1
|
Cordeiro D, Pizarro A, Vélez MD, Guevara MÁ, de María N, Ramos P, Cobo-Simón I, Diez-Galán A, Benavente A, Ferreira V, Martín MÁ, Rodríguez-González PM, Solla A, Cervera MT, Diez-Casero JJ, Cabezas JA, Díaz-Sala C. Breeding Alnus species for resistance to Phytophthora disease in the Iberian Peninsula. FRONTIERS IN PLANT SCIENCE 2024; 15:1499185. [PMID: 39717726 PMCID: PMC11663675 DOI: 10.3389/fpls.2024.1499185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/20/2024] [Indexed: 12/25/2024]
Abstract
Alders are widely distributed riparian trees in Europe, North Africa and Western Asia. Recently, a strong reduction of alder stands has been detected in Europe due to infection by Phytophthora species (Stramenopila kingdom). This infection causes a disease known as alder dieback, characterized by leaf yellowing, dieback of branches, increased fruit production, and bark necrosis in the collar and basal part of the stem. In the Iberian Peninsula, the drastic alder decline has been confirmed in the Spanish Ulla and Ebro basins, the Portuguese Mondego and Sado basins and the Northern and Western transboundary hydrographic basins of Miño and Sil, Limia, Douro and Tagus. The damaging effects of alder decline require management solutions that promote forest resilience while keeping genetic diversity. Breeding programs involve phenotypic selection of asymptomatic individuals in populations where severe damage is observed, confirmation of tree resistance via inoculation trials under controlled conditions, vegetative propagation of selected trees, further planting and assessment in areas with high disease pressure and different environmental conditions and conservation of germplasm of tolerant genotypes for reforestation. In this way, forest biotechnology provides essential tools for the conservation and sustainable management of forest genetic resources, including material characterization for tolerance, propagation for conservation purposes, and genetic resource traceability, as well as identification and characterization of Phytophthora species. The advancement of biotechnological techniques enables improved monitoring and management of natural resources by studying genetic variability and function through molecular biology methods. In addition, in vitro culture techniques make possible large-scale plant propagation and long-term conservation within breeding programs to preserve selected outstanding genotypes.
Collapse
Affiliation(s)
- Daniela Cordeiro
- Departamento de Ciencias de la Vida, Facultad de Ciencias, Universidad de Alcalá, Madrid, Spain
| | - Alberto Pizarro
- Departamento de Ciencias de la Vida, Facultad de Ciencias, Universidad de Alcalá, Madrid, Spain
| | - M. Dolores Vélez
- Departamento de Ecología y Genética Forestal, Instituto de Ciencias Forestales (ICIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria - Consejo Superior de Investigaciones Científicas (ICIFOR-INIA, CSIC), Madrid, Spain
| | - M. Ángeles Guevara
- Departamento de Ecología y Genética Forestal, Instituto de Ciencias Forestales (ICIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria - Consejo Superior de Investigaciones Científicas (ICIFOR-INIA, CSIC), Madrid, Spain
| | - Nuria de María
- Departamento de Ecología y Genética Forestal, Instituto de Ciencias Forestales (ICIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria - Consejo Superior de Investigaciones Científicas (ICIFOR-INIA, CSIC), Madrid, Spain
| | - Paula Ramos
- Departamento de Ecología y Genética Forestal, Instituto de Ciencias Forestales (ICIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria - Consejo Superior de Investigaciones Científicas (ICIFOR-INIA, CSIC), Madrid, Spain
| | - Irene Cobo-Simón
- Departamento de Ecología y Genética Forestal, Instituto de Ciencias Forestales (ICIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria - Consejo Superior de Investigaciones Científicas (ICIFOR-INIA, CSIC), Madrid, Spain
| | - Alba Diez-Galán
- Instituto Universitario de Investigación en Gestión Forestal Sostenible (iuFOR), Universidad de Valladolid, Palencia, Spain
- Departamento de Producción Vegetal y Recursos Forestales, Escuela Técnica Superior de Ingenierías Agrarias (ETSIIAA), Universidad de Valladolid, Palencia, Spain
| | - Alfredo Benavente
- Instituto Universitario de Investigación en Gestión Forestal Sostenible (iuFOR), Universidad de Valladolid, Palencia, Spain
- Departamento de Producción Vegetal y Recursos Forestales, Escuela Técnica Superior de Ingenierías Agrarias (ETSIIAA), Universidad de Valladolid, Palencia, Spain
| | - Verónica Ferreira
- MARE – Marine and Environmental Sciences Centre, ARNET – Aquatic Research Network, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - M. Ángela Martín
- Departamento de Genética, Escuela Técnica Superior de Ingeniería Agronómica y de Montes (ETSIAM), Universidad de Córdoba, Córdoba, Spain
| | | | - Alejandro Solla
- Ingeniería Forestal y Medio Natural, Centro Universitario de Plasencia, Instituto Universitario de Investigación de la Dehesa (INDEHESA), Universidad de Extremadura, Plasencia, Spain
| | - M. Teresa Cervera
- Departamento de Ecología y Genética Forestal, Instituto de Ciencias Forestales (ICIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria - Consejo Superior de Investigaciones Científicas (ICIFOR-INIA, CSIC), Madrid, Spain
| | - Julio Javier Diez-Casero
- Instituto Universitario de Investigación en Gestión Forestal Sostenible (iuFOR), Universidad de Valladolid, Palencia, Spain
- Departamento de Producción Vegetal y Recursos Forestales, Escuela Técnica Superior de Ingenierías Agrarias (ETSIIAA), Universidad de Valladolid, Palencia, Spain
| | - José Antonio Cabezas
- Departamento de Ecología y Genética Forestal, Instituto de Ciencias Forestales (ICIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria - Consejo Superior de Investigaciones Científicas (ICIFOR-INIA, CSIC), Madrid, Spain
| | - Carmen Díaz-Sala
- Departamento de Ciencias de la Vida, Facultad de Ciencias, Universidad de Alcalá, Madrid, Spain
| |
Collapse
|
2
|
de Ronne M, Abed A, Légaré G, Laroche J, Boucher St-Amour VT, Fortier É, Beattie A, Badea A, Khanal R, O'Donoughue L, Rajcan I, Belzile F, Boyle B, Torkamaneh D. Integrating targeted genetic markers to genotyping-by-sequencing for an ultimate genotyping tool. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:247. [PMID: 39365439 DOI: 10.1007/s00122-024-04750-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024]
Abstract
New selection methods, using trait-specific markers (marker-assisted selection (MAS)) and/or genome-wide markers (genomic selection (GS)), are becoming increasingly widespread in breeding programs. This new era requires innovative and cost-efficient solutions for genotyping. Reduction in sequencing cost has enhanced the use of high-throughput low-cost genotyping methods such as genotyping-by-sequencing (GBS) for genome-wide single-nucleotide polymorphism (SNP) profiling in large breeding populations. However, the major weakness of GBS methodologies is their inability to genotype targeted markers. Conversely, targeted methods, such as amplicon sequencing (AmpSeq), often face cost constraints, hindering genome-wide genotyping across a large cohort. Although GBS and AmpSeq data can be generated from the same sample, an efficient method to achieve this is lacking. In this study, we present the Genome-wide & Targeted Amplicon (GTA) genotyping platform, an innovative way to integrate multiplex targeted amplicons into the GBS library preparation to provide an all-in-one cost-effective genotyping solution to breeders and research communities. Custom primers were designed to target 23 and 36 high-value markers associated with key agronomical traits in soybean and barley, respectively. The resulting multiplex amplicons were compatible with the GBS library preparation enabling both GBS and targeted genotyping data to be produced efficiently and cost-effectively. To facilitate data analysis, we have introduced Fast-GBS.v3, a user-friendly bioinformatic pipeline that generates comprehensive outputs from data obtained following sequencing of GTA libraries. This high-throughput low-cost approach will greatly facilitate the application of DNA markers as it provides required markers for both MAS and GS in a single assay.
Collapse
Affiliation(s)
- Maxime de Ronne
- Département de Phytologie, Université Laval, Québec, Canada
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Québec, Canada
- Centre de Recherche Et d'innovation Sur Les Végétaux (CRIV), Université Laval, Québec, Canada
| | - Amina Abed
- Consortium de Recherche Sur La Pomme de Terre du Québec (CRPTQ), Québec, Canada
| | - Gaétan Légaré
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Québec, Canada
| | - Jérôme Laroche
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Québec, Canada
| | - Vincent-Thomas Boucher St-Amour
- Département de Phytologie, Université Laval, Québec, Canada
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Québec, Canada
- Centre de Recherche Et d'innovation Sur Les Végétaux (CRIV), Université Laval, Québec, Canada
| | - Éric Fortier
- Centre de Recherche Sur Les Grains (CÉROM), Saint-Mathieu-de-Beloeil, Québec, Canada
| | - Aaron Beattie
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Ana Badea
- Agriculture and Agri-Food Canada, Brandon Research and Development Centre, Brandon, Canada
| | - Raja Khanal
- Agriculture and Agri-Food Canada, Ottawa Research and Development Center, Ottawa, Canada
| | - Louise O'Donoughue
- Centre de Recherche Sur Les Grains (CÉROM), Saint-Mathieu-de-Beloeil, Québec, Canada
| | - Istvan Rajcan
- Department of Plant Agriculture, University of Guelph, Guelph, Canada
| | - François Belzile
- Département de Phytologie, Université Laval, Québec, Canada
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Québec, Canada
- Centre de Recherche Et d'innovation Sur Les Végétaux (CRIV), Université Laval, Québec, Canada
| | - Brian Boyle
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Québec, Canada
| | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Québec, Canada.
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Québec, Canada.
- Centre de Recherche Et d'innovation Sur Les Végétaux (CRIV), Université Laval, Québec, Canada.
- Institut Intelligence Et Données (IID), Université Laval, Québec, Canada.
| |
Collapse
|
3
|
de Ronne M, Lapierre É, Torkamaneh D. Genetic insights into agronomic and morphological traits of drug-type cannabis revealed by genome-wide association studies. Sci Rep 2024; 14:9162. [PMID: 38644388 PMCID: PMC11033274 DOI: 10.1038/s41598-024-58931-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/04/2024] [Indexed: 04/23/2024] Open
Abstract
Cannabis sativa L., previously concealed by prohibition, is now a versatile and promising plant, thanks to recent legalization, opening doors for medical research and industry growth. However, years of prohibition have left the Cannabis research community lagging behind in understanding Cannabis genetics and trait inheritance compared to other major crops. To address this gap, we conducted a comprehensive genome-wide association study (GWAS) of nine key agronomic and morphological traits, using a panel of 176 drug-type Cannabis accessions from the Canadian legal market. Utilizing high-density genotyping-by-sequencing (HD-GBS), we successfully generated dense genotyping data in Cannabis, resulting in a catalog of 800 K genetic variants, of which 282 K common variants were retained for GWAS analysis. Through GWAS analysis, we identified 18 markers significantly associated with agronomic and morphological traits. Several identified markers exert a substantial phenotypic impact, guided us to putative candidate genes that reside in high linkage-disequilibrium (LD) with the markers. These findings lay a solid foundation for an innovative cannabis research, leveraging genetic markers to inform breeding programs aimed at meeting diverse needs in the industry.
Collapse
Affiliation(s)
- Maxime de Ronne
- Département de Phytologie, Université Laval, Quebec City, Québec, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Québec, Canada
- Centre de Recherche et d'innovation sur les Végétaux (CRIV), Université Laval, Quebec City, Québec, Canada
- Institut Intelligence et Données (IID), Université Laval, Quebec City, Québec, Canada
| | - Éliana Lapierre
- Département de Phytologie, Université Laval, Quebec City, Québec, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Québec, Canada
- Centre de Recherche et d'innovation sur les Végétaux (CRIV), Université Laval, Quebec City, Québec, Canada
- Institut Intelligence et Données (IID), Université Laval, Quebec City, Québec, Canada
| | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Quebec City, Québec, Canada.
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Québec, Canada.
- Centre de Recherche et d'innovation sur les Végétaux (CRIV), Université Laval, Quebec City, Québec, Canada.
- Institut Intelligence et Données (IID), Université Laval, Quebec City, Québec, Canada.
| |
Collapse
|
4
|
Lemay MA, de Ronne M, Bélanger R, Belzile F. k-mer-based GWAS enhances the discovery of causal variants and candidate genes in soybean. THE PLANT GENOME 2023; 16:e20374. [PMID: 37596724 DOI: 10.1002/tpg2.20374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/19/2023] [Indexed: 08/20/2023]
Abstract
Genome-wide association studies (GWAS) are powerful statistical methods that detect associations between genotype and phenotype at genome scale. Despite their power, GWAS frequently fail to pinpoint the causal variant or the gene controlling a given trait in crop species. Assessing genetic variants other than single-nucleotide polymorphisms (SNPs) could alleviate this problem. In this study, we tested the potential of structural variant (SV)- and k-mer-based GWAS in soybean by applying these methods as well as conventional SNP/indel-based GWAS to 13 traits. We assessed the performance of each GWAS approach based on loci for which the causal genes or variants were known from previous genetic studies. We found that k-mer-based GWAS was the most versatile approach and the best at pinpointing causal variants or candidate genes. Moreover, k-mer-based analyses identified promising candidate genes for loci related to pod color, pubescence form, and resistance to Phytophthora sojae. In our dataset, SV-based GWAS did not add value compared to k-mer-based GWAS and may not be worth the time and computational resources invested. Despite promising results, significant challenges remain regarding the downstream analysis of k-mer-based GWAS. Notably, better methods are needed to associate significant k-mers with sequence variation. Our results suggest that coupling k-mer- and SNP/indel-based GWAS is a powerful approach for discovering candidate genes in crop species.
Collapse
Affiliation(s)
- Marc-André Lemay
- Département de phytologie, Université Laval, Québec, QC, Canada
- Institut de biologie intégrative et des systèmes, Université Laval, Québec, QC, Canada
- Centre de recherche et d'innovation sur les végétaux, Université Laval, Québec, QC, Canada
| | - Maxime de Ronne
- Département de phytologie, Université Laval, Québec, QC, Canada
- Institut de biologie intégrative et des systèmes, Université Laval, Québec, QC, Canada
- Centre de recherche et d'innovation sur les végétaux, Université Laval, Québec, QC, Canada
| | - Richard Bélanger
- Département de phytologie, Université Laval, Québec, QC, Canada
- Institut de biologie intégrative et des systèmes, Université Laval, Québec, QC, Canada
- Centre de recherche et d'innovation sur les végétaux, Université Laval, Québec, QC, Canada
| | - François Belzile
- Département de phytologie, Université Laval, Québec, QC, Canada
- Institut de biologie intégrative et des systèmes, Université Laval, Québec, QC, Canada
- Centre de recherche et d'innovation sur les végétaux, Université Laval, Québec, QC, Canada
| |
Collapse
|
5
|
Million CR, Wijeratne S, Karhoff S, Cassone BJ, McHale LK, Dorrance AE. Molecular mechanisms underpinning quantitative resistance to Phytophthora sojae in Glycine max using a systems genomics approach. FRONTIERS IN PLANT SCIENCE 2023; 14:1277585. [PMID: 38023885 PMCID: PMC10662313 DOI: 10.3389/fpls.2023.1277585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
Expression of quantitative disease resistance in many host-pathogen systems is controlled by genes at multiple loci, each contributing a small effect to the overall response. We used a systems genomics approach to study the molecular underpinnings of quantitative disease resistance in the soybean-Phytophthora sojae pathosystem, incorporating expression quantitative trait loci (eQTL) mapping and gene co-expression network analysis to identify the genes putatively regulating transcriptional changes in response to inoculation. These findings were compared to previously mapped phenotypic (phQTL) to identify the molecular mechanisms contributing to the expression of this resistance. A subset of 93 recombinant inbred lines (RILs) from a Conrad × Sloan population were inoculated with P. sojae isolate 1.S.1.1 using the tray-test method; RNA was extracted, sequenced, and the normalized read counts were genetically mapped from tissue collected at the inoculation site 24 h after inoculation from both mock and inoculated samples. In total, more than 100,000 eQTLs were mapped. There was a switch from predominantly cis-eQTLs in the mock treatment to an almost entirely nonoverlapping set of predominantly trans-eQTLs in the inoculated treatment, where greater than 100-fold more eQTLs were mapped relative to mock, indicating vast transcriptional reprogramming due to P. sojae infection occurred. The eQTLs were organized into 36 hotspots, with the four largest hotspots from the inoculated treatment corresponding to more than 70% of the eQTLs, each enriched for genes within plant-pathogen interaction pathways. Genetic regulation of trans-eQTLs in response to the pathogen was predicted to occur through transcription factors and signaling molecules involved in plant-pathogen interactions, plant hormone signal transduction, and MAPK pathways. Network analysis identified three co-expression modules that were correlated with susceptibility to P. sojae and associated with three eQTL hotspots. Among the eQTLs co-localized with phQTLs, two cis-eQTLs with putative functions in the regulation of root architecture or jasmonic acid, as well as the putative master regulators of an eQTL hotspot nearby a phQTL, represent candidates potentially underpinning the molecular control of these phQTLs for resistance.
Collapse
Affiliation(s)
- Cassidy R. Million
- Department of Plant Pathology, The Ohio State University, Wooster, OH, United States
- Center for Soybean Research and Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
| | - Saranga Wijeratne
- Molecular and Cellular Imaging Center, The Ohio State University, Wooster, OH, United States
| | - Stephanie Karhoff
- Center for Soybean Research and Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
- Translational Plant Sciences Graduate Program, The Ohio State University, Columbus, OH, United States
| | - Bryan J. Cassone
- Center for Soybean Research and Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
- Department of Biology, Brandon University, Brandon, Manitoba, MB, Canada
| | - Leah K. McHale
- Center for Soybean Research and Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, United States
| | - Anne E. Dorrance
- Department of Plant Pathology, The Ohio State University, Wooster, OH, United States
- Center for Soybean Research and Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
6
|
Genome-wide association study reveals novel loci and a candidate gene for resistance to frogeye leaf spot (Cercospora sojina) in soybean. Mol Genet Genomics 2023; 298:441-454. [PMID: 36602595 DOI: 10.1007/s00438-022-01986-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023]
Abstract
Frogeye leaf spot, caused by the fungus Cercospora sojina, is a threat to soybeans in the southeastern and midwestern United States that can be controlled by crop genetic resistance. Limited genetic resistance to the disease has been reported, and only three sources of resistance have been used in modern soybean breeding. To discover novel sources and identify the genomic locations of resistance that could be used in soybean breeding, a GWAS was conducted using a panel of 329 soybean accessions selected to maximize genetic diversity. Accessions were phenotyped using a 1-5 visual rating and by using image analysis to count lesion number and measure the percent of leaf area diseased. Eight novel loci on eight chromosomes were identified for three traits utilizing the FarmCPU or BLINK models, of which a locus on chromosome 11 was highly significant across all model-trait combinations. KASP markers were designed using the SoySNP50K Beadchip and variant information from 65 of the accessions that have been sequenced to target SNPs in the gene model Glyma.11g230400, a LEUCINE-RICH REPEAT RECEPTOR-LIKE PROTEIN KINASE. The association of a KASP marker, GSM990, designed to detect a missense mutation in the gene was the most significant with all three traits in a genome-wide association, and the marker may be useful to select for resistance to frogeye leaf spot in soybean breeding.
Collapse
|
7
|
Ayalew H, Schapaugh W, Vuong T, Nguyen HT. Genome-wide association analysis identified consistent QTL for seed yield in a soybean diversity panel tested across multiple environments. THE PLANT GENOME 2022; 15:e20268. [PMID: 36258674 DOI: 10.1002/tpg2.20268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Improving seed yield is one of the main targets of soybean [Glycine max (L.) Merr.] breeding. Identification of loci that influence productivity and understanding their genetic mechanism will help marker-assisted trait introgression. The present study evaluated a diverse panel of 541 soybean genotypes consisting of three maturity groups (MGs III-V) in four environments in Kansas, U.S. Data on seed yield, seed weight, shattering resistance, days to maturity, and plant height showed significant genotype, environmental, and genotype × environment interaction variations. Seed yield and shattering had moderate broad-sense heritability (<85%), while the rest of the traits showed high broad-sense heritability (>90%). The SoySNP50K iSelect BeadChip dataset was used to identify significantly associated loci via genome-wide association studies (GWAS). A total of 19 single-nucleotide polymorphisms (SNPs) were significantly associated with seed yield. Particularly, two stable seed yield quantitative trait loci (QTL) on chromosomes 9 and 17 were consistently detected in at least three out of four environments. Candidate gene analysis surrounding seed yield QTL on chromosome 9 showed that Glyma.09G048900, an oxygen binding protein, was the closest to the QTL peak. Similarly, Glyma.17G090200 and Glyma.17G090400 were within 20-kb region of the seed yield QTL on chromosome 17. The candidate genes warrant further analysis to determine their functional mechanisms and develop markers for seed yield improvement.
Collapse
Affiliation(s)
- Habtamu Ayalew
- Dep. of Agronomy, Kansas State Univ., Manhattan, Kansas, 66506, USA
| | | | - Tri Vuong
- Division of Plant Science and Technology, Univ. of Missouri, Columbia, Missouri, 65211, USA
| | - Henry T Nguyen
- Division of Plant Science and Technology, Univ. of Missouri, Columbia, Missouri, 65211, USA
| |
Collapse
|
8
|
Lin F, Chhapekar SS, Vieira CC, Da Silva MP, Rojas A, Lee D, Liu N, Pardo EM, Lee YC, Dong Z, Pinheiro JB, Ploper LD, Rupe J, Chen P, Wang D, Nguyen HT. Breeding for disease resistance in soybean: a global perspective. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3773-3872. [PMID: 35790543 PMCID: PMC9729162 DOI: 10.1007/s00122-022-04101-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 04/11/2022] [Indexed: 05/29/2023]
Abstract
KEY MESSAGE This review provides a comprehensive atlas of QTLs, genes, and alleles conferring resistance to 28 important diseases in all major soybean production regions in the world. Breeding disease-resistant soybean [Glycine max (L.) Merr.] varieties is a common goal for soybean breeding programs to ensure the sustainability and growth of soybean production worldwide. However, due to global climate change, soybean breeders are facing strong challenges to defeat diseases. Marker-assisted selection and genomic selection have been demonstrated to be successful methods in quickly integrating vertical resistance or horizontal resistance into improved soybean varieties, where vertical resistance refers to R genes and major effect QTLs, and horizontal resistance is a combination of major and minor effect genes or QTLs. This review summarized more than 800 resistant loci/alleles and their tightly linked markers for 28 soybean diseases worldwide, caused by nematodes, oomycetes, fungi, bacteria, and viruses. The major breakthroughs in the discovery of disease resistance gene atlas of soybean were also emphasized which include: (1) identification and characterization of vertical resistance genes reside rhg1 and Rhg4 for soybean cyst nematode, and exploration of the underlying regulation mechanisms through copy number variation and (2) map-based cloning and characterization of Rps11 conferring resistance to 80% isolates of Phytophthora sojae across the USA. In this review, we also highlight the validated QTLs in overlapping genomic regions from at least two studies and applied a consistent naming nomenclature for these QTLs. Our review provides a comprehensive summary of important resistant genes/QTLs and can be used as a toolbox for soybean improvement. Finally, the summarized genetic knowledge sheds light on future directions of accelerated soybean breeding and translational genomics studies.
Collapse
Affiliation(s)
- Feng Lin
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824 USA
| | - Sushil Satish Chhapekar
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
| | - Caio Canella Vieira
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
- Fisher Delta Research Center, University of Missouri, Portageville, MO 63873 USA
| | - Marcos Paulo Da Silva
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701 USA
| | - Alejandro Rojas
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701 USA
| | - Dongho Lee
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
- Fisher Delta Research Center, University of Missouri, Portageville, MO 63873 USA
| | - Nianxi Liu
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun,, 130033 Jilin China
| | - Esteban Mariano Pardo
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA) [Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)], Av. William Cross 3150, C.P. T4101XAC, Las Talitas, Tucumán, Argentina
| | - Yi-Chen Lee
- Fisher Delta Research Center, University of Missouri, Portageville, MO 63873 USA
| | - Zhimin Dong
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun,, 130033 Jilin China
| | - Jose Baldin Pinheiro
- Departamento de Genética, Escola Superior de Agricultura “Luiz de Queiroz” (ESALQ/USP), PO Box 9, Piracicaba, SP 13418-900 Brazil
| | - Leonardo Daniel Ploper
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA) [Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)], Av. William Cross 3150, C.P. T4101XAC, Las Talitas, Tucumán, Argentina
| | - John Rupe
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701 USA
| | - Pengyin Chen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
- Fisher Delta Research Center, University of Missouri, Portageville, MO 63873 USA
| | - Dechun Wang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824 USA
| | - Henry T. Nguyen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
| |
Collapse
|
9
|
Li W, Liu M, Lai YC, Liu JX, Fan C, Yang G, Wang L, Liang WW, Di SF, Yu DY, Bi YD. Genome-Wide Association Study of Partial Resistance to P. sojae in Wild Soybeans from Heilongjiang Province, China. Curr Issues Mol Biol 2022; 44:3194-3207. [PMID: 35877445 PMCID: PMC9319971 DOI: 10.3390/cimb44070221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 02/02/2023] Open
Abstract
Phytophthora root rot (PRR) is a destructive disease of soybeans (Glycine max (L.) Merr) caused by Phytophthora sojae (P. sojae). The most effective way to prevent the disease is growing resistant or tolerant varieties. Partial resistance provides a more durable resistance against the pathogen compared to complete resistance. Wild soybean (Glycine soja Sieb. & Zucc.) seems to be an extraordinarily important gene pool for soybean improvement due to its high level of genetic variation. In this study, 242 wild soybean germplasms originating from different regions of Heilongjiang province were used to identify resistance genes to P. sojae race 1 using a genome-wide association study (GWAS). A total of nine significant SNPs were detected, repeatedly associated with P. sojae resistance and located on chromosomes 1, 10, 12, 15, 17, 19 and 20. Among them, seven favorable allelic variations associated with P. sojae resistance were evaluated by a t-test. Eight candidate genes were predicted to explore the mechanistic hypotheses of partial resistance, including Glysoja.19G051583, which encodes an LRR receptor-like serine/threonine protein kinase protein, Glysoja.19G051581, which encodes a receptor-like cytosolic serine/threonine protein kinase protein. These findings will provide additional insights into the genetic architecture of P. sojae resistance in a large sample of wild soybeans and P. sojae-resistant breeding through marker-assisted selection.
Collapse
Affiliation(s)
- Wei Li
- Crop Tillage and Cultivation Institute of Heilongjiang Academy of Agricultural Sciences (HAAS), Harbin 150086, China; (W.L.); (M.L.); (Y.-C.L.); (J.-X.L.); (C.F.); (G.Y.); (L.W.); (W.-W.L.); (S.-F.D.)
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China;
| | - Miao Liu
- Crop Tillage and Cultivation Institute of Heilongjiang Academy of Agricultural Sciences (HAAS), Harbin 150086, China; (W.L.); (M.L.); (Y.-C.L.); (J.-X.L.); (C.F.); (G.Y.); (L.W.); (W.-W.L.); (S.-F.D.)
| | - Yong-Cai Lai
- Crop Tillage and Cultivation Institute of Heilongjiang Academy of Agricultural Sciences (HAAS), Harbin 150086, China; (W.L.); (M.L.); (Y.-C.L.); (J.-X.L.); (C.F.); (G.Y.); (L.W.); (W.-W.L.); (S.-F.D.)
| | - Jian-Xin Liu
- Crop Tillage and Cultivation Institute of Heilongjiang Academy of Agricultural Sciences (HAAS), Harbin 150086, China; (W.L.); (M.L.); (Y.-C.L.); (J.-X.L.); (C.F.); (G.Y.); (L.W.); (W.-W.L.); (S.-F.D.)
| | - Chao Fan
- Crop Tillage and Cultivation Institute of Heilongjiang Academy of Agricultural Sciences (HAAS), Harbin 150086, China; (W.L.); (M.L.); (Y.-C.L.); (J.-X.L.); (C.F.); (G.Y.); (L.W.); (W.-W.L.); (S.-F.D.)
| | - Guang Yang
- Crop Tillage and Cultivation Institute of Heilongjiang Academy of Agricultural Sciences (HAAS), Harbin 150086, China; (W.L.); (M.L.); (Y.-C.L.); (J.-X.L.); (C.F.); (G.Y.); (L.W.); (W.-W.L.); (S.-F.D.)
| | - Ling Wang
- Crop Tillage and Cultivation Institute of Heilongjiang Academy of Agricultural Sciences (HAAS), Harbin 150086, China; (W.L.); (M.L.); (Y.-C.L.); (J.-X.L.); (C.F.); (G.Y.); (L.W.); (W.-W.L.); (S.-F.D.)
| | - Wen-Wei Liang
- Crop Tillage and Cultivation Institute of Heilongjiang Academy of Agricultural Sciences (HAAS), Harbin 150086, China; (W.L.); (M.L.); (Y.-C.L.); (J.-X.L.); (C.F.); (G.Y.); (L.W.); (W.-W.L.); (S.-F.D.)
| | - Shu-Feng Di
- Crop Tillage and Cultivation Institute of Heilongjiang Academy of Agricultural Sciences (HAAS), Harbin 150086, China; (W.L.); (M.L.); (Y.-C.L.); (J.-X.L.); (C.F.); (G.Y.); (L.W.); (W.-W.L.); (S.-F.D.)
| | - De-Yue Yu
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China;
| | - Ying-Dong Bi
- Crop Tillage and Cultivation Institute of Heilongjiang Academy of Agricultural Sciences (HAAS), Harbin 150086, China; (W.L.); (M.L.); (Y.-C.L.); (J.-X.L.); (C.F.); (G.Y.); (L.W.); (W.-W.L.); (S.-F.D.)
- Correspondence:
| |
Collapse
|
10
|
Karhoff S, Vargas-Garcia C, Lee S, Mian MAR, Graham MA, Dorrance AE, McHale LK. Identification of Candidate Genes for a Major Quantitative Disease Resistance Locus From Soybean PI 427105B for Resistance to Phytophthora sojae. FRONTIERS IN PLANT SCIENCE 2022; 13:893652. [PMID: 35774827 PMCID: PMC9237613 DOI: 10.3389/fpls.2022.893652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Phytophthora root and stem rot is a yield-limiting soybean disease caused by the soil-borne oomycete Phytophthora sojae. Although multiple quantitative disease resistance loci (QDRL) have been identified, most explain <10% of the phenotypic variation (PV). The major QDRL explaining up to 45% of the PV were previously identified on chromosome 18 and represent a valuable source of resistance for soybean breeding programs. Resistance alleles from plant introductions 427105B and 427106 significantly increase yield in disease-prone fields and result in no significant yield difference in fields with less to no disease pressure. In this study, high-resolution mapping reduced the QDRL interval to 3.1 cm, and RNA-seq analysis of near-isogenic lines (NILs) varying at QDRL-18 pinpointed a single gene of interest which was downregulated in inoculated NILs carrying the resistant allele compared to inoculated NILs with the susceptible allele. This gene of interest putatively encodes a serine-threonine kinase (STK) related to the AtCR4 family and may be acting as a susceptibility factor, based on the specific increase of jasmonic acid concentration in inoculated NILs. This work facilitates further functional analyses and marker-assisted breeding efforts by prioritizing candidate genes and narrowing the targeted region for introgression.
Collapse
Affiliation(s)
- Stephanie Karhoff
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
- Center for Soybean Research, The Ohio State University, Columbus, OH, United States
| | - Christian Vargas-Garcia
- Center for Soybean Research, The Ohio State University, Columbus, OH, United States
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, United States
| | - Sungwoo Lee
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, United States
| | - M. A. Rouf Mian
- United States Department of Agriculture-Agricultural Research Service, Soybean Research Unit, Raleigh, NC, United States
| | - Michelle A. Graham
- Department of Agronomy, Iowa State University, Ames, IA, United States
- United States Department of Agriculture-Agricultural Research Service, Corn Insects and Crop Genetics Resources Unit, Ames, IA, United States
| | - Anne E. Dorrance
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
- Center for Soybean Research, The Ohio State University, Columbus, OH, United States
- Department of Plant Pathology, The Ohio State University, Wooster, OH, United States
| | - Leah K. McHale
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
- Center for Soybean Research, The Ohio State University, Columbus, OH, United States
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
11
|
Belzile F, Jean M, Torkamaneh D, Tardivel A, Lemay MA, Boudhrioua C, Arsenault-Labrecque G, Dussault-Benoit C, Lebreton A, de Ronne M, Tremblay V, Labbé C, O’Donoughue L, St-Amour VTB, Copley T, Fortier E, Ste-Croix DT, Mimee B, Cober E, Rajcan I, Warkentin T, Gagnon É, Legay S, Auclair J, Bélanger R. The SoyaGen Project: Putting Genomics to Work for Soybean Breeders. FRONTIERS IN PLANT SCIENCE 2022; 13:887553. [PMID: 35557742 PMCID: PMC9087807 DOI: 10.3389/fpls.2022.887553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/24/2022] [Indexed: 06/15/2023]
Abstract
The SoyaGen project was a collaborative endeavor involving Canadian soybean researchers and breeders from academia and the private sector as well as international collaborators. Its aims were to develop genomics-derived solutions to real-world challenges faced by breeders. Based on the needs expressed by the stakeholders, the research efforts were focused on maximizing realized yield through optimization of maturity and improved disease resistance. The main deliverables related to molecular breeding in soybean will be reviewed here. These include: (1) SNP datasets capturing the genetic diversity within cultivated soybean (both within a worldwide collection of > 1,000 soybean accessions and a subset of 102 short-season accessions (MG0 and earlier) directly relevant to this group); (2) SNP markers for selecting favorable alleles at key maturity genes as well as loci associated with increased resistance to key pathogens and pests (Phytophthora sojae, Heterodera glycines, Sclerotinia sclerotiorum); (3) diagnostic tools to facilitate the identification and mapping of specific pathotypes of P. sojae; and (4) a genomic prediction approach to identify the most promising combinations of parents. As a result of this fruitful collaboration, breeders have gained new tools and approaches to implement molecular, genomics-informed breeding strategies. We believe these tools and approaches are broadly applicable to soybean breeding efforts around the world.
Collapse
Affiliation(s)
- François Belzile
- Département de Phytologie, Université Laval, Quebec City, QC, Canada
| | - Martine Jean
- Département de Phytologie, Université Laval, Quebec City, QC, Canada
| | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Quebec City, QC, Canada
| | - Aurélie Tardivel
- Département de Phytologie, Université Laval, Quebec City, QC, Canada
- Centre de Recherche sur les Grains (CEROM), Saint-Mathieu-de-Beloeil, QC, Canada
| | - Marc-André Lemay
- Département de Phytologie, Université Laval, Quebec City, QC, Canada
| | - Chiheb Boudhrioua
- Département de Phytologie, Université Laval, Quebec City, QC, Canada
| | | | | | - Amandine Lebreton
- Département de Phytologie, Université Laval, Quebec City, QC, Canada
| | - Maxime de Ronne
- Département de Phytologie, Université Laval, Quebec City, QC, Canada
| | - Vanessa Tremblay
- Département de Phytologie, Université Laval, Quebec City, QC, Canada
| | - Caroline Labbé
- Département de Phytologie, Université Laval, Quebec City, QC, Canada
| | - Louise O’Donoughue
- Centre de Recherche sur les Grains (CEROM), Saint-Mathieu-de-Beloeil, QC, Canada
| | - Vincent-Thomas Boucher St-Amour
- Département de Phytologie, Université Laval, Quebec City, QC, Canada
- Centre de Recherche sur les Grains (CEROM), Saint-Mathieu-de-Beloeil, QC, Canada
| | - Tanya Copley
- Centre de Recherche sur les Grains (CEROM), Saint-Mathieu-de-Beloeil, QC, Canada
| | - Eric Fortier
- Centre de Recherche sur les Grains (CEROM), Saint-Mathieu-de-Beloeil, QC, Canada
| | | | - Benjamin Mimee
- Agriculture and Agri-Food Canada, St-Jean-sur-Richelieu, QC, Canada
| | - Elroy Cober
- Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Istvan Rajcan
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Tom Warkentin
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Éric Gagnon
- Semences Prograin Inc., Saint-Césaire, QC, Canada
- Sevita Genetics, Inkerman, ON, Canada
| | | | | | - Richard Bélanger
- Département de Phytologie, Université Laval, Quebec City, QC, Canada
| |
Collapse
|