1
|
Ma S, Wang L, Zhang J, Geng L, Yang J. The role of transcriptional and epigenetic modifications in astrogliogenesis. PeerJ 2024; 12:e18151. [PMID: 39314847 PMCID: PMC11418818 DOI: 10.7717/peerj.18151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/31/2024] [Indexed: 09/25/2024] Open
Abstract
Astrocytes are widely distributed and play a critical role in the central nervous system (CNS) of the human brain. During the development of CNS, astrocytes provide essential nutritional and supportive functions for neural cells and are involved in their metabolism and pathological processes. Despite the numerous studies that have reported on the regulation of astrogliogenesis at the transcriptional and epigenetic levels, there is a paucity of literature that provides a comprehensive summary of the key factors influencing this process. In this review, we analyzed the impact of transcription factors (e.g., NFI, JAK/STAT, BMP, and Ngn2), DNA methylation, histone acetylation, and noncoding RNA on astrocyte behavior and the regulation of astrogliogenesis, hope it enhances our comprehension of the mechanisms underlying astrogliogenesis and offers a theoretical foundation for the treatment of patients with neurological diseases.
Collapse
Affiliation(s)
- Shuangping Ma
- Institutes of Health Central Plains, Tissue Engineering and Regenerative Clinical Medicine Center, Xinxiang Medical University, Xinxiang, China
| | - Lei Wang
- Institutes of Health Central Plains, Tissue Engineering and Regenerative Clinical Medicine Center, Xinxiang Medical University, Xinxiang, China
| | - Junhe Zhang
- Institutes of Health Central Plains, Tissue Engineering and Regenerative Clinical Medicine Center, Xinxiang Medical University, Xinxiang, China
| | - Lujing Geng
- College of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, China
| | - Junzheng Yang
- Institutes of Health Central Plains, Tissue Engineering and Regenerative Clinical Medicine Center, Xinxiang Medical University, Xinxiang, China
- Guangdong Nephrotic Drug Engineering Technology Research Center, The R&D Center of Drug for Renal Diseases, Consun Pharmaceutical Group, Guangzhou, China
| |
Collapse
|
2
|
Roberts JA, Varma VR, Jones A, Thambisetty M. Drug Repurposing for Effective Alzheimer's Disease Medicines: Existing Methods and Novel Pharmacoepidemiological Approaches. J Alzheimers Dis 2024; 101:S299-S315. [PMID: 39422962 DOI: 10.3233/jad-240680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Drug repurposing is a methodology used to identify new clinical indications for existing drugs developed for other indications and has been successfully applied in the treatment of numerous conditions. Alzheimer's disease (AD) may be particularly well-suited to the application of drug repurposing methods given the absence of effective therapies and abundance of multi-omic data that has been generated in AD patients recently that may facilitate discovery of candidate AD drugs. A recent focus of drug repurposing has been in the application of pharmacoepidemiologic approaches to drug evaluation. Here, real-world clinical datasets with large numbers of patients are leveraged to establish observational efficacy of candidate drugs for further evaluation in disease models and clinical trials. In this review, we provide a selected overview of methods for drug repurposing, including signature matching, network analysis, molecular docking, phenotypic screening, semantic network, and pharmacoepidemiological analyses. Numerous methods have also been applied specifically to AD with the aim of nominating novel drug candidates for evaluation. These approaches, however, are prone to numerous limitations and potential biases that we have sought to address in the Drug Repurposing for Effective Alzheimer's Medicines (DREAM) study, a multi-step framework for selection and validation of potential drug candidates that has demonstrated the promise of STAT3 inhibitors and re-evaluated evidence for other drug candidates, such as phosphodiesterase inhibitors. Taken together, drug repurposing holds significant promise for development of novel AD therapeutics, particularly as the pace of data generation and development of analytical methods continue to accelerate.
Collapse
Affiliation(s)
- Jackson A Roberts
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Neurology, Massachusetts General Brigham, Boston, MA, USA
| | - Vijay R Varma
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Attila Jones
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Madhav Thambisetty
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
3
|
Rajput S, Malviya R, Bahadur S, Puri D. Recent Updates on the Development of Therapeutics for the Targeted Treatment of Alzheimer's Disease. Curr Pharm Des 2023; 29:2802-2813. [PMID: 38018199 DOI: 10.2174/0113816128274618231105173031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/08/2023] [Accepted: 10/03/2023] [Indexed: 11/30/2023]
Abstract
Alzheimer's disease (AD) is a complicated, multifaceted, irreversible, and incurable neurotoxic old age illness. Although NMDA (N-methyl D-aspartate)-receptor antagonists, cholinesterase repressors, and their pairings have been approved for the treatment, they are useful for short symptomatic relief. Researchers throughout the globe have been constantly working to uncover the therapy of Alzheimer's disease as new candidates must be determined, and newer treatment medicines must be developed. The aim of this review is to address recent advances in medication research along with new Alzheimer's disease therapy for diverse targets. Information was gathered utilizing a variety of internet resources as well as websites, such as ALZFORUM (alzforum.org) and clinicaltrials.gov. In contrast to other domains, the proposed medicines target amyloids (secretases, A42 generation, neuroinflammation, amyloid precipitation, and immunization), tau proteins (tau phosphorylation/aggregation and immunotherapy), and amyloid deposition. Despite tremendous advancement in our understanding of the underlying pathophysiology of Alzheimer's disease, the FDA (Food and Drug Administration) only approved aducanumab for diagnosis and treatment in 2003. Hence, novel treatment tactics are needed to find and develop therapeutic medicines to combat Alzheimer's disease.
Collapse
Affiliation(s)
- Shivam Rajput
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Shiv Bahadur
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Dinesh Puri
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
| |
Collapse
|
4
|
Desai RJ, Mahesri M, Lee SB, Varma VR, Loeffler T, Schilcher I, Gerhard T, Segal JB, Ritchey ME, Horton DB, Kim SC, Schneeweiss S, Thambisetty M. No association between initiation of phosphodiesterase-5 inhibitors and risk of incident Alzheimer's disease and related dementia: results from the Drug Repurposing for Effective Alzheimer's Medicines study. Brain Commun 2022; 4:fcac247. [PMID: 36330433 PMCID: PMC9598543 DOI: 10.1093/braincomms/fcac247] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 07/11/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
We evaluated the hypothesis that phosphodiesterase-5 inhibitors, including sildenafil and tadalafil, may be associated with reduced incidence of Alzheimer's disease and related dementia using a patient-level cohort study of Medicare claims and cell culture-based phenotypic assays. We compared incidence of Alzheimer's disease and related dementia after phosphodiesterase-5 inhibitor initiation versus endothelin receptor antagonist initiation among patients with pulmonary hypertension after controlling for 76 confounding variables through propensity score matching. Across four separate analytic approaches designed to address specific types of biases including informative censoring, reverse causality, and outcome misclassification, we observed no evidence for a reduced risk of Alzheimer's disease and related dementia with phosphodiesterase-5 inhibitors;hazard ratio (95% confidence interval): 0.99 (0.69-1.43), 1.00 (0.71-1.42), 0.67 (0.43-1.06), and 1.15 (0.57-2.34). We also did not observe evidence that sildenafil ameliorated molecular abnormalities relevant to Alzheimer's disease in most cell culture-based phenotypic assays. These results do not provide support to the hypothesis that phosphodiesterase-5 inhibitors are promising repurposing candidates for Alzheimer's disease and related dementia.
Collapse
Affiliation(s)
- Rishi J Desai
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women’s Hospital & Harvard Medical School, Boston, MA 02115, USA
| | - Mufaddal Mahesri
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women’s Hospital & Harvard Medical School, Boston, MA 02115, USA
| | - Su Been Lee
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women’s Hospital & Harvard Medical School, Boston, MA 02115, USA
| | - Vijay R Varma
- Clinical & Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD 21224, USA
| | - Tina Loeffler
- QPS Austria GmbH, Parkring 12, 8074 Grambach, Austria
| | | | - Tobias Gerhard
- Rutgers Center for Pharmacoepidemiology and Treatment Science, New Brunswick, NJ 08901, USA
- Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Jodi B Segal
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mary E Ritchey
- Rutgers Center for Pharmacoepidemiology and Treatment Science, New Brunswick, NJ 08901, USA
| | - Daniel B Horton
- Rutgers Center for Pharmacoepidemiology and Treatment Science, New Brunswick, NJ 08901, USA
- Rutgers Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08901, USA
| | - Seoyoung C Kim
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women’s Hospital & Harvard Medical School, Boston, MA 02115, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Sebastian Schneeweiss
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women’s Hospital & Harvard Medical School, Boston, MA 02115, USA
| | - Madhav Thambisetty
- Clinical & Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD 21224, USA
| |
Collapse
|
5
|
Padhi D, Govindaraju T. Mechanistic Insights for Drug Repurposing and the Design of Hybrid Drugs for Alzheimer's Disease. J Med Chem 2022; 65:7088-7105. [PMID: 35559617 DOI: 10.1021/acs.jmedchem.2c00335] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The heterogeneity and complex nature of Alzheimer's disease (AD) is attributed to several genetic risk factors and molecular culprits. The slow pace and increasing failure rate of conventional drug discovery has led to the exploration of complementary strategies based on repurposing approved drugs to treat AD. Drug repurposing (DR) is a cost-effective, low-risk, and efficient approach for identifying novel therapeutic candidates for AD treatment. Similarly, hybrid drug design through the integration of distinct pharmacophores from known or failed drugs and natural products is an interesting strategy to target the multifactorial nature of AD. In this Perspective, we discuss the potential of DR and highlight promising drug candidates that can be advanced for clinical trials, backed by a detailed discussion on their plausible mechanisms of action. Our article fosters research on the hidden potential of DR and hybrid drug design with the goal of unravelling new drugs and targets to tackle AD.
Collapse
Affiliation(s)
- Dikshaa Padhi
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru, Karnataka 560064, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru, Karnataka 560064, India
| |
Collapse
|
6
|
Fang J, Zhang P, Zhou Y, Chiang CW, Tan J, Hou Y, Stauffer S, Li L, Pieper AA, Cummings J, Cheng F. Endophenotype-based in silico network medicine discovery combined with insurance record data mining identifies sildenafil as a candidate drug for Alzheimer's disease. NATURE AGING 2021; 1:1175-1188. [PMID: 35572351 PMCID: PMC9097949 DOI: 10.1038/s43587-021-00138-z] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We developed an endophenotype disease module-based methodology for Alzheimer's disease (AD) drug repurposing and identified sildenafil as a potential disease risk modifier. Based on retrospective case-control pharmacoepidemiologic analyses of insurance claims data for 7.23 million individuals, we found that sildenafil usage was significantly associated with a 69% reduced risk of AD (hazard ratio = 0.31, 95% confidence interval 0.25-0.39, P<1.0×10-8). Propensity score stratified analyses confirmed that sildenafil is significantly associated with a decreased risk of AD across all four drug cohorts we tested (diltiazem, glimepiride, losartan and metformin) after adjusting age, sex, race, and disease comorbidities. We also found that sildenafil increases neurite growth and decreases phospho-tau expression in AD patient-induced pluripotent stem cells-derived neuron models, supporting mechanistically its potential beneficial effect in Alzheimer's disease. The association between sildenafil use and decreased incidence of AD does not establish causality or its direction, which requires a randomized clinical trial approach.
Collapse
Affiliation(s)
- Jiansong Fang
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Pengyue Zhang
- Department of Biostatistics, School of Medicine, Indiana University
| | - Yadi Zhou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Chien-Wei Chiang
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH 43210, USA
| | - Juan Tan
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Yuan Hou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Shaun Stauffer
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Lang Li
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH 43210, USA
| | - Andrew A. Pieper
- Harrington Discovery Institute, University Hospital Case Medical Center; Department of Psychiatry, Case Western Reserve University, Geriatric Research Education and Clinical Centers, Louis Stokes Cleveland VAMC, Cleveland, OH 44106, USA
| | - Jeffrey Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA,Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA.,Correspondence to: Feixiong Cheng, Ph.D., Lerner Research Institute, Cleveland Clinic, , Tel: +1-216-4447654; Fax: +1-216-6361609
| |
Collapse
|
7
|
Kronzer VL, Crowson CS, Davis JM, Vassilaki M, Mielke MM, Myasoedova E. Trends in incidence of dementia among patients with rheumatoid arthritis: A population-based cohort study. Semin Arthritis Rheum 2021; 51:853-857. [PMID: 34174733 PMCID: PMC8384708 DOI: 10.1016/j.semarthrit.2021.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/12/2021] [Accepted: 06/10/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE We aimed to assess the incidence of dementia over time in patients with incident rheumatoid arthritis (RA) as compared to non-RA referents. METHODS This population-based, retrospective cohort study included Olmsted County, Minnesota residents with incident RA by ACR 1987 criteria, diagnosed between 1980 and 2009. We matched non-RA referents 1:1 on age, sex, and calendar year and followed all individuals until 12/31/2019. Incident dementia was defined as two codes for Alzheimer's disease and related dementias (ADRD) at least 30 days apart. Cumulative incidence of ADRD was assessed, adjusting for the competing risk of death. Cox proportional hazards models calculated hazard ratios (HR) with 95% confidence intervals (CI) for incident ADRD by decade. RESULTS After excluding individuals with prior dementia, we included 897 persons with incident RA (mean age 56 years; 69% female) and 885 referents. The 10-year cumulative incidence of ADRD in individuals diagnosed with RA during the 1980s was 12.7% (95%CI:7.9-15.7%), 1990s was 7.2% (95%CI:3.7-9.4%), and 2000s was 6.2% (95%CI:3.6-7.8%). Individuals with RA diagnosed in 2000s had insignificantly lower cumulative incidence of ADRD than those in the 1980s (HR 0.66; 95%CI:0.38-1.16). The overall HR of ADRD in individuals with RA was 1.37 (vs. referents; 95%CI:1.04-1.81). When subdivided by decade, however, the risk of ADRD in individuals diagnosed with RA was higher than referents in the 1990s (HR 1.72, 95%CI:1.09-2.70) but not 2000s (HR 0.86, 95%CI:0.51-1.45). CONCLUSIONS The risk of dementia in individuals with RA appears to be declining over time, including when compared to general population referents.
Collapse
Affiliation(s)
| | - Cynthia S Crowson
- Division of Rheumatology, Mayo Clinic, Rochester, MN, USA; Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - John M Davis
- Division of Rheumatology, Mayo Clinic, Rochester, MN, USA
| | - Maria Vassilaki
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Michelle M Mielke
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA; Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Elena Myasoedova
- Division of Rheumatology, Mayo Clinic, Rochester, MN, USA; Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|