indicating a strong genetic control. Our findings revealed that cassava pulp comprises similar proportions of pectin, hemicellulose, and cellulose in all genotypes. Correlation analysis showed significant associations between cellulose content and saccharification, suggesting that enhancing these traits can improve bioconversion efficiency. Negative correlations with glucose and glucuronic acid in hemicellulose and pectin fractions imply these components may inhibit saccharification. We identified 118 candidate genes associated with 21 traits, with many involved in stress responses affecting cell wall composition. This study verified 12 key candidate genes through sequence and expression analysis, including MANES_07G081200, a YTH domain-containing protein associated with saccharification. Several stress-response genes, such as MANES_04G118600 and MANES_09G174600, were linked to monosaccharide traits, suggesting that adaptive stress pathways influence biomass characteristics. This study provides insights into the genetic determinants of cassava pulp's saccharification and polysaccharide composition, aiding breeding efforts to develop cassava varieties optimized for industrial applications.
Collapse
Affiliation(s)
- Pongsakorn Sunvittayakul
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand; Department of Agriculture, Ministry of Agriculture and Cooperatives, Bangkok, Thailand
| | - Passorn Wonnapinij
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand; Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok, Thailand
| | - Pitchaporn Wannitikul
- Department of Agriculture, Ministry of Agriculture and Cooperatives, Bangkok, Thailand
| | - Phongnapha Phanthanong
- Department of Agronomy, Faculty of Agriculture, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand
| | - Kanokpoo Changwitchukarn
- Department of Agronomy, Faculty of Agriculture, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand
| | - Anongpat Suttangkakul
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand
| | - Supanut Utthiya
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand
| | - Apimon Phraemuang
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand
| | - Pasajee Kongsil
- Department of Agronomy, Faculty of Agriculture, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand; Center for Advanced Studies of Agriculture and Food (CASAF), Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand
| | - Kamonchat Prommarit
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand; Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok, Thailand
| | - Hernan Ceballos
- The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Leonardo D Gomez
- Centre of Novel Agricultural Products (CNAP), Department of Biology, University of York, York, United Kingdom
| | - Piya Kittipadakul
- Department of Agronomy, Faculty of Agriculture, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand; Center for Advanced Studies of Agriculture and Food (CASAF), Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand
| | - Supachai Vuttipongchaikij
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand; Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok, Thailand; Center of Advanced Studies for Tropical Natural Resources, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand.
| |
Collapse
|
2
|
Wang S, Yue Z, Yu C, Wang R, Sui Y, Hou Y, Zhao Y, Zhao L, Chen C, Yang Z, Shao K. Genome-wide association study identifies the genetic basis of key agronomic traits in 207 sugar beet accessions. HORTICULTURE RESEARCH 2024; 11:uhae230. [PMID: 39415969 PMCID: PMC11481341 DOI: 10.1093/hr/uhae230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/30/2024] [Indexed: 10/19/2024]
Abstract
Sugar beet (Beta vulgaris) has emerged as one of the two primary crops, alongside sugarcane, for global sugar production. Comprehensively understanding sucrose synthesis, transport, and accumulation in sugar beet holds great significance for enhancing sugar production. In this study, we collected a diverse set of 269 sugar beet accessions worldwide and measured 12 phenotypes, comprising biomass, soluble sugar content, and 10 taproot-related traits. We re-sequenced 207 accessions to explore genetic diversity and population structure. Then we employed a genome-wide association study (GWAS) and RNA-seq to identify single-nucleotide polymorphisms and genes associated with natural phenotypic variations. Our findings revealed a panel of genes potentially regulating biomass and sugar accumulation, notably the dual-role gene UDP-glucose 4-epimerase, which genetically balances sugar accumulation and cell wall synthesis. In summary, this study provides a foundation for molecular breeding in sugar beet.
Collapse
Affiliation(s)
- Sufang Wang
- Inner Mongolia Academy of Science and Technology, Hohhot , Inner Mongolia, 010000, China
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Zhiyong Yue
- College of Medicine, Xi’an International University, Xi’an 710077, China
| | - Chao Yu
- Inner Mongolia Academy of Science and Technology, Hohhot , Inner Mongolia, 010000, China
| | - Ruili Wang
- Inner Mongolia Academy of Science and Technology, Hohhot , Inner Mongolia, 010000, China
| | - Yang Sui
- Inner Mongolia Academy of Science and Technology, Hohhot , Inner Mongolia, 010000, China
| | - Yaguang Hou
- Inner Mongolia Academy of Science and Technology, Hohhot , Inner Mongolia, 010000, China
| | - Ying Zhao
- Inner Mongolia Academy of Science and Technology, Hohhot , Inner Mongolia, 010000, China
| | - Lingling Zhao
- Inner Mongolia Academy of Science and Technology, Hohhot , Inner Mongolia, 010000, China
| | - Chunmei Chen
- Inner Mongolia Academy of Science and Technology, Hohhot , Inner Mongolia, 010000, China
| | - Zhimin Yang
- Inner Mongolia Academy of Science and Technology, Hohhot , Inner Mongolia, 010000, China
| | - Ke Shao
- Inner Mongolia Academy of Science and Technology, Hohhot , Inner Mongolia, 010000, China
| |
Collapse
|
3
|
Wang R, Wu M, Zhang X, Jiang T, Wei Z. Methylation of microRNA genes and its effect on secondary xylem development of stem in poplar. THE PLANT GENOME 2024; 17:e20446. [PMID: 38528365 DOI: 10.1002/tpg2.20446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/27/2024]
Abstract
MicroRNAs (miRNAs) and DNA methylation are both vital regulators of gene expression. DNA methylation can affect the transcription of miRNAs, just like coding genes, through methylating the CpG islands in the gene regions of miRNAs. Although previous studies have shown that DNA methylation and miRNAs can each be involved in the process of wood formation, the relationship between the two has been relatively little studied in plant wood formation. Studies have shown that the second internode (IN2) (from top to bottom) of 3-month-old poplar trees can represent the primary stage of poplar stem development and IN8 can represent the secondary stage. There were also significant differences in DNA methylation patterns and miRNA expression patterns obtained from PS and SS. In this study, we first interactively analyzed methylation and miRNA sequencing data to identify 43 differentially expressed miRNAs regulated by differential methylation from the primary stage and secondary stage, which were found to be involved in multiple biological processes related to wood formation by enrichment analysis. In addition, six miRNA/target gene modules were finally identified as potentially involved in secondary xylem development of poplar stems through degradome sequencing and functional analysis. In conclusion, this study provides important reference information on the mechanism of interaction between different regulatory pathways of wood formation.
Collapse
Affiliation(s)
- Ruiqi Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Meixuan Wu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Xiao Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Zhigang Wei
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China
| |
Collapse
|
4
|
Panahabadi R, Ahmadikhah A, Farrokhi N. Genetic dissection of monosaccharides contents in rice whole grain using genome-wide association study. THE PLANT GENOME 2023; 16:e20292. [PMID: 36691363 DOI: 10.1002/tpg2.20292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
The simplest form of carbohydrates are monosaccharides which are the building blocks for the synthesis of polymers or complex carbohydrates. Monosaccharide contents of 197 rice accessions were quantified by HPAEC-PAD in rice (Oryza sativa L.) whole grain (RWG). A genome-wide association study (GWAS) was carried out using 33,812 single nucleotide polymorphisms (SNPs) to identify corresponding genomic regions influencing neutral monosaccharides contents. In total, 49 GWAS signals contained in 17 genomic regions (quantitative trait loci [QTLs]) on seven chromosomes of rice were determined to be associated with monosaccharides contents of whole grain. The QTLs were found for fucose (1), mannose (1), xylose (2), arabinose (2), galactose (4), and rhamnose (7) contents, all of which are novel. Based on co-location of annotated rice genes in the vicinity of GWAS signals, the constituents of the whole grain were associated with the following candidate genes: arabinose content with α-N-arabinofuranosidase, pectinesterase inhibitor, and glucosamine-fructose-6-phosphate aminotransferase 1; xylose content with ZOS1-10 (a C2H2 zinc finger transcription factor [TF]); mannose content with aldose 1-epimerase-like protein and a MYB family TF; galactose content with a GT8 family member (galacturonosyltransferase-like 3), a GRAS family TF, and a GH16 family member (xyloglucan endotransglucosylase/hydrolase xyloglucan 23); fucose content with gibberellin 20 oxidase and a lysine-rich arabinogalactan protein 19, and finally rhamnose content with myo-inositol-1-phosphate synthase, UDP-arabinopyranose mutase, and COBRA-like protein precursor. The results of this study should improve our understanding of the genetic basis of the factors that might be involved in the biosynthesis, regulation, and turnover of monosaccharides in RWG, aiming to enhance the nutritional value of rice grain and impact the related industries.
Collapse
Affiliation(s)
- Rahele Panahabadi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti Univ., Tehran, Iran
| | | | - Naser Farrokhi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti Univ., Tehran, Iran
| |
Collapse
|
5
|
Asadi Aghbolaghi M, Keyghobadi N, Azarakhsh Z, Dadizadeh M, Asadi Aghbolaghi S, Zamani N. An evaluation of isolation by distance and isolation by resistance on genetic structure of the Persian squirrel ( Sciurus anomalus) in the Zagros forests of Iran. Ecol Evol 2023; 13:e10225. [PMID: 37408621 PMCID: PMC10318582 DOI: 10.1002/ece3.10225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/27/2023] [Accepted: 06/11/2023] [Indexed: 07/07/2023] Open
Abstract
For the conservation of wild species, it is important to understand how landscape change and land management can affect gene flow and movement. Landscape genetic analyses provide a powerful approach to infer effects of various landscape factors on gene flow, thereby informing conservation actions. The Persian squirrel is a keystone species in the woodlands and oak forests of Western Asia, where it has experienced recent habitat loss and fragmentation. We conducted landscape genetic analyses of individuals sampled in the northern Zagros Mountains of Iran (provinces of Kurdistan, Kermanshah, and Ilam), focusing on the evaluation of isolation by distance (IBD) and isolation by resistance (IBR), using 16 microsatellite markers. The roles of geographical distance and landscape features including roads, rivers, developed areas, farming and agriculture, forests, lakes, plantation forests, rangelands, shrublands, and rocky areas of varying canopy cover, and swamp margins on genetic structure were quantified using individual-based approaches and resistance surface modeling. We found a significant pattern of IBD but only weak support for an effect of forest cover on genetic structure and gene flow. It seems that geographical distance is an important factor limiting the dispersal of the Persian squirrel in this region. The results of the current study inform ongoing conservation programs for the Persian squirrel in the Zagros oak forest.
Collapse
Affiliation(s)
- Marzieh Asadi Aghbolaghi
- Department of Biodiversity and Ecosystem Management, Environmental Sciences Research InstituteShahid Beheshti UniversityTehranIran
| | - Nusha Keyghobadi
- Department of BiologyThe University of Western OntarioLondonCanada
| | - Zeinab Azarakhsh
- Center of Remote Sensing and GIS Research, Faculty of Earth SciencesShahid Beheshti UniversityTehranIran
| | - Marzieh Dadizadeh
- Center of Remote Sensing and GIS Research, Faculty of Earth SciencesShahid Beheshti UniversityTehranIran
| | - Shahab Asadi Aghbolaghi
- Department of Education of Chaharmahal and Bakhtiari Province (Ministry of Education)ShahrekordIran
| | - Navid Zamani
- Department of Environmental Science, Faculty of Natural ResourceUniversity of KurdistanSanandajIran
| |
Collapse
|