1
|
Lelis TM, Santos IR, Silva-Cardoso IMA, de Souza ALX, Gomes ACMM, Mehta A, Scherwinski-Pereira JE. Unraveling the occurrence of hyperhydricity in oil palm somatic embryos during somatic embryogenesis process. PROTOPLASMA 2025; 262:191-206. [PMID: 39312015 DOI: 10.1007/s00709-024-01991-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/08/2024] [Indexed: 01/04/2025]
Abstract
The propagation of oil palm through somatic embryogenesis is the most effective method of cloning this palm tree; however, in vitro cultivation can lead to abnormalities in plant tissue, such as hyperhydricity. The present study aimed to evaluate the difference in anatomical, morphological, and histochemical characteristics, and gene expression in normal (Nm) and hyperhydric (Hh) somatic embryos of oil palm. For this purpose, Nm and Hh somatic embryos were collected from the differentiation medium and were submitted to anatomical and histochemical analyses to assess the nucleus/cytoplasm ratio (toluidine blue), starch (Lugol), and proteins (XP), as well as ultrastructural analyses via transmission electron microscopy. Additionally, gene expression analyses were performed to gain a better understanding on the molecular aspect of hyperhydric abnormality. A higher quantity of differentiated Nm somatic embryos per explant was observed, with a germination rate close to zero in Hh somatic embryos. Additionally, a higher accumulation of proteins and starch was found in Nm somatic embryos when compared to Hh embryos. It was also noted that in Nm somatic embryos, protein reserves were primarily located in the proximal region (embryonic axis), whereas starch reserves were mainly accumulated in the distal region of the somatic embryos. Hh somatic embryos exhibit insignificant starch reserves, and a greater number of intercellular spaces were observed compared to Nm somatic embryos. However, some Hh somatic embryos displayed histochemical characteristics similar to Nm, which could explain the occurrence of reversions from the Hh state to the Nm state observed in this study. Regarding molecular analyses, the gene expression results obtained showed that out of the 19 genes analyzed, 17 were upregulated in hyperhydric embryos when compared to the control condition (normal somatic embryos). Genes involved in stress response, energy metabolism, defense, membrane transport, hormonal regulation, and development were positively regulated, especially those involved in ethylene synthesis and energetic metabolism. To the best of our knowledge, this is the first in-depth study addressing hyperhydricity in oil palm during somatic embryogenesis.
Collapse
Affiliation(s)
- Thauan Martins Lelis
- Programa de Pós-Graduação em Botânica, Universidade de Brasília, Instituto de Ciências Biológicas, Campus Universitário Darcy Ribeiro, Brasília, DF, CEP 70910-900, Brazil
| | - Ivonaldo Reis Santos
- Embrapa Recursos Genéticos e Biotecnologia, PBI, Av. W/5 Norte Final CEP, Brasília, DF, 70770-917, Brazil
| | | | - André Luís Xavier de Souza
- Embrapa Recursos Genéticos e Biotecnologia, PBI, Av. W/5 Norte Final CEP, Brasília, DF, 70770-917, Brazil
| | | | - Angela Mehta
- Embrapa Recursos Genéticos e Biotecnologia, PBI, Av. W/5 Norte Final CEP, Brasília, DF, 70770-917, Brazil.
| | - Jonny Everson Scherwinski-Pereira
- Programa de Pós-Graduação em Botânica, Universidade de Brasília, Instituto de Ciências Biológicas, Campus Universitário Darcy Ribeiro, Brasília, DF, CEP 70910-900, Brazil.
- Embrapa Recursos Genéticos e Biotecnologia, PBI, Av. W/5 Norte Final CEP, Brasília, DF, 70770-917, Brazil.
| |
Collapse
|
2
|
Liu L, Wang W, Lu X, Zhang T, Wu J, Fang Y, Ma L, Pu Y, Yang G, Wang W, Sun W. Methyl-Sensitive Amplification Polymorphism (MSAP) Analysis Provides Insights into the DNA Methylation Changes Underlying Adaptation to Low Temperature of Brassica rapa L. PLANTS (BASEL, SWITZERLAND) 2024; 13:1748. [PMID: 38999588 PMCID: PMC11244143 DOI: 10.3390/plants13131748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/06/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND DNA methylation can change rapidly to regulate the expression of stress-responsive genes. Previous studies have shown that there are significant differences in the cold resistance of winter rapeseed (Brassica rapa L.) after being domesticated in different selection environments; however, little is known about the epigenetic regulatory mechanisms of its cold resistance formation. METHODS Four winter rapeseed materials ('CT-2360', 'MXW-1', '2018-FJT', and 'DT-7') domesticated in different environments were selected to analyze the DNA methylation level and pattern changes under low temperature using methylation-sensitive amplified polymorphism technology with 60 primer pairs. RESULTS A total of 18 pairs of primers with good polymorphism were screened, and 1426 clear bands were amplified, with 594 methylation sites, accounting for 41.65% of the total amplified bands. The total methylation ratios of the four materials were reduced after low-temperature treatment, in which the DNA methylation level of 'CT-2360' was higher than that of the other three materials; the analysis of methylation patterns revealed that the degree of demethylation was higher than that of methylation in 'MXW-1', '2018-FJT', and 'DT-7', which were 22.99%, 19.77%, and 24.35%, respectively, and that the methylation events in 'CT-2360' were predominantly dominant at 22.95%. Fifty-three polymorphic methylated DNA fragments were randomly selected and further analyzed, and twenty-nine of the cloned fragments were homologous to genes with known functions. The candidate genes VQ22 and LOC103871127 verified the existence of different expressive patterns before and after low-temperature treatment. CONCLUSIONS Our work implies the critical role of DNA methylation in the formation of cold resistance in winter rapeseed. These results provide a comprehensive insight into the adaptation epigenetic regulatory mechanism of Brassica rapa L. to low temperature, and the identified differentially methylated genes can also be used as important genetic resources for the multilateral breeding of winter-resistant varieties.
Collapse
Affiliation(s)
- Lijun Liu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Wanpeng Wang
- Zhangye Academy of Agricultural Sciences, Zhangye 734000, China
| | - Xiaoming Lu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Tianyu Zhang
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Junyan Wu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yan Fang
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Li Ma
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuanyuan Pu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Gang Yang
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Wangtian Wang
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Wancang Sun
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
3
|
Polivanova OB, Bedarev VA. Hyperhydricity in Plant Tissue Culture. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11233313. [PMID: 36501352 PMCID: PMC9738826 DOI: 10.3390/plants11233313] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 06/12/2023]
Abstract
Hyperhydricity is the most common physiological disorder in in vitro plant cultivation. It is characterized by certain anatomical, morphological, physiological, and metabolic disturbances. Hyperhydricity significantly complicates the use of cell and tissue culture in research, reduces the efficiency of clonal micropropagation and the quality of seedlings, prevents the adaptation of plants in vivo, and can lead to significant losses of plant material. This review considers the main symptoms and causes of hyperhydricity, such as oxidative stress, impaired nitrogen metabolism, and the imbalance of endogenous hormones. The main factors influencing the level of hyperhydricity of plants in vitro are the mineral and hormonal composition of a medium and cultivation conditions, in particular the aeration of cultivation vessels. Based on these factors, various approaches are proposed to eliminate hyperhydricity, such as varying the mineral and hormonal composition of the medium, the use of exogenous additives, aeration systems, and specific lighting. However, not all methods used are universal in eliminating the symptoms of hyperhydricity. Therefore, the study of hyperhydricity requires a comprehensive approach, and measures aimed at its elimination should be complex and species-specific.
Collapse
|