1
|
van Nifterick AM, Scheijbeler EP, Gouw AA, de Haan W, Stam CJ. Local signal variability and functional connectivity: Sensitive measures of the excitation-inhibition ratio? Cogn Neurodyn 2024; 18:519-537. [PMID: 38699618 PMCID: PMC11061092 DOI: 10.1007/s11571-023-10003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/08/2023] [Accepted: 08/13/2023] [Indexed: 05/05/2024] Open
Abstract
A novel network version of permutation entropy, the inverted joint permutation entropy (JPEinv), holds potential as non-invasive biomarker of abnormal excitation-inhibition (E-I) ratio in Alzheimer's disease (AD). In this computational modelling study, we test the hypotheses that this metric, and related measures of signal variability and functional connectivity, are sensitive to altered E-I ratios. The E-I ratio in each neural mass of a whole-brain computational network model was systematically varied. We evaluated whether JPEinv, local signal variability (by permutation entropy) and functional connectivity (by weighted symbolic mutual information (wsMI)) were related to E-I ratio, on whole-brain and regional level. The hub disruption index can identify regions primarily affected in terms of functional connectivity strength (or: degree) by the altered E-I ratios. Analyses were performed for a range of coupling strengths, filter and time-delay settings. On whole-brain level, higher E-I ratios were associated with higher functional connectivity (by JPEinv and wsMI) and lower local signal variability. These relationships were nonlinear and depended on the coupling strength, filter and time-delay settings. On regional level, hub-like regions showed a selective decrease in functional degree (by JPEinv and wsMI) upon a lower E-I ratio, and non-hub-like regions showed a selective increase in degree upon a higher E-I ratio. These results suggest that abnormal functional connectivity and signal variability, as previously reported in patients across the AD continuum, can inform us about altered E-I ratios. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-023-10003-x.
Collapse
Affiliation(s)
- Anne M. van Nifterick
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Clinical Neurophysiology and MEG Center, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Elliz P. Scheijbeler
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Clinical Neurophysiology and MEG Center, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Alida A. Gouw
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Clinical Neurophysiology and MEG Center, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Willem de Haan
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Clinical Neurophysiology and MEG Center, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Cornelis J. Stam
- Clinical Neurophysiology and MEG Center, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Kamondi A, Grigg-Damberger M, Löscher W, Tanila H, Horvath AA. Epilepsy and epileptiform activity in late-onset Alzheimer disease: clinical and pathophysiological advances, gaps and conundrums. Nat Rev Neurol 2024; 20:162-182. [PMID: 38356056 DOI: 10.1038/s41582-024-00932-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 02/16/2024]
Abstract
A growing body of evidence has demonstrated a link between Alzheimer disease (AD) and epilepsy. Late-onset epilepsy and epileptiform activity can precede cognitive deterioration in AD by years, and its presence has been shown to predict a faster disease course. In animal models of AD, amyloid and tau pathology are linked to cortical network hyperexcitability that precedes the first signs of memory decline. Thus, detection of epileptiform activity in AD has substantial clinical importance as a potential novel modifiable risk factor for dementia. In this Review, we summarize the epidemiological evidence for the complex bidirectional relationship between AD and epilepsy, examine the effect of epileptiform activity and seizures on cognition in people with AD, and discuss the precision medicine treatment strategies based on the latest research in human and animal models. Finally, we outline some of the unresolved questions of the field that should be addressed by rigorous research, including whether particular clinicopathological subtypes of AD have a stronger association with epilepsy, and the sequence of events between epileptiform activity and amyloid and tau pathology.
Collapse
Affiliation(s)
- Anita Kamondi
- National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary.
- Department of Neurology, Semmelweis University, Budapest, Hungary.
| | | | - Wolfgang Löscher
- Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover, Germany
| | - Heikki Tanila
- A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Andras Attila Horvath
- National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
3
|
Giorgio J, Adams JN, Maass A, Jagust WJ, Breakspear M. Amyloid induced hyperexcitability in default mode network drives medial temporal hyperactivity and early tau accumulation. Neuron 2024; 112:676-686.e4. [PMID: 38096815 PMCID: PMC10922797 DOI: 10.1016/j.neuron.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/01/2023] [Accepted: 11/14/2023] [Indexed: 02/24/2024]
Abstract
In early Alzheimer's disease (AD) β-amyloid (Aβ) deposits throughout association cortex and tau appears in the entorhinal cortex (EC). Why these initially appear in disparate locations is not understood. Using task-based fMRI and multimodal PET imaging, we assess the impact of local AD pathology on network-to-network interactions. We show that AD pathologies flip interactions between the default mode network (DMN) and the medial temporal lobe (MTL) from inhibitory to excitatory. The DMN is hyperexcited with increasing levels of Aβ, which drives hyperexcitability within the MTL and this directed hyperexcitation of the MTL by the DMN predicts the rate of tau accumulation within the EC. Our results support a model whereby Aβ induces disruptions to local excitatory-inhibitory balance in the DMN, driving hyperexcitability in the MTL, leading to tau accumulation. We propose that Aβ-induced disruptions to excitatory-inhibitory balance is a candidate causal route between Aβ and remote EC-tau accumulation.
Collapse
Affiliation(s)
- Joseph Giorgio
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; School of Psychological Sciences, College of Engineering, Science, and the Environment, University of Newcastle, Newcastle, NSW 2305, Australia.
| | - Jenna N Adams
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Anne Maass
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Michael Breakspear
- School of Psychological Sciences, College of Engineering, Science, and the Environment, University of Newcastle, Newcastle, NSW 2305, Australia; Discipline of Psychiatry, College of Health, Medicine, and Wellbeing, The University of Newcastle, Newcastle, NSW 2305, Australia
| |
Collapse
|
4
|
Arjmandi-Rad S, Vestergaard Nieland JD, Goozee KG, Vaseghi S. The effects of different acetylcholinesterase inhibitors on EEG patterns in patients with Alzheimer's disease: A systematic review. Neurol Sci 2024; 45:417-430. [PMID: 37843690 DOI: 10.1007/s10072-023-07114-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/01/2023] [Indexed: 10/17/2023]
Abstract
OBJECTIVE Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common type of dementia. The early diagnosis of AD is an important factor for the control of AD progression. Electroencephalography (EEG) can be used for early diagnosis of AD. Acetylcholinesterase inhibitors (AChEIs) are also used for the amelioration of AD symptoms. In this systematic review, we reviewed the effect of different AChEIs including donepezil, rivastigmine, tacrine, physostigmine, and galantamine on EEG patterns in patients with AD. METHODS PubMed electronic database was searched and 122 articles were found. After removal of unrelated articles, 24 articles were selected for the present study. RESULTS AChEIs can decrease beta, theta, and delta frequency bands in patients with AD. However, conflicting results were found for alpha band. Some studies have shown increased alpha frequency, while others have shown decreased alpha frequency following treatment with AChEIs. The only difference was the type of drug. CONCLUSIONS We found that studies reporting the decreased alpha frequency used donepezil and galantamine, while studies reporting the increased alpha frequency used rivastigmine and tacrine. It was suggested that future studies should focus on the effect of different AChEIs on EEG bands, especially alpha frequency in patients with AD, to compare their effects and find the reason for their different influence on EEG patterns. Also, differences between the effects of AChEIs on oligodendrocyte differentiation and myelination may be another important factor. This is the first article investigating the effect of different AChEIs on EEG patterns in patients with AD.
Collapse
Affiliation(s)
- Shirin Arjmandi-Rad
- Institute for Cognitive & Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | | | - Kathryn G Goozee
- KaRa Institute of Neurological Diseases Pty Ltd, Macquarie, NSW, Australia
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Salar Vaseghi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
| |
Collapse
|