1
|
Jafar B, Alemayehu H, Bhat R, Zayek M. Multiple Intestinal Anomalies in a Newborn with 22q11.2 Microdeletion Syndrome: A Case Report and Literature Review. J Pediatr Genet 2024; 13:237-244. [PMID: 39086451 PMCID: PMC11288709 DOI: 10.1055/s-0042-1750748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 05/11/2022] [Indexed: 10/16/2022]
Abstract
Although 40 years have passed since the first case of DiGeorge's syndrome was described, and the knowledge about this disorder has steadily increased since that time, 22q11.2 deletion syndrome (DS) remains a challenging diagnosis because its clinical presentation varies widely. We describe an infant with 22q11.2 DS who presented with annular pancreas, anorectal malformation, Morgagni-type congenital diaphragmatic hernia, and ventricular septal defect. This constellation of anomalies has never been described in DiGeorge's syndrome. Here, we provide a case presentation and a thorough review of the literature.
Collapse
Affiliation(s)
- Bedour Jafar
- Department of Pediatrics, University of South Alabama, Mobile, Alabama, United States
| | - Hanna Alemayehu
- Division of Pediatric Surgery, Department of Surgery, University of South Alabama, Mobile, Alabama, United States
| | - Ramachandra Bhat
- Division of Neonatology, Department of Pediatrics, Louisiana State University Health Science Center, Shreveport, Louisiana, United States
| | - Michael Zayek
- Division of Neonatology, Department of Pediatrics, University of South Alabama, Mobile, Alabama, United States
| |
Collapse
|
2
|
Wang X, Sha J, Han Y, Pang M, Liu M, Liu M, Zhang B, Zhai J. Efficiency of copy number variation sequencing combined with karyotyping in fetuses with congenital heart disease and the following outcomes. Mol Cytogenet 2024; 17:12. [PMID: 38741090 DOI: 10.1186/s13039-024-00681-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Both copy number variant-sequencing (CNV-seq) and karyotype analysis have been used as powerful tools in the genetic aetiology of fetuses with congenital heart diseases (CHD). However, CNV-seq brings clinicians more confusions to interpret the detection results related to CHD with or without extracardiac abnormalities. Hence, we conducted this study to investigate the clinical value of CNV-seq in fetuses with CHD. RESULTS A total of 167 patients with fetal CHD including 36 single CHD (sCHD), 41 compound CHD (cCHD) and 90 non-isolated CHD (niCHD) were recruited into the study. 28 cases (16.77%, 28/167) were revealed with chromosomal abnormalities at the level of karyotype. The pathogenic detection rate (DR) of CNV-seq (23.17%, 19/82) was higher than that of karyotyping (15.85%, 13/82) in 82 cases by CNV-seq and karyotyping simultaneously. The DR of pathogenic copy number variations (PCNVs) (31.43%) was higher in niCHD subgroup than that in sCHD and cCHD (9.52% and 23.08%). Conotruncal defect (CTD) was one of the most common heart malformations with the highest DR of PCNVs (50%) in 7 categories of CHD. In terms of all the pregnancy outcomes, 67 (40.12%) cases were terminated and 100 (59.88%) cases were live neonates. Only two among 34 cases with a pathogenic genetic result chose to continue the pregnancy. CONCLUSIONS CNV-seq combined with karyotyping is a reliable and accurate prenatal technique for identifying pathogenic chromosomal abnormalities associated with fetal CHD with or without extracardiac abnormalities, which can assist clinicians to perform detailed genetic counselling with regard to the etiology and related outcomes of CHD.
Collapse
Affiliation(s)
- Xuezhen Wang
- Department of Prenatal Diagnosis Medical Center, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Jiefang South Road No.199, Xuzhou, 221009, Jiangsu, China
- Graduate School of Bengbu Medical University, Donghai Avenue No.2600, Bengbu, 233000, Anhui, China
| | - Jing Sha
- Department of Prenatal Diagnosis Medical Center, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Jiefang South Road No.199, Xuzhou, 221009, Jiangsu, China
| | - Yu Han
- Department of Prenatal Diagnosis Medical Center, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Jiefang South Road No.199, Xuzhou, 221009, Jiangsu, China
- Key Laboratory of Brain Diseases Bioinformation of Xuzhou Medical University, Tongshan Road No.209, Xuzhou, 221004, Jiangsu, China
| | - Min Pang
- Department of Prenatal Diagnosis Medical Center, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Jiefang South Road No.199, Xuzhou, 221009, Jiangsu, China
| | - Min Liu
- Department of Prenatal Diagnosis Medical Center, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Jiefang South Road No.199, Xuzhou, 221009, Jiangsu, China
| | - Mengna Liu
- Department of Prenatal Diagnosis Medical Center, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Jiefang South Road No.199, Xuzhou, 221009, Jiangsu, China
| | - Bei Zhang
- Department of Prenatal Diagnosis Medical Center, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Jiefang South Road No.199, Xuzhou, 221009, Jiangsu, China.
- Graduate School of Bengbu Medical University, Donghai Avenue No.2600, Bengbu, 233000, Anhui, China.
| | - Jingfang Zhai
- Department of Prenatal Diagnosis Medical Center, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Jiefang South Road No.199, Xuzhou, 221009, Jiangsu, China.
- Graduate School of Bengbu Medical University, Donghai Avenue No.2600, Bengbu, 233000, Anhui, China.
- Key Laboratory of Brain Diseases Bioinformation of Xuzhou Medical University, Tongshan Road No.209, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
3
|
Zhong C, Dong H, Chen T, Zhang X, Ran S. Prenatal Diagnosis and Postnatal Outcomes of Persistent Left Superior Vena Cava Associated With Mild Narrow Aorta: A Cohort Study. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2024; 43:923-930. [PMID: 38298028 DOI: 10.1002/jum.16423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 02/02/2024]
Abstract
PURPOSE To explore prenatal ultrasonic features and prognosis of the persistent left superior vena cava (PLSVC) complicated with mild narrow aorta. MATERIALS AND METHODS A retrospective study was conducted involving 1348 fetuses diagnosed with PLSVC prenatally between January 2016 and December 2019. Forty-five fetuses with PLSVC associated with mild narrow aorta were selected from the cohort as the study group and 79 fetuses with isolated PLSCV were recruited randomly as the control group. All clinical and ultrasound results, including images and parameters of cardiac structures, were reviewed retrospectively. General conditions, ultrasound (US) measurements, and fetal prognosis were compared between the groups. RESULTS Aorta valve diameter (AOD), Z-score of aorta valve (AODz-score), aortic isthmus diameter (AOIsD), and pulmonary diameter (PAD)/AOD were significantly different in study group than control group no matter in the second or third trimester. Thirty-eight fetuses in study group were born with favorable outcomes after long-term follow-up. A total of 13.16% (5/38) remain mild narrow aorta and 3 of them showed smaller left ventricle after 3 years follow up. Prenatal AODz-score in infants remains mild narrow aorta after 2 years aged was higher than ones' aorta return to normal (P = .01), especially when AODz-score >1.725. Moreover, when prenatal ratio of AOIsD/left subclavian artery was <1.12, it was more likely that the aorta would remain mildly narrow at age 2. CONCLUSION Fetuses diagnosed with PLSVC with mild narrow aorta had favorable prognosis. AODz-score and AOIsD/left subclavian artery may be two predictors that reveal the risk of a mildly narrowed aorta remaining after birth.
Collapse
Affiliation(s)
- ChunYan Zhong
- Department of Ultrasound, Chongqing Health Center for Women and Children, Chongqing, China
- Department of Ultrasound, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Hongmei Dong
- Department of Ultrasound, Chongqing Health Center for Women and Children, Chongqing, China
- Department of Ultrasound, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ting Chen
- Department of Ultrasound, Chongqing Health Center for Women and Children, Chongqing, China
- Department of Ultrasound, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaohang Zhang
- Department of Ultrasound, Chongqing Health Center for Women and Children, Chongqing, China
- Department of Ultrasound, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - SuZhen Ran
- Department of Ultrasound, Chongqing Health Center for Women and Children, Chongqing, China
- Department of Ultrasound, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Sonner S, Reilly K, Woolf AS, Chandler N, Kilby MD, Maher ER, Flanagan C, McKnight AJ, Mone F. When should we offer antenatal sequencing for urinary tract malformations? A systematic review, cohort study and meta-analysis. Prenat Diagn 2024; 44:187-195. [PMID: 38056891 DOI: 10.1002/pd.6479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023]
Abstract
OBJECTIVE Determine the incremental yield of prenatal exome sequencing (PES) over chromosome microarray (CMA) and/or karyotype for urinary tract malformations (UTMs). METHOD A prospective cohort study encompassing data from the English Genomic Medicine Service North Thames Laboratory Hub for fetuses with bilateral echogenic kidneys (BEKs) was combined with data from a systematic review. MEDLINE, EMBASE, Web of Science, MedRxiv and GreyLit were searched from 01/2010-02/2023 for studies reporting on the yield of PES over CMA or karyotype in fetuses with UTMs. Pooled incremental yield was determined using a random effects model. PROSPERO CRD42023364544. RESULTS Fourteen studies (410 cases) were included. The incremental yield for multisystem UTMs, any isolated UTMs, and BEKs was 31% [95% CI, 18%-46%; I2 = 78%], 16% [95% CI, 6%-26%; I2 = 80%] and 51% [95% CI, 27%-75%; I2 = 34%]. The most common clinical diseases and syndromes identified, based on the variant genes detected, were Bardet-Biedl syndrome (BBS genes), dominant and recessive polycystic kidney diseases (PKD1, PKD2 and PKHD1) and renal cysts and diabetes syndrome (HNF1B). CONCLUSION There was a notable incremental genetic diagnostic yield when PES was applied to multisystem UTMs and BEKs. There was a modest incremental yield when this technique was used for UTMs other than BEKs.
Collapse
Affiliation(s)
- Sarah Sonner
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Kelly Reilly
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Adrian S Woolf
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Natalie Chandler
- North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Mark D Kilby
- Fetal Medicine Centre, Birmingham Women's & Children's Foundation Trust, Birmingham, UK
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Medical Genomics Research Group, Illumina, Cambridge, UK
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Cheryl Flanagan
- Institute of Pathology, Belfast Health and Social Care Trust, Belfast, UK
| | | | - Fionnuala Mone
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| |
Collapse
|
5
|
Deutsche Gesellschaft für Humangenetik e.V. (GfH). MED GENET-BERLIN 2023; 35:307-311. [PMID: 38841554 PMCID: PMC11006311 DOI: 10.1515/medgen-2023-2059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
|
6
|
Chhatwal K, Smith JJ, Bola H, Zahid A, Venkatakrishnan A, Brand T. Uncovering the Genetic Basis of Congenital Heart Disease: Recent Advancements and Implications for Clinical Management. CJC PEDIATRIC AND CONGENITAL HEART DISEASE 2023; 2:464-480. [PMID: 38205435 PMCID: PMC10777202 DOI: 10.1016/j.cjcpc.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/13/2023] [Indexed: 01/12/2024]
Abstract
Congenital heart disease (CHD) is the most prevalent hereditary disorder, affecting approximately 1% of all live births. A reduction in morbidity and mortality has been achieved with advancements in surgical intervention, yet challenges in managing complications, extracardiac abnormalities, and comorbidities still exist. To address these, a more comprehensive understanding of the genetic basis underlying CHD is required to establish how certain variants are associated with the clinical outcomes. This will enable clinicians to provide personalized treatments by predicting the risk and prognosis, which might improve the therapeutic results and the patient's quality of life. We review how advancements in genome sequencing are changing our understanding of the genetic basis of CHD, discuss experimental approaches to determine the significance of novel variants, and identify barriers to use this knowledge in the clinics. Next-generation sequencing technologies are unravelling the role of oligogenic inheritance, epigenetic modification, genetic mosaicism, and noncoding variants in controlling the expression of candidate CHD-associated genes. However, clinical risk prediction based on these factors remains challenging. Therefore, studies involving human-induced pluripotent stem cells and single-cell sequencing help create preclinical frameworks for determining the significance of novel genetic variants. Clinicians should be aware of the benefits and implications of the responsible use of genomics. To facilitate and accelerate the clinical integration of these novel technologies, clinicians should actively engage in the latest scientific and technical developments to provide better, more personalized management plans for patients.
Collapse
Affiliation(s)
- Karanjot Chhatwal
- Imperial College School of Medicine, Imperial College London, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, Imperial Center of Clinical and Translational Medicine, London, United Kingdom
| | - Jacob J. Smith
- Imperial College School of Medicine, Imperial College London, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, Imperial Center of Clinical and Translational Medicine, London, United Kingdom
| | - Harroop Bola
- Imperial College School of Medicine, Imperial College London, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, Imperial Center of Clinical and Translational Medicine, London, United Kingdom
| | - Abeer Zahid
- Imperial College School of Medicine, Imperial College London, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, Imperial Center of Clinical and Translational Medicine, London, United Kingdom
| | - Ashwin Venkatakrishnan
- Imperial College School of Medicine, Imperial College London, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, Imperial Center of Clinical and Translational Medicine, London, United Kingdom
| | - Thomas Brand
- National Heart and Lung Institute, Imperial College London, Imperial Center of Clinical and Translational Medicine, London, United Kingdom
| |
Collapse
|
7
|
Wang H, Lin X, Lyu G, He S, Dong B, Yang Y. Chromosomal abnormalities in fetuses with congenital heart disease: a meta-analysis. Arch Gynecol Obstet 2023; 308:797-811. [PMID: 36609702 DOI: 10.1007/s00404-023-06910-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 01/01/2023] [Indexed: 01/09/2023]
Abstract
PURPOSE The aim of this meta-analysis was to evaluate the risk of chromosomal abnormalities in fetuses with congenital heart disease (CHD). METHODS Four literature databases were searched until 17th January 2022 using the relevant medical subject heading terms, word variants, and keywords for "congenital heart defect, fetal, and chromosomal abnormalities". The prevalence of overall chromosomal abnormality, aneuploidy, 22q11 deletion, other copy number variants (CNVs), and variants of unknown significance (VOUS) was analyzed. RESULTS 45 studies met the inclusion criteria for the analysis. The pooled proportion of overall chromosomal abnormalities, aneuploidy, 22q11 deletion, and other CNVs in fetuses with CHD was 23% (95% CI: 20-26%), 19% (95% CI, 16-22%), 2% (95% CI, 2-3%), and 4% (95% CI, 3-5%), respectively. The incidence of overall chromosomal abnormalities, aneuploidy, and other CNVs in non-isolated CHD was higher than in isolated CHD, with odds ratios of 3.08, 3.45, and 4.02, respectively. The incidence of overall chromosomal abnormalities in septal defects was higher than in conotruncal defects and other defects, with odds ratios of 1.60 and 3.61, respectively. In addition, the pooled proportion of VOUS in CHD was 4%. CONCLUSION CHD is commonly associated with chromosomal abnormalities. If karyotyping or fluorescence in situ hybridization is normal, chromosomal microarray should be performed to look for submicroscopic abnormalities, especially in fetuses with non-isolated CHD and septal defects.
Collapse
Affiliation(s)
- Huaming Wang
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Zhongshan Load, Quanzhou, Fujian, China
| | - Xi Lin
- Department of Diagnostic Radiology, Fujian Cancer Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Guorong Lyu
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Zhongshan Load, Quanzhou, Fujian, China.
- Collaborative Innovation Center of Maternal and Child Health Service Technology, Quanzhou Medical College, Quanzhou, China.
| | - Shaozheng He
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Zhongshan Load, Quanzhou, Fujian, China
| | - Bingtian Dong
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Zhongshan Load, Quanzhou, Fujian, China
| | - Yiru Yang
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Zhongshan Load, Quanzhou, Fujian, China
| |
Collapse
|
8
|
Adams S, Llorin H, Dobson LJ, Studwell C, Wilkins-Haug L, Guseh S, Gray KJ. Postnatal genetic testing on cord blood for prenatally identified high-probability cases. Prenat Diagn 2023; 43:1120-1131. [PMID: 37036331 DOI: 10.1002/pd.6352] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 04/11/2023]
Abstract
OBJECTIVE To evaluate the utility of postnatal genetic testing on umbilical cord blood (CB) for prenatally identified high-probability fetuses. METHOD CB for genetic testing was offered to individuals who met one of the following criteria: (i) fetal anomaly, (ii) positive non-invasive prenatal screening by cfDNA or biochemical analysis, or (iii) family history. Individuals with diagnostic testing, but not microarray, were also included when recommended by society guidelines. CB was collected at Brigham and Women's and Emerson Hospitals between 2016 and 2021. RESULTS 448 individuals consented for cord blood testing (370 (82.6%) for fetal anomalies, 51 (11.4%) for high-probability cfDNA, and 27 (6.0%) for family history) and a total of 393 (87.7%) samples were analyzed. Genetic testing yielded a diagnosis in 92 (23.4%) neonates by karyotype (n = 37), chromosomal microarray (CMA) (n = 32), and other molecular analysis (n = 23). Testing averaged 10.3 days (range 1-118 days). 68 (73.9%) diagnoses potentially impacted neonatal management. MCC could not be definitively excluded in only 1.4% (6/418) of samples. CONCLUSION Prenatal identification of high-probability fetuses and genetic testing on CB facilitates timely genetic diagnoses and neonatal management. Testing provides reassurance and reduces a postnatal diagnostic odyssey for high-probability neonates.
Collapse
Affiliation(s)
- Sophie Adams
- Center for Fetal Medicine and Reproductive Genetics, Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Hannah Llorin
- Center for Fetal Medicine and Reproductive Genetics, Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Lori J Dobson
- Center for Fetal Medicine and Reproductive Genetics, Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Courtney Studwell
- Center for Fetal Medicine and Reproductive Genetics, Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Louise Wilkins-Haug
- Center for Fetal Medicine and Reproductive Genetics, Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Maternal-Fetal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Stephanie Guseh
- Center for Fetal Medicine and Reproductive Genetics, Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Maternal-Fetal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kathryn J Gray
- Center for Fetal Medicine and Reproductive Genetics, Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Maternal-Fetal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Bonini KE, Thomas-Wilson A, Marathe PN, Sebastin M, Odgis JA, Biase MD, Kelly NR, Ramos MA, Insel BJ, Scarimbolo L, Rehman AU, Guha S, Okur V, Abhyankar A, Phadke S, Nava C, Gallagher KM, Elkhoury L, Edelmann L, Zinberg RE, Abul-Husn NS, Diaz GA, Greally JM, Suckiel SA, Horowitz CR, Kenny EE, Wasserstein M, Gelb BD, Jobanputra V. Identification of copy number variants with genome sequencing: Clinical experiences from the NYCKidSeq program. Clin Genet 2023; 104:210-225. [PMID: 37334874 PMCID: PMC10505482 DOI: 10.1111/cge.14365] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/28/2023] [Accepted: 05/15/2023] [Indexed: 06/21/2023]
Abstract
Copy number variations (CNVs) play a significant role in human disease. While chromosomal microarray has traditionally been the first-tier test for CNV detection, use of genome sequencing (GS) is increasing. We report the frequency of CNVs detected with GS in a diverse pediatric cohort from the NYCKidSeq program and highlight specific examples of its clinical impact. A total of 1052 children (0-21 years) with neurodevelopmental, cardiac, and/or immunodeficiency phenotypes received GS. Phenotype-driven analysis was used, resulting in 183 (17.4%) participants with a diagnostic result. CNVs accounted for 20.2% of participants with a diagnostic result (37/183) and ranged from 0.5 kb to 16 Mb. Of participants with a diagnostic result (n = 183) and phenotypes in more than one category, 5/17 (29.4%) were solved by a CNV finding, suggesting a high prevalence of diagnostic CNVs in participants with complex phenotypes. Thirteen participants with a diagnostic CNV (35.1%) had previously uninformative genetic testing, of which nine included a chromosomal microarray. This study demonstrates the benefits of GS for reliable detection of CNVs in a pediatric cohort with variable phenotypes.
Collapse
Affiliation(s)
- Katherine E. Bonini
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Priya N. Marathe
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Monisha Sebastin
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children’s Hospital at Montefiore/Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | - Jacqueline A. Odgis
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Miranda Di Biase
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children’s Hospital at Montefiore/Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | - Nicole R. Kelly
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children’s Hospital at Montefiore/Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | - Michelle A. Ramos
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY
- Institute for Health Equity Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Beverly J. Insel
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Laura Scarimbolo
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Saurav Guha
- Molecular Diagnostics, New York Genome Center, New York, NY
| | - Volkan Okur
- Molecular Diagnostics, New York Genome Center, New York, NY
| | | | - Shruti Phadke
- Molecular Diagnostics, New York Genome Center, New York, NY
| | - Caroline Nava
- Molecular Diagnostics, New York Genome Center, New York, NY
| | - Katie M. Gallagher
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children’s Hospital at Montefiore/Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | | | | | - Randi E. Zinberg
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Noura S. Abul-Husn
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - George A. Diaz
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - John M. Greally
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children’s Hospital at Montefiore/Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | - Sabrina A. Suckiel
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Carol R. Horowitz
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY
- Institute for Health Equity Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Eimear E. Kenny
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Melissa Wasserstein
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children’s Hospital at Montefiore/Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | - Bruce D. Gelb
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Vaidehi Jobanputra
- Molecular Diagnostics, New York Genome Center, New York, NY
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY
| |
Collapse
|
10
|
Yu X, Tao Y, Liu X, Yu F, Jiang C, Xiao Y, Zhang H, He Y, Ye L, Wang Y, Zhou C, Wang J, Jiang Z, Hong H. The implication of chromosomal abnormalities in the surgical outcomes of Chinese pediatric patients with congenital heart disease. Front Cardiovasc Med 2023; 10:1164577. [PMID: 37293289 PMCID: PMC10244782 DOI: 10.3389/fcvm.2023.1164577] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/05/2023] [Indexed: 06/10/2023] Open
Abstract
Background Copy number variations (CNVs) have been shown to be overrepresented in children with congenital heart disease (CHD). Genetic evaluation of CHD is currently underperformed in China. We sought to determine the occurrence of CNVs in CNV regions with disease-causing potential among a large cohort of Chinese pediatric CHD patients and investigate whether these CNVs could be the important critical modifiers of surgical intervention. Methods CNVs screenings were performed in 1,762 Chinese children who underwent at least one cardiac surgery. CNV status at over 200 CNV locus with disease-causing potential was analyzed with a high-throughput ligation-dependent probe amplification (HLPA) assay. Results We found 378 out of 1,762 samples (21.45%) to have at least one CNV and 2.38% of them were carrying multiple CNVs. The detection rates of ppCNVs (pathogenic and likely pathogenic CNVs) were 9.19% (162/1,762), significantly higher than that of the healthy Han Chinese individuals from The Database of Genomic Variants archive (9.19% vs. 3.63%; P = 0.0012). CHD cases with ppCNVs had a significantly higher proportion of complex surgeries compared to CHD patients with no ppCNVs (62.35% vs. 37.63%, P < 0.001). Duration of cardiopulmonary bypass and aortic cross clamp procedures were significantly longer in CHD cases with ppCNVs (all P < 0.05), while no group differences were identified for complications of surgery and one-month mortality after surgery. The detection rate of ppCNVs in the atrioventricular septal defect (AVSD) subgroup was significantly higher than that in other subgroups (23.10% vs. 9.70%, P = 0.002). Conclusions CNV burden is an important contributor to Chinese children with CHD. Our study demonstrated the robustness and diagnostic efficiency of HLPA method in the genetic screening of CNVs in CHD patients.
Collapse
Affiliation(s)
- Xiafeng Yu
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yu Tao
- Department of Genetics, Genesky Biotechnologies Inc., Shanghai, China
| | - Xu Liu
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Feng Yu
- Department of Genetics, Genesky Biotechnologies Inc., Shanghai, China
| | - Chuan Jiang
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yingying Xiao
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Haibo Zhang
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yongrui He
- Institute of Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lincai Ye
- Institute of Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ying Wang
- Department of Genetics, Genesky Biotechnologies Inc., Shanghai, China
| | - Chunxia Zhou
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children’s Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhengwen Jiang
- Department of Genetics, Genesky Biotechnologies Inc., Shanghai, China
| | - Haifa Hong
- Institute of Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Muñoz H, Enríquez G, Ortega X, Pinto M, Hosiasson S, Germain A, Díaz C, Cortés F. Diagnóstico de cardiopatías congénitas: ecografía de cribado, ecocardiografía fetal y medicina de precisión. REVISTA MÉDICA CLÍNICA LAS CONDES 2023. [DOI: 10.1016/j.rmclc.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
|
12
|
Wójtowicz A, Madetko-Talowska A, Wójtowicz W, Szewczyk K, Huras H, Bik-Multanowski M. Cardiovascular Anomalies among 1005 Fetuses Referred to Invasive Prenatal Testing-A Comprehensive Cohort Study of Associated Chromosomal Aberrations. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10019. [PMID: 36011653 PMCID: PMC9408756 DOI: 10.3390/ijerph191610019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/06/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
This retrospective cohort study comprehensively evaluates cardiovascular anomalies (CVAs) and associated extracardiac structural malformations (ECMs) among 1005 fetuses undergoing invasive prenatal testing at a single tertiary Polish center in the context of chromosomal aberrations detected in them by array comparative genomic hybridization (aCGH) and G-band karyotyping. The results of our study show that CVAs are among the most common malformations detected in fetuses undergoing invasive prenatal testing, as they affected 20% of all cases seen in our department. Septal defects predominated among fetuses with numerical aberrations, while conotruncal defects were the most common findings among fetuses with pathogenic copy number variants (CNVs). In 61% of cases, CVAs were associated with ECMs (the diagnosis was confirmed postnatally or in cases of pregnancy termination by means of autopsy). The most common ECMs were anomalies of the face and neck, followed by skeletal defects. In total, pathogenic chromosomal aberrations were found in 47.5% of CVAs cases, including 38.6% with numerical chromosomal aberrations. Pathogenic CNVs accounted for 14.5% of cases with CVAs and normal karyotype. Thus, our study highlights the importance of assessing the anatomy of the fetus, and of the genetic testing (preferably aCGH) that should be offered in all CVA and ECM cases.
Collapse
Affiliation(s)
- Anna Wójtowicz
- Department of Obstetrics & Perinatology, Jagiellonian University Medical College, 31-501 Kraków, Poland
| | - Anna Madetko-Talowska
- Department of Medical Genetics, Jagiellonian University Medical College, 30-663 Kraków, Poland
| | - Wojciech Wójtowicz
- Information Technology Systems Department, Faculty of Management and Social Communication, Jagiellonian University, 30-348 Kraków, Poland
| | - Katarzyna Szewczyk
- Department of Medical Genetics, Jagiellonian University Medical College, 30-663 Kraków, Poland
| | - Hubert Huras
- Department of Obstetrics & Perinatology, Jagiellonian University Medical College, 31-501 Kraków, Poland
| | | |
Collapse
|
13
|
Poenaru MO, Hamoud BH, Sima RM, Valcea ID, Chicea R, Ples L. Persistent Left Superior Vena Cava Significance in Prenatal Diagnosis—Case Series. J Clin Med 2022; 11:jcm11144020. [PMID: 35887792 PMCID: PMC9316240 DOI: 10.3390/jcm11144020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022] Open
Abstract
The persistent left superior vena cava (PLSVC) is a congenital heart anomaly reported in 0.3–0.5% of the general population and can be associated with congenital heart diseases in up to 8% of cases. Prenatal identification of PLSVC is important to prompt an extended cardiac and extracardiac fetal examination. We retrospectively reevaluated anomaly scans performed in our unit in a 2-year interval according to the national guidelines to evaluate the incidence of PLSVC and its association with prenatal morbidity. In our population, the incidence of PLSVC was 0.31%, and we found a low association with cardiac and extracardiac anomalies. The standard sections (three-vessel and trachea view, four-chamber view and outflow tract’s view) are insufficient to exclude cardiac anomalies whenever PLSVC is found. In our case series, only one newborn required postnatal surgery for total pulmonary vein anomaly, and at 2 years of life all babies had a normal evolution. Prenatal diagnosis of PLSVC can raise counseling issues; therefore, awareness of its good outcome when isolated and need for an extended examination to rule out other anomalies is very important.
Collapse
Affiliation(s)
- Mircea-Octavian Poenaru
- Department of Obstetrics and Gynecology, The ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.-O.P.); (L.P.)
- The “Bucur” Maternity—‘Saint John’ Hospital, 040294 Bucharest, Romania;
| | - Bashar Haj Hamoud
- Department for Gynecology, Obstetrics and Reproductive Medicine, Saarland University Hospital, 66421 Homburg, Germany;
| | - Romina-Marina Sima
- Department of Obstetrics and Gynecology, The ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.-O.P.); (L.P.)
- The “Bucur” Maternity—‘Saint John’ Hospital, 040294 Bucharest, Romania;
- Correspondence:
| | | | - Radu Chicea
- Faculty of Medicine, ‘Lucian Blaga’ University of Sibiu, 550024 Sibiu, Romania;
| | - Liana Ples
- Department of Obstetrics and Gynecology, The ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.-O.P.); (L.P.)
- The “Bucur” Maternity—‘Saint John’ Hospital, 040294 Bucharest, Romania;
| |
Collapse
|
14
|
Hsiao CH, Chen JS, Shiao YM, Chen YJ, Chen CH, Chu WC, Wu YC. Prenatal Diagnosis Using Chromosomal Microarray Analysis in High-Risk Pregnancies. J Clin Med 2022; 11:jcm11133624. [PMID: 35806909 PMCID: PMC9267905 DOI: 10.3390/jcm11133624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 12/03/2022] Open
Abstract
Background: To assess the value of chromosomal microarray analysis (CMA) during the prenatal diagnosis of high-risk pregnancies. Methods: Between January 2016 and November 2021, we included 178 chorionic villi and 859 amniocentesis samples from consecutive cases at a multiple tertiary hospital. Each of these high-risk singleton pregnancies had at least one of the following indications: (1) advanced maternal age (AMA; ≥35 years; 546, 52.7%); (2) fetal structural abnormality on ultrasound (197, 19.0%); (3) high-risk first- or second-trimester Down syndrome screen (189, 18.2%), including increased nuchal translucency (≥3.5 mm; 90, 8.7%); or (4) previous pregnancy, child, or family history (105, 10.1%) affected by chromosomal abnormality or genetic disorder. Both G-banding karyotype analysis and CMA were performed. DNA was extracted directly and examined with oligonucleotide array-based comparative genomic hybridization. Results: Aneuploidies were detected by both G-banding karyotyping and CMA in 42/1037 (4.05%) cases. Among the 979 cases with normal karyotypes, 110 (10.6%) cases had copy number variants (CNVs) in CMA, including 30 (2.9%) cases with reported pathogenic and likely pathogenic CNVs ≥ 400 kb, 37 (3.6%) with nonreported VOUS, benign, or likely benign CNVs ≥ 400 kb, and 43 (4.1%) with nonreported CNVs < 400 kb. Of the 58 (5.6%) cases with aneuploidy rearrangements, 42 (4.1%) were diagnosed by both G-banding karyotyping and CMA; four inversions, six balanced translocations, and six low mosaic rates were not detected with CMA. Conclusions: CMA is an effective first step for the prenatal diagnosis of high-risk pregnancies with fetal structural anomalies found in ultrasonography or upon positive findings.
Collapse
Affiliation(s)
- Ching-Hua Hsiao
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (W.-C.C.); (Y.-C.W.)
- Department of Obstetrics and Gynecology, Taipei City Hospital, Women and Children Campus, Taipei 100, Taiwan;
- Correspondence: or ; Tel.: +886-2-28267025; Fax: +886-2-28210847
| | - Jia-Shing Chen
- School of Medicine for International Students, I-Shou University, Kaohsiung 840, Taiwan;
| | - Yu-Ming Shiao
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 320, Taiwan;
- Union Clinical Laboratory, Taipei 106, Taiwan
| | - Yann-Jang Chen
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Ching-Hsuan Chen
- Department of Obstetrics and Gynecology, Taipei City Hospital, Women and Children Campus, Taipei 100, Taiwan;
| | - Woei-Chyn Chu
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (W.-C.C.); (Y.-C.W.)
| | - Yi-Cheng Wu
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (W.-C.C.); (Y.-C.W.)
- Department of Obstetrics and Gynecology, Ultrasound Center of Taiwan IVF Group, Ton-Yen General Hospital, Zhubei 302, Taiwan
| |
Collapse
|
15
|
Mastromoro G, Khaleghi Hashemian N, Guadagnolo D, Giuffrida MG, Torres B, Bernardini L, Ventriglia F, Piacentini G, Pizzuti A. Chromosomal Microarray Analysis in Fetuses Detected with Isolated Cardiovascular Malformation: A Multicenter Study, Systematic Review of the Literature and Meta-Analysis. Diagnostics (Basel) 2022; 12:diagnostics12061328. [PMID: 35741137 PMCID: PMC9221891 DOI: 10.3390/diagnostics12061328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 12/10/2022] Open
Abstract
Cardiovascular malformations (CVM) represent the most common structural anomalies, occurring in 0.7% of live births. The CVM prenatal suspicion should prompt an accurate investigation with fetal echocardiography and the assessment through genetic counseling and testing. In particular, chromosomal microarray analysis (CMA) allows the identification of copy number variations. We performed a systematic review and meta-analysis of the literature, studying the incremental diagnostic yield of CMA in fetal isolated CVM, scoring yields for each category of heart disease, with the aim of guiding genetic counseling and prenatal management. At the same time, we report 59 fetuses with isolated CVM with normal karyotype who underwent CMA. The incremental CMA diagnostic yield in fetuses with isolated CVM was 5.79% (CI 5.54–6.04), with conotruncal malformations showing the higher detection rate (15.93%). The yields for ventricular septal defects and aberrant right subclavian artery were the lowest (2.64% and 0.66%). Other CVM ranged from 4.42% to 6.67%. In the retrospective cohort, the diagnostic yield was consistent with literature data, with an overall CMA diagnostic yield of 3.38%. CMA in the prenatal setting was confirmed as a valuable tool for investigating the causes of fetal cardiovascular malformations.
Collapse
Affiliation(s)
- Gioia Mastromoro
- Department of Experimental Medicine, Policlinico Umberto I Hospital, Sapienza University of Rome, 00161 Rome, Italy; (N.K.H.); (D.G.); (A.P.)
- Correspondence:
| | - Nader Khaleghi Hashemian
- Department of Experimental Medicine, Policlinico Umberto I Hospital, Sapienza University of Rome, 00161 Rome, Italy; (N.K.H.); (D.G.); (A.P.)
| | - Daniele Guadagnolo
- Department of Experimental Medicine, Policlinico Umberto I Hospital, Sapienza University of Rome, 00161 Rome, Italy; (N.K.H.); (D.G.); (A.P.)
| | - Maria Grazia Giuffrida
- Cytogenetics Unit, Casa Sollievo della Sofferenza Foundation, 71013 San Giovanni Rotondo, Italy; (M.G.G.); (B.T.); (L.B.)
| | - Barbara Torres
- Cytogenetics Unit, Casa Sollievo della Sofferenza Foundation, 71013 San Giovanni Rotondo, Italy; (M.G.G.); (B.T.); (L.B.)
| | - Laura Bernardini
- Cytogenetics Unit, Casa Sollievo della Sofferenza Foundation, 71013 San Giovanni Rotondo, Italy; (M.G.G.); (B.T.); (L.B.)
| | - Flavia Ventriglia
- Department of Pediatrics, Policlinico Umberto I Hospital, Sapienza University of Rome, 00161 Rome, Italy;
- Santa Maria Goretti Hospital, 04100 Latina, Italy
| | - Gerardo Piacentini
- Fetal and Pediatric Cardiology Unit, “San Giovanni Calibita” Fatebenefratelli Isola Tiberina Hospital, 00186 Rome, Italy;
- Neonatology and Neonatal Intensive Care Unit, “San Giovanni Calibita” Fatebenefratelli Isola Tiberina Hospital, 00186 Rome, Italy
| | - Antonio Pizzuti
- Department of Experimental Medicine, Policlinico Umberto I Hospital, Sapienza University of Rome, 00161 Rome, Italy; (N.K.H.); (D.G.); (A.P.)
| |
Collapse
|
16
|
Xing Y, Zhang Y, Chen J, Wu F, Yuan M, Zou G, Yang Y, Zhou F, Zhou J, Sun L. Prenatal diagnosis for fetuses with isolated and non-isolated congenital heart defects using chromosomal microarray and exome sequencing. Prenat Diagn 2022; 42:873-880. [PMID: 35584285 DOI: 10.1002/pd.6168] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 11/07/2022]
Abstract
OBJECTIVE To investigate the use of chromosomal microarray (CMA) and Exome sequencing (ES) in fetuses with congenital heart disease (CHD). METHODS: The Fetal Medicine Unit of Shanghai First Maternity and Infant Hospital records were reviewed to ascertain all cases diagnosed with CHD by level 2 ultrasound examination between 2016 and 2019. Cases were categorized as isolated or associated with other abnormalities or fetal growth restriction. CMA was offered to all cases as a first-line genetic test followed by ES when CMA was non-diagnostic. RESULTS: Of the 586 ascertained, 84 (14.3%) had causative CMA abnormality, of which 8.8% (35/400) were in fetuses with isolated CHD and 26.3% (49/186) in those with other abnormalities. ES was performed in 47 cases with a negative CMA. Causative variants were identified in two (10.5%, 2/19) isolated cases and four(14.3%, 4/28) with other abnormalities. CONCLUSION: Invasive procedures with CMA should be offered in pregnancies complicated by both non-isolated and isolated cardiac abnormalities. When CMA is not diagnostic, ES can add diagnostic value in both groups and should be considered even for fetuses with an isolated CHD This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ya Xing
- Fetal medicine department, Shanghai First Maternity and Infant Hospital, 2699 West Gaoke Road, Shanghai, China
| | - Yun Zhang
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianping Chen
- Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicin, Shanghai, China
| | - Fengyu Wu
- Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicin, Shanghai, China
| | - Meizhen Yuan
- Department of Fetal Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Gang Zou
- Shanghai 1st Maternity and Infant Hospital,Tongji University, Shanghai, China
| | - Yingjun Yang
- Shanghai 1st Maternity and Infant Hospital,Tongji University, Shanghai, China
| | - Fenhe Zhou
- Shanghai 1st Maternity and Infant Hospital,Tongji University, Shanghai, China
| | - Jia Zhou
- Fetal medicine department, Shanghai First Maternity and Infant Hospital, 2699 West Gaoke Road, Shanghai, China
| | - Luming Sun
- Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, 2699 West Gaoke Rd Pudong New District, Shanghai, China
| |
Collapse
|
17
|
Salzer-Sheelo L, Polak U, Barg A, Kahana S, Yacobson S, Agmon-Fishman I, Klein C, Matar R, Rurman-Shahar N, Sagi-Dain L, Basel-Salmon L, Maya I, Sukenik-Halevy R. Prenatal and postnatal chromosomal microarray analysis in 885 cases of various congenital heart defects. Arch Gynecol Obstet 2022; 306:1007-1013. [PMID: 35083553 DOI: 10.1007/s00404-021-06366-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/06/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE This study aimed to evaluate the prevalence of clinically significant (pathogenic and likely pathogenic) variants detected by chromosomal microarray (CMA) tests performed for prenatally and postnatally detected congenital heart defects. METHODS A retrospective evaluation of CMA analyses over a period of four years in a single tertiary medical center was performed. Detection rate of clinically significant variants was calculated in the whole cohort, prenatal vs. postnatal cases, and isolated vs. non-isolated CHD. This rate was compared to previously published control cohorts, and to a theoretical detection rate of noninvasive prenatal testing (NIPS; 5 chromosomes). RESULTS Of the 885 cases of CHD, 111 (12.5%) clinically significant variants were detected, with no significant difference between the 498 prenatal and the 387 postnatal cases (10.8% vs. 14.7%, p = 0.08). In both groups, the detection rate was significantly higher for non-isolated vs. isolated CHD (76/339 = 22.4% vs. 35/546 = 6.4%, respectively, p < 0.05). The detection rate was higher than the background risk in both groups, including cases of postnatal isolated CHD. 44% of abnormal findings in the prenatal setting would be detectable by NIPS. CONCLUSION CMA should be performed for both prenatally and postnatally detected CHD, including postnatal cases of isolated CHD, while NIPS can be considered in specific scenarios.
Collapse
Affiliation(s)
- Liat Salzer-Sheelo
- The Raphael Recanati Genetic Institute, Rabin Medical Center, 49100, Petah Tikva, Israel. .,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Uri Polak
- Pediatric Cardiac Critical Care Unit, Hadassah University Medical Center, Ein Kerem, Jerusalem, Israel.,Pediatric Cardiology, Hadassah University Medical Center, Ein Kerem, Jerusalem, Israel.,The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | | | - Sarit Kahana
- The Raphael Recanati Genetic Institute, Rabin Medical Center, 49100, Petah Tikva, Israel
| | - Shiri Yacobson
- The Raphael Recanati Genetic Institute, Rabin Medical Center, 49100, Petah Tikva, Israel
| | - Ifaat Agmon-Fishman
- The Raphael Recanati Genetic Institute, Rabin Medical Center, 49100, Petah Tikva, Israel
| | - Cochava Klein
- The Raphael Recanati Genetic Institute, Rabin Medical Center, 49100, Petah Tikva, Israel
| | - Reut Matar
- The Raphael Recanati Genetic Institute, Rabin Medical Center, 49100, Petah Tikva, Israel
| | - Noa Rurman-Shahar
- The Raphael Recanati Genetic Institute, Rabin Medical Center, 49100, Petah Tikva, Israel
| | - Lena Sagi-Dain
- Genetics Institute, Carmel Medical Center, Affiliated To the Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Lina Basel-Salmon
- The Raphael Recanati Genetic Institute, Rabin Medical Center, 49100, Petah Tikva, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel.,Pediatric Genetics Unit, Schneider Children's Medical Center, Petah Tikva, Israel
| | - Idit Maya
- The Raphael Recanati Genetic Institute, Rabin Medical Center, 49100, Petah Tikva, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rivka Sukenik-Halevy
- The Raphael Recanati Genetic Institute, Rabin Medical Center, 49100, Petah Tikva, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
18
|
Yang YY, Liu CT, Pai LF, Hu CF, Chen SJ, Hsu WF. Case Report: First Case of Non-restrictive Ventricular Septal Defect With Congestive Heart Failure in a Chinese Han Male Infant Carrying a Class II Chromosome 17p13.3 Microduplication. Front Pediatr 2022; 10:825298. [PMID: 35311053 PMCID: PMC8926061 DOI: 10.3389/fped.2022.825298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Chromosome 17p13.3 microduplication syndrome is considered a multisystem disorder that results in a wide variety of clinical manifestations including dysmorphic facial characteristics, brain structural malformations, developmental restriction, growth restriction, and neurocognitive disorders. The two major classes of chromosome 17p13.3 microduplication, which have different clinical presentations, are associated with specific genetic regions. Among the various known phenotypes, scattered cases with congenital heart disease (CHD) have been reported for both classes of chromosome 17p13.3 microduplication syndrome. Unfortunately, there is insufficient understanding of the correlation between chromosome anomaly induced alterations in gene expression and aberrant cardiac development, and thus early diagnosis of CHD among patients with chromosome 17p13.3 microduplication is difficult without routine prenatal cardiac assessment. One such congenital heart anomalies known to affect a substantial number of newborns worldwide is ventricular septal defect (VSD), which has been found in 17p13.3 microduplication carriers, and seems to sometimes undergo spontaneous closure. We report an unprecedented case of moderate sized perimembranous-outlet VSD and congestive heart failure (CHF) in a Chinese Han male infant with a class II chromosome 17p13.3 microduplication. Despite the fact that cytogenic testing and fetal echocardiography confirmed a 249-Kb chromosome duplication within 17p13.3 that encompassed the PAFAH1B1 gene and showed the presence of VSD during prenatal period, this patient still developed a range of symptoms including sustained prolonged feeding, dyspnea, diaphoresis and retarded growth. A physical examination indicated hepatomegaly and a grade III/VI pan-systolic murmur along the left upper sternal border. Laboratory testing showed a high serum pro-B-type natriuretic peptide (pro-BNP). Imaging studies revealed cardiomegaly and a persistent VSD with related pulmonary stenosis. Since the clinical findings were compatible with CHF, we provided mainline treatment with digoxin, captopril, and furosemide, as well as fluid restriction. Despite sustained poor weight gain, the feeding behavior and the respiratory conditions of the patient improved gradually. This case report and literature review suggest that patients carrying chromosome 17p13.3 microduplication who have VSD may have an increased risk of developing CHF as young infants and hence a comprehensive cardiac evaluation is warranted to allow the early diagnosis and management of any severe heart anomalies.
Collapse
Affiliation(s)
- Yung-Yu Yang
- Department of General Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chun-Ting Liu
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Li-Fan Pai
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Fen Hu
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shyi-Jou Chen
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Wan-Fu Hsu
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
19
|
Prenatal Diagnosis by Array Comparative Genomic Hybridization in Fetuses with Cardiac Abnormalities. Genes (Basel) 2021; 12:genes12122021. [PMID: 34946970 PMCID: PMC8701951 DOI: 10.3390/genes12122021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022] Open
Abstract
Congenital heart defects (CHDs) appear in 8–10 out of 1000 live born newborns and are one of the most common causes of deaths. In fetuses, the congenital heart defects are found even 3–5 times more often. Currently, microarray comparative genomic hybridization (array CGH) is recommended by worldwide scientific organizations as a first-line test in the prenatal diagnosis of fetuses with sonographic abnormalities, especially cardiac defects. We present the results of the application of array CGH in 484 cases with prenatally diagnosed congenital heart diseases by fetal ultrasound scanning (256 isolated CHD and 228 CHD coexisting with other malformations). We identified pathogenic aberrations and likely pathogenic genetic loci for CHD in 165 fetuses and 9 copy number variants (CNVs) of unknown clinical significance. Prenatal array-CGH is a useful method allowing the identification of all unbalanced aberrations (number and structure) with a much higher resolution than the currently applied traditional assessment techniques karyotype. Due to this ability, we identified the etiology of heart defects in 37% of cases.
Collapse
|
20
|
Zhang Z, Hu T, Wang J, Hu R, Li Q, Xiao L, Liao N, Liu Z, Wang H, Liu S. Pregnancy outcomes of fetuses with congenital heart disease after a prenatal diagnosis with chromosome microarray. Prenat Diagn 2021; 42:79-86. [PMID: 34918366 DOI: 10.1002/pd.6078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To evaluate the pregnancy outcomes of fetuses with congenital heart disease (CHD) after chromosome microarray (CMA)-based prenatal diagnosis. METHOD Amniocentesis was performed in 1035 pregnant women carrying fetuses with CHD between September 2014 and December 2019. Chromosomal aberrations in fetuses with CHD were evaluated using CMA. The pregnancy outcomes were followed up from 6 months to 5 years. RESULTS The overall CHD detection rate by CMA was 10.1% (105/1035; 50 fetuses: aneuploidy, 55 fetuses: pathogenic or likely pathogenic copy number variations). Among 1003 fetuses who were followed up, 4, 236, 763, and 18 cases were of miscarriages, pregnancy termination, live births, and postnatal deaths, respectively. Self-healed CHD was observed in 401 (52.6%) fetuses. The pregnancy termination rate of fetuses with chromosomal anomalies was significantly higher than that of fetuses without chromosomal anomalies (93.1% vs. 15.5%, p < 0.001). However, other pregnancy outcomes, including mortality, preterm labor, and low-weight birth rate, were similar between the two groups. CONCLUSION The outcome of CMA is an important factor influencing parents' choice of whether to continue the pregnancy. Self-healing rate of prenatal diagnosed CHD is high. The mortality and morbidity of fetuses with CHD following prenatal CMA testing are relatively low.
Collapse
Affiliation(s)
- Zhu Zhang
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Ting Hu
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Jiamin Wang
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Rui Hu
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Qinqin Li
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Like Xiao
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Na Liao
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Zhushu Liu
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - He Wang
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Shanling Liu
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
21
|
Al-Hamed MH, Kurdi W, Khan R, Tulbah M, AlNemer M, AlSahan N, AlMugbel M, Rafiullah R, Assoum M, Monies D, Shah Z, Rahbeeni Z, Derar N, Hakami F, Almutairi G, AlOtaibi A, Ali W, AlShammasi A, AlMubarak W, AlDawoud S, AlAmri S, Saeed B, Bukhari H, Ali M, Akili R, Alquayt L, Hagos S, Elbardisy H, Akilan A, Almuhana N, AlKhalifah A, Abouelhoda M, Ramzan K, Sayer JA, Imtiaz F. Prenatal exome sequencing and chromosomal microarray analysis in fetal structural anomalies in a highly consanguineous population reveals a propensity of ciliopathy genes causing multisystem phenotypes. Hum Genet 2021; 141:101-126. [PMID: 34853893 DOI: 10.1007/s00439-021-02406-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/26/2021] [Indexed: 12/25/2022]
Abstract
Fetal abnormalities are detected in 3% of all pregnancies and are responsible for approximately 20% of all perinatal deaths. Chromosomal microarray analysis (CMA) and exome sequencing (ES) are widely used in prenatal settings for molecular genetic diagnostics with variable diagnostic yields. In this study, we aimed to determine the diagnostic yield of trio-ES in detecting the cause of fetal abnormalities within a highly consanguineous population. In families with a history of congenital anomalies, a total of 119 fetuses with structural anomalies were recruited and DNA from invasive samples were used together with parental DNA samples for trio-ES and CMA. Data were analysed to determine possible underlying genetic disorders associated with observed fetal phenotypes. The cohort had a known consanguinity of 81%. Trio-ES led to diagnostic molecular genetic findings in 59 fetuses (with pathogenic/likely pathogenic variants) most with multisystem or renal abnormalities. CMA detected chromosomal abnormalities compatible with the fetal phenotype in another 7 cases. Monogenic ciliopathy disorders with an autosomal recessive inheritance were the predominant cause of multisystem fetal anomalies (24/59 cases, 40.7%) with loss of function variants representing the vast majority of molecular genetic abnormalities. Heterozygous de novo pathogenic variants were found in four fetuses. A total of 23 novel variants predicted to be associated with the phenotype were detected. Prenatal trio-ES and CMA detected likely causative molecular genetic defects in a total of 55% of families with fetal anomalies confirming the diagnostic utility of trio-ES and CMA as first-line genetic test in the prenatal diagnosis of multisystem fetal anomalies including ciliopathy syndromes.
Collapse
Affiliation(s)
- Mohamed H Al-Hamed
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, MBC# 26, P. O. Box 3354, Riyadh, Saudi Arabia.
- Saudi Diagnostics Laboratory, KFSHI, P.O.BOX 6802, Riyadh, 12311, Saudi Arabia.
| | - Wesam Kurdi
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Rubina Khan
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Maha Tulbah
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Maha AlNemer
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Nada AlSahan
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Maisoon AlMugbel
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Rafiullah Rafiullah
- Saudi Diagnostics Laboratory, KFSHI, P.O.BOX 6802, Riyadh, 12311, Saudi Arabia
| | - Mirna Assoum
- Saudi Diagnostics Laboratory, KFSHI, P.O.BOX 6802, Riyadh, 12311, Saudi Arabia
| | - Dorota Monies
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, MBC# 26, P. O. Box 3354, Riyadh, Saudi Arabia
| | - Zeeshan Shah
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, MBC# 26, P. O. Box 3354, Riyadh, Saudi Arabia
| | - Zuhair Rahbeeni
- Medical Genetics Department, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, Saudi Arabia
| | - Nada Derar
- Medical Genetics Department, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, Saudi Arabia
| | - Fahad Hakami
- King Abdulaziz Medical City/King Saud bin Abdulaziz University for Health Science, Jeddah, Saudi Arabia
| | - Gawaher Almutairi
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Afaf AlOtaibi
- Saudi Diagnostics Laboratory, KFSHI, P.O.BOX 6802, Riyadh, 12311, Saudi Arabia
| | - Wafaa Ali
- Saudi Diagnostics Laboratory, KFSHI, P.O.BOX 6802, Riyadh, 12311, Saudi Arabia
| | - Amal AlShammasi
- Saudi Diagnostics Laboratory, KFSHI, P.O.BOX 6802, Riyadh, 12311, Saudi Arabia
| | - Wardah AlMubarak
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Samia AlDawoud
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Saja AlAmri
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Bashayer Saeed
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Hanifa Bukhari
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Mohannad Ali
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Rana Akili
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, MBC# 26, P. O. Box 3354, Riyadh, Saudi Arabia
| | - Laila Alquayt
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, MBC# 26, P. O. Box 3354, Riyadh, Saudi Arabia
| | - Samia Hagos
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, MBC# 26, P. O. Box 3354, Riyadh, Saudi Arabia
| | - Hadeel Elbardisy
- Saudi Diagnostics Laboratory, KFSHI, P.O.BOX 6802, Riyadh, 12311, Saudi Arabia
| | - Asma Akilan
- Saudi Diagnostics Laboratory, KFSHI, P.O.BOX 6802, Riyadh, 12311, Saudi Arabia
| | - Nora Almuhana
- Saudi Diagnostics Laboratory, KFSHI, P.O.BOX 6802, Riyadh, 12311, Saudi Arabia
| | - Abrar AlKhalifah
- Saudi Diagnostics Laboratory, KFSHI, P.O.BOX 6802, Riyadh, 12311, Saudi Arabia
| | - Mohamed Abouelhoda
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, MBC# 26, P. O. Box 3354, Riyadh, Saudi Arabia
| | - Khushnooda Ramzan
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, MBC# 26, P. O. Box 3354, Riyadh, Saudi Arabia
| | - John A Sayer
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
- Renal Services, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE7 7DN, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle University, Tyne and Wear, Newcastle upon Tyne, NE4 5PL, UK
| | - Faiqa Imtiaz
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, MBC# 26, P. O. Box 3354, Riyadh, Saudi Arabia.
- Saudi Diagnostics Laboratory, KFSHI, P.O.BOX 6802, Riyadh, 12311, Saudi Arabia.
| |
Collapse
|
22
|
Atli EI, Atli E, Yalcintepe S, Demir S, Kalkan R, Akurut C, Ozen Y, Gurkan H. Investigation of Genetic Alterations in Congenital Heart Diseases in Prenatal Period. Glob Med Genet 2021; 9:29-33. [PMID: 35169781 PMCID: PMC8837410 DOI: 10.1055/s-0041-1736566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/09/2021] [Indexed: 11/09/2022] Open
Abstract
The prenatal diagnosis of congenital heart disease (CHD) is important because of mortality risk. The onset of CHD varies, and depending on the malformation type, the risk of aneuploidy is changed. To identify possible genetic alterations in CHD, G-banding, chromosomal microarray or if needed DNA mutation analysis and direct sequence analysis should be planned. In present study, to identify genetic alterations, cell culture, karyotype analysis, and single nucleotide polymorphism, array analyses were conducted on a total 950 samples. Interventional prenatal genetic examination was performed on 23 (2, 4%, 23/950) fetal CHD cases. Chromosomal abnormalities were detected in 5 out of 23 cases (21, 7%). Detected chromosomal abnormalities were 10q23.2 deletion, trisomy 18, 8p22.3-p23.2 deletion, 8q21.3-q24.3 duplication, 11q24.2q24.5 (9 Mb) deletion, and 8p22p12 (16.8 Mb) deletion. Our study highlights the importance of genetic testing in CHD.
Collapse
Affiliation(s)
- Emine Ikbal Atli
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Engin Atli
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Sinem Yalcintepe
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Selma Demir
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Rasime Kalkan
- Department of Medical Genetics, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - Cisem Akurut
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Yasemin Ozen
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Hakan Gurkan
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| |
Collapse
|
23
|
Filges I, Miny P, Holzgreve W, Tercanli S. How genomics is changing the practice of prenatal testing. J Perinat Med 2021; 49:1003-1010. [PMID: 34214293 DOI: 10.1515/jpm-2021-0220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 05/20/2021] [Indexed: 11/15/2022]
Abstract
New genomic laboratory technology namely microarrays and high throughput sequencing (HTS) as well as a steady progress in sonographic image capture and processing have changed the practice of prenatal diagnosis during the last decade fundamentally. Pregnancies at high risk for common trisomies are reliably identified by non-invasive prenatal testing (NIPT) and expert sonography has greatly improved the assessment of the fetal phenotype. Preconceptional comprehensive carrier screening using HTS is available for all parents, if they should wish to do so. A definite fetal diagnosis, however, will still require invasive testing for most conditions. Chromosomal microarrays (CMA) have greatly enhanced the resolution in the detection of chromosome anomalies and other causal copy number variations (CNV). Gene panel or whole exome sequencing (WES) is becoming the routine follow up of many anomalies detected by ultrasound after CNVs have been excluded. The benefits and limitations of the various screening as well as diagnostic options are perceived as complex by many who find it challenging to cope with the need for immediate choices. The communication of facts to ensure an informed decision making is obviously a growing challenge with the advent of the new genomic testing options. This contribution provides an overview of the current practice and policies in Switzerland.
Collapse
Affiliation(s)
- Isabel Filges
- Institut für Medizinische Genetik und Pathologie and Departement Klinische Forschung, Universitätsspital Basel, Basel, Switzerland
| | - Peter Miny
- Institut für Medizinische Genetik und Pathologie, Universitätsspital Basel, Basel, Switzerland
| | | | | |
Collapse
|
24
|
Mone F, Eberhardt RY, Hurles ME, Mcmullan DJ, Maher ER, Lord J, Chitty LS, Dempsey E, Homfray T, Giordano JL, Wapner RJ, Sun L, Sparks TN, Norton ME, Kilby MD. Fetal hydrops and the Incremental yield of Next-generation sequencing over standard prenatal Diagnostic testing (FIND) study: prospective cohort study and meta-analysis. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2021; 58:509-518. [PMID: 33847422 PMCID: PMC8487902 DOI: 10.1002/uog.23652] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 05/30/2023]
Abstract
OBJECTIVE To determine the incremental yield of exome sequencing (ES) over chromosomal microarray analysis (CMA) or karyotyping in prenatally diagnosed non-immune hydrops fetalis (NIHF). METHODS A prospective cohort study (comprising an extended group of the Prenatal Assessment of Genomes and Exomes (PAGE) study) was performed which included 28 cases of prenatally diagnosed NIHF undergoing trio ES following negative CMA or karyotyping. These cases were combined with data from a systematic review of the literature. MEDLINE, EMBASE, CINAHL and ClinicalTrials.gov databases were searched electronically (January 2000 to October 2020) for studies reporting on the incremental yield of ES over CMA or karyotyping in fetuses with prenatally detected NIHF. Inclusion criteria for the systematic review were: (i) at least two cases of NIHF undergoing sequencing; (ii) testing initiated based on prenatal ultrasound-based phenotype; and (iii) negative CMA or karyotyping result. The incremental diagnostic yield of ES was assessed in: (i) all cases of NIHF; (ii) isolated NIHF; (iii) NIHF associated with an additional fetal structural anomaly; and (iv) NIHF according to severity (i.e. two vs three or more cavities affected). RESULTS In the extended PAGE study cohort, the additional diagnostic yield of ES over CMA or karyotyping was 25.0% (7/28) in all NIHF cases, 21.4% (3/14) in those with isolated NIHF and 28.6% (4/14) in those with non-isolated NIHF. In the meta-analysis, the pooled incremental yield based on 21 studies (306 cases) was 29% (95% CI, 24-34%; P < 0.00001; I2 = 0%) in all NIHF, 21% (95% CI, 13-30%; P < 0.00001; I2 = 0%) in isolated NIHF and 39% (95% CI, 30-49%; P < 0.00001; I2 = 1%) in NIHF associated with an additional fetal structural anomaly. In the latter group, congenital limb contractures were the most prevalent additional structural anomaly associated with a causative pathogenic variant, occurring in 17.3% (19/110) of cases. The incremental yield did not differ significantly according to hydrops severity. The most common genetic disorders identified were RASopathies, occurring in 30.3% (27/89) of cases with a causative pathogenic variant, most frequently due to a PTPN11 variant (44.4%; 12/27). The predominant inheritance pattern in causative pathogenic variants was autosomal dominant in monoallelic disease genes (57.3%; 51/89), with most being de novo (86.3%; 44/51). CONCLUSIONS Use of prenatal next-generation sequencing in both isolated and non-isolated NIHF should be considered in the development of clinical pathways. Given the wide range of potential syndromic diagnoses and heterogeneity in the prenatal phenotype of NIHF, exome or whole-genome sequencing may prove to be a more appropriate testing approach than a targeted gene panel testing strategy. © 2021 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- F Mone
- Institute of Metabolism and Systems Research, College of Medical & Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
- Fetal Medicine Centre, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | | | | | - D J Mcmullan
- West Midlands Regional Genetics Service, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - E R Maher
- Department of Medical Genetics, University of Cambridge, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge, UK
- Department of Clinical Genetics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - J Lord
- Wellcome Sanger Institute, Hinxton, UK
| | - L S Chitty
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, UK
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - E Dempsey
- Molecular and Clinical Sciences, St George's University of London, London, UK
| | - T Homfray
- SW Thames Regional Genetics Department, St George's University Hospitals NHS Foundation Trust, London, UK
| | - J L Giordano
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Columbia University Vagelos Medical Center, New York, NY, USA
| | - R J Wapner
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Columbia University Vagelos Medical Center, New York, NY, USA
| | - L Sun
- Fetal Medicine Unit and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital of Tongji University, Shanghai, China
| | - T N Sparks
- Center for Maternal-Fetal Precision Medicine, Division of Maternal-Fetal Medicine, University of California, San Francisco, CA, USA
| | - M E Norton
- Center for Maternal-Fetal Precision Medicine, Division of Maternal-Fetal Medicine, University of California, San Francisco, CA, USA
| | - M D Kilby
- Institute of Metabolism and Systems Research, College of Medical & Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
- Fetal Medicine Centre, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
25
|
Ison HE, Griffin EL, Parrott A, Shikany AR, Meyers L, Thomas MJ, Syverson E, Demo EM, Fitzgerald KK, Fitzgerald-Butt S, Ziegler KL, Schartman AF, Stone KM, Helm BM. Genetic counseling for congenital heart disease - Practice resource of the national society of genetic counselors. J Genet Couns 2021; 31:9-33. [PMID: 34510635 DOI: 10.1002/jgc4.1498] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 08/02/2021] [Accepted: 08/02/2021] [Indexed: 12/11/2022]
Abstract
Congenital heart disease (CHD) is an indication which spans multiple specialties across various genetic counseling practices. This practice resource aims to provide guidance on key considerations when approaching counseling for this particular indication while recognizing the rapidly changing landscape of knowledge within this domain. This resource was developed with consensus from a diverse group of certified genetic counselors utilizing literature relevant for CHD genetic counseling practice and is aimed at supporting genetic counselors who encounter this indication in their practice both pre- and postnatally.
Collapse
Affiliation(s)
- Hannah E Ison
- Stanford Center for Inherited Cardiovascular Disease, Stanford Health Care, Stanford, California, USA
| | - Emily L Griffin
- Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
| | | | - Amy R Shikany
- Cincinnati Children's Hospital Medical Center, The Heart Institute, Cincinnati, Ohio, USA
| | | | - Matthew J Thomas
- Department of Pediatrics, Division of Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Erin Syverson
- Department of Pediatrics, Division of Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Erin M Demo
- Sibley Heart Center Cardiology at Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Kristi K Fitzgerald
- Nemours Cardiac Center, Alfred I. DuPont Hospital for Children, Wilmington, Delaware, USA
| | - Sara Fitzgerald-Butt
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | - Allison F Schartman
- Department of Obstetrics & Gynecology, Division of Maternal Fetal Medicine, Indiana University Health, Indianapolis, Indiana, USA
| | - Kristyne M Stone
- Department of Obstetrics & Gynecology, Division of Maternal Fetal Medicine, Indiana University Health, Indianapolis, Indiana, USA
| | - Benjamin M Helm
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Epidemiology, Indiana University Fairbanks School of Public Health, Indianapolis, Indiana, USA
| |
Collapse
|
26
|
Findley TO, Crain AK, Mahajan S, Deniwar A, Davis J, Solis Zavala AS, Corno AF, Rodriguez-Buritica D. Congenital heart defects and copy number variants associated with neurodevelopmental impairment. Am J Med Genet A 2021; 188:13-23. [PMID: 34472185 DOI: 10.1002/ajmg.a.62484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/02/2021] [Accepted: 08/05/2021] [Indexed: 01/21/2023]
Abstract
A genetic etiology is identifiable in 20%-30% of patients with congenital heart defects (CHD). Chromosomal microarray analysis (CMA) can detect copy number variants (CNV) associated with CHD. In previous studies, the diagnostic yield of postnatal CMA testing ranged from 4% to 28% in CHD patients. However, incidental pathogenic CNV and variants of unknown significance are often discovered without any known association with CHD. The study objective was to describe the rate of pathogenic CNV associated with neurodevelopmental impairment (NDI) and compare clinical findings in CHD neonates with genetic results. A single-center retrospective review was performed on all consecutive newborns with CHD admitted to a tertiary neonatal intensive care unit from January 2013 to March 2019 (n = 525). CHD phenotypes were classified as per the National Birth Defect Prevention Study. CMA detected pathogenic CNV in 21.3% (61/287) of neonates, and karyotype or fluorescence in situ hybridization detected aneuploidies in an additional 11% of the overall cohort (58/525). Atrioventricular septal defects and conotruncal defects showed the highest diagnostic yield by CMA (28.6% and 27.2%, respectively). Among neonates with pathogenic CNV on CMA, 78.7% (48/61) were associated with NDI. Neonates with pathogenic CNV were smaller in length at birth compared to those with benign CNV or variants of unknown significance (p = 0.005) and were more likely to be discharged with an enteral feeding tube (p = 0.027). CMA can discover genetic variants associated with NDI and are common in neonates with CHD. Genetic testing in the neonatal period can heighten awareness of genetic risk for NDI.
Collapse
Affiliation(s)
- Tina O Findley
- Department of Pediatrics, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Alyssa K Crain
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Smridhi Mahajan
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ahmed Deniwar
- Department of Pediatrics, University of Texas Health Science Center at Houston, Houston, Texas, USA.,Children's Heart Institute, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jessica Davis
- Department of Pediatrics, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ana S Solis Zavala
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Antonio F Corno
- Children's Heart Institute, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - David Rodriguez-Buritica
- Department of Pediatrics, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
27
|
The yield of chromosomal microarray in pregnancies with congenital cardiac defects and normal noninvasive prenatal screening. Am J Obstet Gynecol 2021; 225:333.e1-333.e14. [PMID: 34052193 DOI: 10.1016/j.ajog.2021.05.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Evidence comparing the yield of chromosomal microarray analysis to noninvasive prenatal screening in pregnancies with congenital heart anomalies is currently limited. OBJECTIVE This study aimed to examine the residual risk of clinically significant chromosomal microarray analysis results in fetuses with congenital heart defects by its various subtypes following a normal noninvasive prenatal screening. STUDY DESIGN Using a population-based, countrywide computerized database, we retrieved the reports of all pregnancies undergoing chromosomal microarray analysis because of congenital heart defects through the years 2013-2019. We examined the risk of clinically significant (pathogenic and likely pathogenic) chromosomal microarray analysis results and compared it with the results of a local cohort of low-risk pregnancies. Of 5541 fetuses, 78 (1.4%) showed abnormal results. The residual risk of abnormal chromosomal microarray analysis results was calculated using several options-trisomies 21, 18, and 13; sex chromosome aneuploidies; 22q11.2 deletion, and deletions and duplications of at least 10 MB in size (genome-wide noninvasive prenatal screening)-following the exclusion of theoretically detectable noninvasive prenatal screening anomalies. RESULTS Of the 1728 fetuses with congenital heart defects, 93 (5.4%) showed clinically significant chromosomal microarray analysis results (relative risk, 2.7; 95% confidence interval, 2.3-3.1). The result of pregnancies with fetuses with congenital heart defects was compared with the results of the control population. Unique variants were found in 15 pregnancies (16.1%). The detection rate of noninvasive prenatal screening in isolated congenital heart defects varied from 1.0% (aimed at 3 common trisomies) to 2.2% (aimed at 5 common aneuploidies and 22q11.2 deletion) using noninvasive prenatal screening. In nonisolated congenital heart defects, the noninvasive prenatal screening detection rates ranged from 7.8% (aimed at common autosomal trisomies) to 9.2% using genome-wide noninvasive prenatal screening. The residual risk of clinically significant chromosomal microarray analysis results following normal noninvasive prenatal screening ranged from 2.0% to 2.8% in isolated congenital heart defects and 4.5% to 5.9% in nonisolated cases and was significantly higher than those of the control cohort in all noninvasive prenatal screening options. In addition, the residual risk following noninvasive prenatal screening aimed at chromosomes 13, 18, 21, X, and Y was significantly higher than those of the control cohort for most specific congenital heart defect subtypes, except for ventricular septal defects and aberrant right subclavian artery. CONCLUSION The residual risk of clinically significant chromosomal microarray analysis results in pregnancies with fetuses with congenital heart defects following normal noninvasive prenatal screening was higher than those in pregnancies with normal ultrasound in most isolated and nonisolated congenital heart defect subtypes. This information should be taken into account by obstetricians and genetic counselors when considering the option of diagnostic testing.
Collapse
|
28
|
Qiao F, Wang Y, Zhang C, Zhou R, Wu Y, Wang C, Meng L, Mao P, Cheng Q, Luo C, Hu P, Xu Z. Comprehensive evaluation of genetic variants using chromosomal microarray analysis and exome sequencing in fetuses with congenital heart defect. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2021; 58:377-387. [PMID: 33142350 DOI: 10.1002/uog.23532] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE To evaluate comprehensively, using chromosomal microarray analysis (CMA) and exome sequencing (ES), the prevalence of chromosomal abnormalities and sequence variants in unselected fetuses with congenital heart defect (CHD) and to evaluate the potential diagnostic yields of CMA and ES for different CHD subgroups. METHODS This was a study of 360 unselected singleton fetuses with CHD detected by echocardiography, referred to our department for genetic testing between February 2018 and December 2019. We performed CMA, as a routine test for aneuploidy and copy number variations (CNV), and then, in cases without aneuploidy or pathogenic CNV on CMA, we performed ES. RESULTS Overall, positive genetic diagnoses were made in 84 (23.3%) fetuses: chromosomal abnormalities were detected by CMA in 60 (16.7%) and sequence variants were detected by ES in a further 24 (6.7%) cases. The detection rate of pathogenic and likely pathogenic genetic variants in fetuses with non-isolated CHD (32/83, 38.6%) was significantly higher than that in fetuses with isolated CHD (52/277, 18.8%) (P < 0.001), this difference being due mainly to the difference in frequency of aneuploidy between the two groups. The prevalence of a genetic defect was highest in fetuses with an atrioventricular septal defect (36.8%), ventricular septal defect with or without atrial septal defect (28.4%), conotruncal defect (22.2%) or right ventricular outflow tract obstruction (20.0%). We also identified two novel missense mutations (c.2447G>C, p.Arg816Pro; c.1171C>T, p.Arg391Cys) and a new phenotype caused by variants in PLD1. CONCLUSIONS Chromosomal abnormalities were identified in 16.7% and sequence variants in a further 6.7% of fetuses with CHD. ES should be offered to all pregnant women with a CHD fetus without chromosomal abnormality or pathogenic CNV identified by CMA, regardless of whether the CHD is isolated. © 2020 International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- F Qiao
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Y Wang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - C Zhang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - R Zhou
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Y Wu
- Department of Ultrasound, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - C Wang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - L Meng
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - P Mao
- Personnel Division, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Q Cheng
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - C Luo
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - P Hu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Z Xu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| |
Collapse
|
29
|
Wu X, Li Y, Su L, Xie X, Cai M, Lin N, Huang H, Lin Y, Xu L. Chromosomal Microarray Analysis for the Fetuses with Aortic Arch Abnormalities and Normal Karyotype. Mol Diagn Ther 2021; 24:611-619. [PMID: 32651932 PMCID: PMC7497298 DOI: 10.1007/s40291-020-00474-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Aortic arch abnormalities (AAA) are abnormal embryologic developments of the aorta and its branches. Their outcomes often depend on their association with other congenital diseases and genetic testing results. Objective This study aimed to evaluate the yield of chromosomal microarray analysis (CMA) in fetuses with different patterns of AAA and normal karyotype. Methods Data from 158 pregnancies referred for prenatal CMA testing due to fetal AAA were obtained between April 2016 and April 2019. Fetuses with isolated AAA, AAA accompanied by soft ultrasound markers, and AAA with other ultrasound malformations were classified into groups A, B, and C, respectively. Cases with detectable karyotype aberrations were excluded from the study. Results Twenty cases (12.7%) of submicroscopic anomalies were detected in 158 cases with normal karyotype, comprising 16 cases (10.1%) of clinically significant variants, two cases (1.3%) of variants of unknown significance, and two variants (1.3%) that were likely benign. Microdeletion of 22q11.2 accounted for 25% (4/16) of the clinically significant variants. The overall incremental yields by CMA in group A, group B, and group C were 1.8%, 2.3%, and 24.1%, respectively. Except for double aortic arch, the incremental yield of clinical significant findings for each type of AAA in group C was much higher than that in group A and group B. In group A, a clinically significant variant was only detected in one fetus with right aortic arch (RAA) (1.8%, 1/57). Conclusions In addition to 22q11.2 microdeletion, many other clinically significant submicroscopic variants are present in fetuses with AAA, especially in fetuses with other ultrasound malformations. Although CMA is always recommended in the presence of any malformation in many countries, our results suggest insufficient evidence to recommend CMA in fetuses with isolated AAA, except for isolated RAA.
Collapse
Affiliation(s)
- Xiaoqing Wu
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Ying Li
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Linjuan Su
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Xiaorui Xie
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Meiying Cai
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Na Lin
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Hailong Huang
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Yuan Lin
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Liangpu Xu
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
30
|
Findley TO, Northrup H. The current state of prenatal detection of genetic conditions in congenital heart defects. Transl Pediatr 2021; 10:2157-2170. [PMID: 34584888 PMCID: PMC8429866 DOI: 10.21037/tp-20-315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/05/2020] [Indexed: 11/06/2022] Open
Abstract
The incidence of congenital heart defect (CHD) has increased over the past fifty years, partly attributed to routine fetal anatomical examination by sonography during obstetric care and improvements in ultrasound technology and technique. Fetal findings on ultrasound in addition to maternal biomarkers are the backbone of first- and second-trimester screening for common genetic conditions, namely aneuploidy. Since the introduction of non-invasive prenatal testing (NIPT) using next-generation sequencing to sequence cell-free fetal DNA, the detection rate of common trisomies as well as sex chromosomal aneuploidies have markedly increased. As the use of NIPT continues to broaden, the best means of incorporating NIPT into prenatal care is less clear and complicated by misunderstanding of the limitations and non-diagnostic role of NIPT by clinicians and families. In other advancements in prenatal genetic testing, recommendations on the role of chromosomal microarray (CMA) for prenatal diagnosis has led to its increasing use to identify genetic conditions in fetuses diagnosed with CHD. Lastly, as whole exome sequencing (WES) becomes more available and affordable, the next clinical application of next-generation sequencing in prenatal diagnostic testing is on the horizon. While newer genetic tests may provide answers in terms of genetic diagnosis, even more questions will likely ensue for clinicians, researchers, and parents. The objective of this review is to provide the perspective of the evolution of maternal and fetal obstetric care against the backdrop of advancing genetic technology and its impact on families and clinicians.
Collapse
Affiliation(s)
- Tina O Findley
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hope Northrup
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
31
|
Bedei I, Wolter A, Weber A, Signore F, Axt-Fliedner R. Chances and Challenges of New Genetic Screening Technologies (NIPT) in Prenatal Medicine from a Clinical Perspective: A Narrative Review. Genes (Basel) 2021; 12:501. [PMID: 33805390 PMCID: PMC8065512 DOI: 10.3390/genes12040501] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/26/2022] Open
Abstract
In 1959, 63 years after the death of John Langdon Down, Jérôme Lejeune discovered trisomy 21 as the genetic reason for Down syndrome. Screening for Down syndrome has been applied since the 1960s by using maternal age as the risk parameter. Since then, several advances have been made. First trimester screening, combining maternal age, maternal serum parameters and ultrasound findings, emerged in the 1990s with a detection rate (DR) of around 90-95% and a false positive rate (FPR) of around 5%, also looking for trisomy 13 and 18. With the development of high-resolution ultrasound, around 50% of fetal anomalies are now detected in the first trimester. Non-invasive prenatal testing (NIPT) for trisomy 21, 13 and 18 is a highly efficient screening method and has been applied as a first-line or a contingent screening approach all over the world since 2012, in some countries without a systematic screening program. Concomitant with the rise in technology, the possibility of screening for other genetic conditions by analysis of cfDNA, such as sex chromosome anomalies (SCAs), rare autosomal anomalies (RATs) and microdeletions and duplications, is offered by different providers to an often not preselected population of pregnant women. Most of the research in the field is done by commercial providers, and some of the tests are on the market without validated data on test performance. This raises difficulties in the counseling process and makes it nearly impossible to obtain informed consent. In parallel with the advent of new screening technologies, an expansion of diagnostic methods has begun to be applied after invasive procedures. The karyotype has been the gold standard for decades. Chromosomal microarrays (CMAs) able to detect deletions and duplications on a submicroscopic level have replaced the conventional karyotyping in many countries. Sequencing methods such as whole exome sequencing (WES) and whole genome sequencing (WGS) tremendously amplify the diagnostic yield in fetuses with ultrasound anomalies.
Collapse
Affiliation(s)
- Ivonne Bedei
- Department of Prenatal Medicine and Fetal Therapy, Justus Liebig University Giessen, 35392 Giessen, Germany; (A.W.); (R.A.-F.)
| | - Aline Wolter
- Department of Prenatal Medicine and Fetal Therapy, Justus Liebig University Giessen, 35392 Giessen, Germany; (A.W.); (R.A.-F.)
| | - Axel Weber
- Institute of Human Genetics, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Fabrizio Signore
- Department of Obstetrics and Gynecology, Opedale S. Eugenio, 00144 Rome, Italy;
| | - Roland Axt-Fliedner
- Department of Prenatal Medicine and Fetal Therapy, Justus Liebig University Giessen, 35392 Giessen, Germany; (A.W.); (R.A.-F.)
| |
Collapse
|
32
|
Huang J, Deng X, Wang Y, Tang N, Zeng D. Analysis of Copy Number Variations by Low-Depth Whole-Genome Sequencing in Fetuses with Congenital Cardiovascular Malformations. Cytogenet Genome Res 2021; 160:643-649. [PMID: 33647914 DOI: 10.1159/000512605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/27/2020] [Indexed: 11/19/2022] Open
Abstract
Congenital cardiovascular malformations (CVMs) due to genomic mutations bring a greater risk of morbidity and comorbidity and increase the risks related to heart surgery. However, reports on CVMs induced by genomic mutations based on actual clinical data are still limited. In this study, 181 fetuses were screened by fetal echocardiography for prenatal diagnosis of congenital heart disease, including 146 cases without ultrasound extracardiac findings (Group A) and 35 cases with ultrasound extracardiac findings (Group B). All cases were analyzed by clinical data, karyotyping, and low-depth whole-genome sequencing. The rates of chromosomal abnormalities in Groups A and B were 4.8% (7/146) and 37.1% (13/35), respectively. There was a significant difference in the incidence of chromosomal abnormalities between Groups A and B (p < 0.001). In Group A, CNV-seq identified copy number variations (CNVs) in an additional 9.6% (14/146) of cases with normal karyotypes, including 7 pathogenic CNVs and 7 variations of uncertain clinical significance. In Group B, one pathogenic CNV was identified in a case with normal karyotype. Chromosomal abnormality is one of the most common causes of CVM with extracardiac defects. Low-depth whole-genome sequencing could effectively become a first approach for CNV diagnosis in fetuses with CVMs.
Collapse
Affiliation(s)
- Jiwei Huang
- Central Laboratory/Biobank, Liuzhou Maternal and Child Healthcare Hospital, Liuzhou, China
| | - Xine Deng
- Department of Perinatal Healthcare, Liuzhou Maternal and Child Healthcare Hospital, Liuzhou, China
| | - Yuanliu Wang
- Department of Perinatal Healthcare, Liuzhou Maternal and Child Healthcare Hospital, Liuzhou, China
| | - Ning Tang
- Central Laboratory/Biobank, Liuzhou Maternal and Child Healthcare Hospital, Liuzhou, China
| | - Dingyuan Zeng
- Department of Obstetrics and Gynecology, Liuzhou Maternal and Child Healthcare Hospital, Liuzhou, China,
| |
Collapse
|
33
|
Lee JY, Kwon JY, Na S, Choe SA, Seol HJ, Kim M, Kim MA, Park CW, Kim K, Ryu HM, Hwang HS, Shim JY. Clinical Practice Guidelines for Prenatal Aneuploidy Screening and Diagnostic Testing from Korean Society of Maternal-Fetal Medicine: (2) Invasive Diagnostic Testing for Fetal Chromosomal Abnormalities. J Korean Med Sci 2021; 36:e26. [PMID: 33496085 PMCID: PMC7834898 DOI: 10.3346/jkms.2021.36.e26] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/06/2020] [Indexed: 11/20/2022] Open
Abstract
The Korean Society of Maternal Fetal Medicine proposed the first Korean guideline on prenatal aneuploidy screening and diagnostic testing, in April 2019. The clinical practice guideline (CPG) was developed for Korean women using an adaptation process based on good-quality practice guidelines, previously developed in other countries, on prenatal screening and invasive diagnostic testing for fetal chromosome abnormalities. We reviewed current guidelines and developed a Korean CPG on invasive diagnostic testing for fetal chromosome abnormalities according to the adaptation process. Recommendations for selected 11 key questions are: 1) Considering the increased risk of fetal loss in invasive prenatal diagnostic testing for fetal genetic disorders, it is not recommended for all pregnant women aged over 35 years. 2) Because early amniocentesis performed before 14 weeks of pregnancy increases the risk of fetal loss and malformation, chorionic villus sampling (CVS) is recommended for pregnant women who will undergo invasive prenatal diagnostic testing for fetal genetic disorders in the first trimester of pregnancy. However, CVS before 9 weeks of pregnancy also increases the risk of fetal loss and deformity. Thus, CVS is recommended after 9 weeks of pregnancy. 3) Amniocentesis is recommended to distinguish true fetal mosaicism from confined placental mosaicism. 4) Anti-immunoglobulin should be administered within 72 hours after the invasive diagnostic testing. 5) Since there is a high risk of vertical transmission, an invasive prenatal diagnostic testing is recommended according to the clinician's discretion with consideration of the condition of the pregnant woman. 6) The use of antibiotics is not recommended before or after an invasive diagnostic testing. 7) The chromosomal microarray test as an alternative to the conventional cytogenetic test is not recommended for all pregnant women who will undergo an invasive diagnostic testing. 8) Amniocentesis before 14 weeks of gestation is not recommended because it increases the risk of fetal loss and malformation. 9) CVS before 9 weeks of gestation is not recommended because it increases the risk of fetal loss and malformation. 10) Although the risk of fetal loss associated with invasive prenatal diagnostic testing (amniocentesis and CVS) may vary based on the proficiency of the operator, the risk of fetal loss due to invasive prenatal diagnostic testing is higher in twin pregnancies than in singleton pregnancies. 11) When a monochorionic twin is identified in early pregnancy and the growth and structure of both fetuses are consistent, an invasive prenatal diagnostic testing can be performed on one fetus alone. However, an invasive prenatal diagnostic testing is recommended for each fetus in cases of pregnancy conceived via in vitro fertilization, or in cases in which the growth of both fetuses differs, or in those in which at least one fetus has a structural abnormality. The guidelines were established and approved by the Korean Academy of Medical Sciences. This guideline is revised and presented every 5 years.
Collapse
Affiliation(s)
- Ji Yeon Lee
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Ji Young Kwon
- Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sunghun Na
- Department of Obstetrics and Gynecology, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Seung Ah Choe
- Department of Preventive Medicine, Korea University College of Medicine, Seoul, Korea
| | - Hyun Joo Seol
- Department of Obstetrics and Gynecology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Minhyoung Kim
- Department of Obstetrics and Gynecology, MizMedi Hospital, Seoul, Korea
| | - Min A Kim
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Chan Wook Park
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | | | - Hyun Mee Ryu
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Han Sung Hwang
- Department of Obstetrics and Gynecology, Research Institute of Medical Science, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea.
| | - Jae Yoon Shim
- Mirae & Heemang Obstetrics and Gynecology Clinic, Seoul, Korea.
| |
Collapse
|
34
|
Mone F, Eberhardt RY, Morris RK, Hurles ME, McMullan DJ, Maher ER, Lord J, Chitty LS, Giordano JL, Wapner RJ, Kilby MD. COngenital heart disease and the Diagnostic yield with Exome sequencing (CODE) study: prospective cohort study and systematic review. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2021; 57:43-51. [PMID: 32388881 DOI: 10.1002/uog.22072] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/26/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE To determine the incremental yield of antenatal exome sequencing (ES) over chromosomal microarray analysis (CMA) or conventional karyotyping in prenatally diagnosed congenital heart disease (CHD). METHODS A prospective cohort study of 197 trios undergoing ES following CMA or karyotyping owing to CHD identified prenatally and a systematic review of the literature were performed. MEDLINE, EMBASE, CINAHL and ClinicalTrials.gov (January 2000 to October 2019) databases were searched electronically for studies reporting on the diagnostic yield of ES in prenatally diagnosed CHD. Selected studies included those with more than three cases, with initiation of testing based upon prenatal phenotype only and that included cases in which CMA or karyotyping was negative. The incremental diagnostic yield of ES was assessed in: (1) all cases of CHD; (2) isolated CHD; (3) CHD associated with extracardiac anomaly (ECA); and (4) CHD according to phenotypic subgroup. RESULTS In our cohort, ES had an additional diagnostic yield in all CHD, isolated CHD and CHD associated with ECA of 12.7% (25/197), 11.5% (14/122) and 14.7% (11/75), respectively (P = 0.81). The corresponding pooled incremental yields from 18 studies (encompassing 636 CHD cases) included in the systematic review were 21% (95% CI, 15-27%), 11% (95% CI, 7-15%) and 37% (95% CI, 18-56%), respectively. The results did not differ significantly when subanalysis was limited to studies including more than 20 cases, except for CHD associated with ECA, in which the incremental yield was greater (49% (95% CI, 17-80%)). In cases of CHD associated with ECA in the primary analysis, the most common extracardiac anomalies associated with a pathogenic variant were those affecting the genitourinary system (23/52 (44.2%)). The greatest incremental yield was in cardiac shunt lesions (41% (95% CI, 19-63%)), followed by right-sided lesions (26% (95% CI, 9-43%)). In the majority (68/96 (70.8%)) of instances, pathogenic variants occurred de novo and in autosomal dominant (monoallelic) disease genes. The most common (19/96 (19.8%)) monogenic syndrome identified was Kabuki syndrome. CONCLUSIONS There is an apparent incremental yield of prenatal ES in CHD. While the greatest yield is in CHD associated with ECA, consideration could also be given to performing ES in the presence of an isolated cardiac abnormality. A policy of routine application of ES would require the adoption of robust bioinformatic, clinical and ethical pathways. Copyright © 2020 ISUOG. Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- F Mone
- West Midlands Fetal Medicine Centre, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
- Institute of Metabolism and Systems Research, College of Medical & Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | | | - R K Morris
- West Midlands Fetal Medicine Centre, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
- Institute of Metabolism and Systems Research, College of Medical & Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | | | - D J McMullan
- West Midlands Regional Genetics Service, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - E R Maher
- Department of Medical Genetics, University of Cambridge, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge, UK
- Department of Clinical Genetics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - J Lord
- Wellcome Sanger Institute, Hinxton, UK
| | - L S Chitty
- London North Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust and UCL Great Ormond Street Institute of Child Health, London, UK
| | - J L Giordano
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Columbia University Vagelos Medical Center, New York, NY, USA
| | - R J Wapner
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Columbia University Vagelos Medical Center, New York, NY, USA
| | - M D Kilby
- West Midlands Fetal Medicine Centre, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
- Institute of Metabolism and Systems Research, College of Medical & Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
35
|
Hui AS, Chau MHK, Chan YM, Cao Y, Kwan AH, Zhu X, Kwok YK, Chen Z, Lao TT, Choy KW, Leung TY. The role of chromosomal microarray analysis among fetuses with normal karyotype and single system anomaly or nonspecific sonographic findings. Acta Obstet Gynecol Scand 2020; 100:235-243. [PMID: 32981064 DOI: 10.1111/aogs.14003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/19/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Chromosomal microarray analysis is recommended as the first-tier test for the evaluation of fetuses with structural anomalies. This study aims to investigate the incremental diagnostic yield of chromosomal microarray over conventional karyotyping analysis in fetuses with anomalies restricted to one anatomic system and those with nonspecific anomalies detected by sonography. MATERIAL AND METHODS This is a retrospective cohort analysis of 749 fetuses undergoing prenatal diagnosis for abnormal ultrasound findings isolated to one anatomic system and normal karyotype, utilizing chromosomal microarray. Overall, 495 (66%) fetuses had anomalies confined to one anatomic system and 254 (34%) had other nonspecific anomalies including increased nuchal translucency (≥3.5 mm), cystic hygroma, intrauterine growth restriction and hydrops fetalis. RESULTS Fetuses with ultrasound anomalies restricted to one anatomic system had a 3.0% risk of carrying a pathogenic copy number variant; the risk varied dependent on the anatomic system affected. Fetuses with confined anomalies of the cardiac system had the highest diagnostic yield at 4.6%, but there were none in the urogenital system. Fetuses with nonspecific ultrasound anomalies had the highest diagnostic yield in fetuses with an intrauterine growth restriction at 5.9%. Overall, fetuses with a nonspecific ultrasound anomaly were affected with pathogenic copy number variants in 1.6% in the cases. CONCLUSIONS The diagnostic yield of chromosomal microarray in fetuses with normal karyotype and ultrasound abnormality confined to a single anatomic system was highest if it involved cardiac defects or intrauterine growth restriction. This diagnostic yield ranges from 0% to 4.6% depending on the anatomic system involved. Chromosomal microarray has considerable diagnostic value in these pregnancies.
Collapse
Affiliation(s)
- Annie Sy Hui
- Department of Obstetrics and gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Matthew Hoi Kin Chau
- Department of Obstetrics and gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China.,Key Laboratory for Regenerative Medicine, Ministry of Education (Shenzhen Base), Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Yiu Man Chan
- Department of Obstetrics and gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China.,Adept Medical Center, Hong Kong SAR, China
| | - Ye Cao
- Department of Obstetrics and gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China.,Key Laboratory for Regenerative Medicine, Ministry of Education (Shenzhen Base), Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Angel Hw Kwan
- Department of Obstetrics and gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiaofan Zhu
- Department of Obstetrics and gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China.,Key Laboratory for Regenerative Medicine, Ministry of Education (Shenzhen Base), Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Yvonne K Kwok
- Department of Obstetrics and gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zihan Chen
- Key Laboratory for Regenerative Medicine, Ministry of Education (Shenzhen Base), Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Terence T Lao
- Department of Obstetrics and gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kwong Wai Choy
- Department of Obstetrics and gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China.,Key Laboratory for Regenerative Medicine, Ministry of Education (Shenzhen Base), Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.,The Chinese University of Hong Kong-Baylor College of Medicine Joint Center for Medical Genetics, The Chinese University of Hong Kong, China, Hong Kong SAR, China
| | - Tak Yeung Leung
- Department of Obstetrics and gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China.,Key Laboratory for Regenerative Medicine, Ministry of Education (Shenzhen Base), Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.,The Chinese University of Hong Kong-Baylor College of Medicine Joint Center for Medical Genetics, The Chinese University of Hong Kong, China, Hong Kong SAR, China
| |
Collapse
|
36
|
Kagan KO, Hoopmann M, Pfaff T, Prodan N, Wagner P, Schmid M, Dufke A, Mau-Holzmann U, Brucker S, Marcato L, Malvestiti B, Grati FR. First Trimester Screening for Common Trisomies and Microdeletion 22q11.2 Syndrome Using Cell-Free DNA: A Prospective Clinical Study. Fetal Diagn Ther 2020; 47:841-852. [PMID: 32877902 DOI: 10.1159/000510069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/08/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVES The aims of the study were to assess the false-positive and uninformative test rate with first trimester cell-free DNA (cfDNA) screening for common trisomies and microdeletion 22q11.2 (22q11.2DS) and to examine women's attitudes toward such an approach. METHODS This is a prospective study at the Prenatal Medicine Department of the University of Tübingen, Germany, at 11-13 weeks. In all pregnancies, a detailed ultrasound examination was carried out, followed by a cfDNA analysis for common trisomies and 22q11.2DS. In cases where the cfDNA analysis indicated 22q11.2DS, invasive prenatal diagnostic testing and parental testing were performed. After delivery, a detailed neonatal clinical examination was carried out including further genetic testing. Prior to counselling about the study, we asked the pregnant women who were potentially eligible for the study to anonymously report on their knowledge about 22q11.2DS. RESULTS A total of 1,127 pregnancies were included in the final analysis of the study. The first cfDNA test was uninformative in 15 (1.33%) pregnancies. In 10 (0.89%) cases, the test remained uninformative, even after the second blood sample. There were 3 (0.27%) cases with a positive cfDNA test for 22q11.2DS. In all, 983 women returned the anonymous questionnaire prior to study participation. Only 80 (8.1%) women responded that they felt familiar or very familiar with 22q11.2DS. CONCLUSION The addition of 22q11.2DS in first trimester cfDNA screening for common trisomies is feasible. The uninformative test rate for common trisomies and 22q11.2DS is 0.9%, and the false-positive rate for 22q11.2DS is 0.3%. Awareness and education around 22q11.2DS should be improved.
Collapse
Affiliation(s)
- Karl Oliver Kagan
- Department of Women's Health, University Women's Hospital, Tuebingen, Germany,
| | - Markus Hoopmann
- Department of Women's Health, University Women's Hospital, Tuebingen, Germany
| | - Theresa Pfaff
- Department of Women's Health, University Women's Hospital, Tuebingen, Germany
| | - Natalia Prodan
- Department of Women's Health, University Women's Hospital, Tuebingen, Germany
| | - Philipp Wagner
- Department of Women's Health, University Women's Hospital, Tuebingen, Germany
| | - Maximilian Schmid
- Roche Sequencing Solutions Inc., Ariosa Diagnostics Inc., San Jose, California, USA
| | - Andreas Dufke
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Ulrike Mau-Holzmann
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Sara Brucker
- Department of Women's Health, University Women's Hospital, Tuebingen, Germany
| | - Livia Marcato
- Research and Development, Cytogenetics and Medical Genetics Unit, TOMA Advanced Biomedical Assays S.p.A., Impact Lab Group, Busto Arsizio, Italy
| | - Barbara Malvestiti
- Research and Development, Cytogenetics and Medical Genetics Unit, TOMA Advanced Biomedical Assays S.p.A., Impact Lab Group, Busto Arsizio, Italy
| | - Francesca Romana Grati
- Research and Development, Cytogenetics and Medical Genetics Unit, TOMA Advanced Biomedical Assays S.p.A., Impact Lab Group, Busto Arsizio, Italy
| |
Collapse
|
37
|
Sun H, Yi T, Hao X, Yan H, Wang J, Li Q, Gu X, Zhou X, Wang S, Wang X, Wan P, Han L, Chen J, Zhu H, Zhang H, He Y. Contribution of single-gene defects to congenital cardiac left-sided lesions in the prenatal setting. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2020; 56:225-232. [PMID: 31633846 DOI: 10.1002/uog.21883] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/08/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVES To explore the contribution of single-gene defects to the genetic cause of cardiac left-sided lesions (LSLs), and to evaluate the incremental diagnostic yield of whole-exome sequencing (WES) for single-gene defects in fetuses with LSLs without aneuploidy or a pathogenic copy-number variant (pCNV). METHODS Between 10 April 2015 and 30 October 2018, we recruited 80 pregnant women diagnosed with a LSL who had termination of pregnancy and genetic testing. Eligible LSLs were aortic valve atresia or stenosis, coarctation of the aorta, mitral atresia or stenosis and hypoplastic left heart syndrome (HLHS). CNV sequencing (CNV-seq) and WES were performed sequentially on specimens from these fetuses and their parents. CNV-seq was used to identify aneuploidies and pCNVs, while WES was used to identify diagnostic genetic variants in cases without aneuploidy or pCNV. RESULTS Of 80 pregnancies included in the study, 27 (33.8%) had a genetic diagnosis. CNV-seq analysis identified six (7.5%) fetuses with aneuploidy and eight (10.0%) with pCNVs. WES analysis of the remaining 66 cases revealed diagnostic genetic variants in 13 (19.7%) cases, indicating that the diagnostic yield of WES for the entire cohort was 16.3% (13/80). KMT2D was the most frequently mutated gene (7/66 (10.6%)) in fetuses with LSL without aneuploidy or pCNVs, followed by NOTCH1 (4/66 (6.1%)). HLHS was the most prevalent cardiac phenotype (4/7) in cases with a KMT2D mutation in this cohort. An additional six (9.1%) cases were found to have potentially deleterious variants in candidate genes. CONCLUSIONS Single-gene defects contribute substantially to the genetic etiology of fetal LSLs. KMT2D mutations accounted for approximately 10% of LSLs in our fetal cohort. WES has the potential to provide genetic diagnoses in fetuses with LSLs without aneuploidy or pCNVs. Copyright © 2019 ISUOG. Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- H Sun
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Department of Echocardiography, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Maternal-Fetal Medicine in Fetal Heart Disease, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - T Yi
- Department of Echocardiography, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Maternal-Fetal Medicine in Fetal Heart Disease, Beijing, China
| | - X Hao
- Department of Echocardiography, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Maternal-Fetal Medicine in Fetal Heart Disease, Beijing, China
| | - H Yan
- Baijia kangran biotechnology LLC, Beijing, China
| | - J Wang
- College of Life Science, Tsinghua University, Beijing, China
| | - Q Li
- Baijia kangran biotechnology LLC, Beijing, China
| | - X Gu
- Department of Echocardiography, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Maternal-Fetal Medicine in Fetal Heart Disease, Beijing, China
| | - X Zhou
- Department of Echocardiography, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - S Wang
- Department of Echocardiography, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - X Wang
- Department of Echocardiography, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - P Wan
- Berry Genomics Corporation, Beijing, China
| | - L Han
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Laboratory for Cardiovascular Precision Medicine, Beijing, China
| | - J Chen
- Department of Ultrasound, Shenzhen Second People's Hospital, Shenzhen, China
| | - H Zhu
- State Key Laboratory of Software Development Environment, Beihang University, Beijing, China
| | - H Zhang
- Beijing Laboratory for Cardiovascular Precision Medicine, Beijing, China
- Department of Cardiac Surgery, Beijing ChaoYang Hospital, Capital Medical University, Beijing, China
| | - Y He
- Department of Echocardiography, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Maternal-Fetal Medicine in Fetal Heart Disease, Beijing, China
| |
Collapse
|
38
|
Li L, He Z, Huang X, Lin S, Wu J, Huang L, Wan Y, Fang Q. Chromosomal abnormalities detected by karyotyping and microarray analysis in twins with structural anomalies. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2020; 55:502-509. [PMID: 30977228 DOI: 10.1002/uog.20287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 02/19/2019] [Accepted: 03/30/2019] [Indexed: 06/09/2023]
Abstract
OBJECTIVES To evaluate the incidence and types of chromosomal abnormalities detected in twins with structural anomalies and compare their distribution according to chorionicity and amnionicity and by structural-anomaly type. The added value of chromosomal microarray analysis (CMA) over conventional karyotyping in twins was also estimated. METHODS This was a single-center, retrospective analysis of 534 twin pregnancies seen over an 11-year period, in which one or both fetuses were diagnosed with congenital structural anomalies on ultrasound. The ultrasound findings and invasive prenatal diagnostic results were reviewed. Twin pregnancies were categorized as monochorionic monoamniotic (MCMA), monochorionic diamniotic (MCDA) or dichorionic diamniotic (DCDA). Chromosomal abnormalities detected by G-banding karyotyping and/or CMA were analyzed by chorionicity and amnionicity and by structural-anomaly type. RESULTS The 534 twin pairs analyzed comprised 25 pairs of MCMA, 112 pairs of MCDA and 397 pairs of DCDA twins. Of the 549 fetuses affected by structural anomalies, 432 (78.7%) underwent invasive prenatal testing and cytogenetic results were obtained. The incidence of overall chromosomal abnormalities in the DCDA fetuses (25.4%) was higher than that in the MCMA (3.7%) and MCDA (15.3%) fetuses. The incidence of aneuploidy was significantly higher in the DCDA group (22.8%) than in the MCMA (0.0%) and MCDA (12.4%) groups. The incidence of chromosomal abnormalities detected in fetuses, with anomalies of the cardiovascular, faciocervical, musculoskeletal, genitourinary and gastrointestinal systems, was higher in the DCDA group than in the MCDA group. In both the DCDA and MCDA groups, hydrops fetalis was associated with the highest incidence of chromosomal abnormality; of these fetuses, 67.6% had Turner syndrome (45,X). Pathogenic copy-number variations (CNVs) undetectable by karyotyping were identified by CMA in five (2.0%; 95% CI, 0.3-3.7%) DCDA fetuses. No pathogenic CNVs were found in MCMA and MCDA twins. CONCLUSIONS Dichorionic twins with structural anomalies have a higher risk of chromosomal abnormalities, especially aneuploidies, than do monochorionic twins. The incremental diagnostic yield of CMA over karyotyping seems to be lower (2.0%) in twins than that reported in singleton pregnancy. Copyright © 2019 ISUOG. Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- L Li
- Fetal Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Z He
- Fetal Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - X Huang
- Fetal Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - S Lin
- Fetal Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - J Wu
- Fetal Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - L Huang
- Fetal Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Y Wan
- Fetal Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Q Fang
- Fetal Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
39
|
Application of next-generation sequencing for the diagnosis of fetuses with congenital heart defects. Curr Opin Obstet Gynecol 2020; 31:132-138. [PMID: 30608255 DOI: 10.1097/gco.0000000000000520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Congenital heart defects (CHDs) are the most common type of birth defects, and are thought to result from genetic-environmental interactions. Currently, karyotype and chromosomal microarray analyses are the primary methods used to detect chromosomal abnormalities and copy number variations in fetuses with CHD. Recently, with the introduction of next-generation sequencing (NGS) in prenatal diagnosis, gene mutations have been identified in cases of CHD. The purpose of this review is to summarize current studies about the genetic cause of fetal CHD, paying particular attention to the application of NGS for fetuses with CHD. RECENT FINDINGS In addition to chromosomal abnormalities, gene mutations are an important genetic cause of fetal CHD. Furthermore, incidences of pathogenic mutations in fetuses with CHD are associated with the presence of other structural anomalies, but are irrelevant to the categories of CHD. SUMMARY Gene mutations are important causes of fetal CHD and NGS should be applied to all fetuses with normal karyotype and copy number variations, regardless of whether the CHD is isolated or syndromic.
Collapse
|
40
|
Peng HH, Lee CH, Su SY, Chen KJ, Lee YC, You SH, Lee WF, Cheng PJ. Prenatally diagnosed de novo segmental amplification or deletion by microarray-based comparative genomic hybridization: A retrospective study. Taiwan J Obstet Gynecol 2020; 58:662-666. [PMID: 31542089 DOI: 10.1016/j.tjog.2019.07.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2019] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Prenatal diagnosis of de novo segmental amplification or deletion by microarray-based comparative genomic hybridization (array CGH) is uncommon. The study aimed to know about the incidence, abnormal ultrasound findings, and pregnancy outcomes of prenatally diagnosed de novo segmental amplification or deletion by array CGH. MATERIALS AND METHODS Between January 2014 and December 2017, we analyzed pregnant women who received prenatal array CGH (SurePrint G3 Human CGH Microarray Kit, 8 × 60K) at Chang Gung Memorial Hospital, Taiwan. Clinical data on maternal age, reason for fetal karyotyping, sonographic findings, gestational age at delivery, newborn birth weight, and associated anomalies, if any, were obtained by chart review. RESULTS A total of 836 specimens (814 amniotic fluid samples, 4 cord blood samples, 18 chorionic villi samples) were analyzed by array CGH during the study period. Of the 56 cases with abnormal array CGH results, 40 had segmental amplification or deletion, 12 had trisomy, three had monosomy, and one had sex chromosome aneuploidy. Of these 40 cases with segmental amplification or deletion, 30 were inherited and 10 were de novo occurrences. The incidence of de novo segmental amplification or deletion was 1.2% (10/836). Abnormal prenatal ultrasound findings occurred in 40% (4/10) of de novo segmental amplification or deletion cases. Among these 10 pregnancies, nine were voluntarily terminated between 22 and 26 weeks of gestation and one was delivered at term. CONCLUSIONS Prenatal diagnosis of de novo segmental amplification or deletion by array CGH raises important genetic counseling issues. In our series, the incidence of de novo segmental amplification or deletion in prenatal samples was 1.2%. Abnormal prenatal sonographic findings occurred in 40% of these de novo segmental amplification or deletion cases. Of these de novo segmental amplification or deletion pregnancies, 90% were voluntarily terminated.
Collapse
Affiliation(s)
- Hsiu-Huei Peng
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center, Tao-Yuan, Taiwan; Chang Gung University College of Medicine, Kwei-Shan, Tao-Yuan, Taiwan
| | - Chien-Hong Lee
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou Medical Center, Tao-Yuan, Taiwan
| | - Sheng-Yuan Su
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center, Tao-Yuan, Taiwan; Chang Gung University College of Medicine, Kwei-Shan, Tao-Yuan, Taiwan
| | - Kuan-Ju Chen
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center, Tao-Yuan, Taiwan; Chang Gung University College of Medicine, Kwei-Shan, Tao-Yuan, Taiwan
| | - Yen-Chang Lee
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center, Tao-Yuan, Taiwan; Chang Gung University College of Medicine, Kwei-Shan, Tao-Yuan, Taiwan
| | - Shu-Han You
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center, Tao-Yuan, Taiwan; Chang Gung University College of Medicine, Kwei-Shan, Tao-Yuan, Taiwan
| | - Wen-Fang Lee
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center, Tao-Yuan, Taiwan; Chang Gung University College of Medicine, Kwei-Shan, Tao-Yuan, Taiwan
| | - Po-Jen Cheng
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center, Tao-Yuan, Taiwan; Chang Gung University College of Medicine, Kwei-Shan, Tao-Yuan, Taiwan.
| |
Collapse
|
41
|
Mustafa HJ, Jacobs KM, Tessier KM, Narasimhan SL, Tofte AN, McCarter AR, Cross SN. Chromosomal microarray analysis in the investigation of prenatally diagnosed congenital heart disease. Am J Obstet Gynecol MFM 2020; 2:100078. [PMID: 33345990 DOI: 10.1016/j.ajogmf.2019.100078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/04/2019] [Accepted: 12/16/2019] [Indexed: 01/25/2023]
Abstract
BACKGROUND Chromosomal microarray analysis has emerged as a primary diagnostic tool in prenatally diagnosed congenital heart disease and other structural anomalies in clinical practice. OBJECTIVE Our study aimed to investigate the diagnostic yield of microarray analysis as a first-tier test for chromosomal abnormalities in fetuses with both isolated and nonisolated congenital heart disease and to identify the association of different pathogenic chromosomal abnormalities with different subgroups of congenital heart disease. STUDY DESIGN Retrospective data from 217 pregnancies that were diagnosed with congenital heart disease between 2011 and 2016 were reviewed. All pregnancies were investigated with the use of microarray analysis during the study period. Classification of chromosomal abnormalities was done based on American College of Medical Genetics and Genomics guidelines into (1) pathogenic chromosomal abnormalities that included numeric chromosomal abnormalities (aneuploidy and partial aneuploidy) and pathogenic copy number variants (22q11.2 deletion and other microdeletions/microduplications), (2) variants of uncertain significance, and (3) normal findings. RESULTS Our study found a detection rate for pathogenic chromosomal abnormalities (numeric and pathogenic copy number variants) of 36.9% in pregnancies (n=80) that were diagnosed prenatally with congenital heart disease who underwent invasive testing with chromosomal microarray. The detection rate for numeric abnormalities was 29.5% (n=64) and for pathogenic copy number variants was 7.4% (n=16) of which 4.2% were 22q11.2 deletion and 3.2% were other pathogenic copy number variants, most of which theoretically could have been missed by the use of conventional karyotype alone. Pathogenic copy number variants were most common in conotruncal defects (19.6%; 11/56) that included 42.9% in cases of interrupted aortic arch, 23.8% in cases of tetralogy of Fallot, 13.3% in cases of transposition of the great arteries, and 8.3% in cases of double outlet right ventricle. Of these changes, 81.8% were 22q11.2 deletion, and 18.2% were other microdeletions/microduplications. After conotruncal defects, pathogenic copy number variants were most common in right ventricular outflow tract and left ventricular outflow tract groups (8% and 2.2%, respectively) in which none were 22q11.2 deletion. Pathogenic chromosomal abnormalities (numeric and pathogenic copy number variants) detected by chromosomal microarray analysis were significantly more common in the nonisolated congenital heart disease group (64.5%; n=49) compared with the isolated group (22%; n=31; P<.001). CONCLUSION In pregnancies that were diagnosed with congenital heart disease and had undergone diagnostic genetic testing, our study showed that chromosomal microarray analysis has an added value in the detection of pathogenic chromosomal abnormalities compared with conventional karyotype, particularly in cases of pathogenic copy number variants. This yield is influenced not only by the type of congenital heart disease but also by the presence of extracardiac anomalies.
Collapse
Affiliation(s)
- Hiba J Mustafa
- Department of Obstetrics, Gynecology & Women's Health, University of Minnesota, Eden Prairie, MN
| | - Katherine M Jacobs
- Department of Obstetrics, Gynecology & Women's Health, University of Minnesota, Eden Prairie, MN
| | - Katelyn M Tessier
- Biostatistics Core, Masonic Cancer Center, University of Minnesota, Eden Prairie, MN
| | - Shanti L Narasimhan
- Department of Pediatric Cardiology, University of Minnesota, Eden Prairie, MN
| | - Alena N Tofte
- Department of Obstetrics, Gynecology & Women's Health, University of Minnesota, Eden Prairie, MN
| | - Allison R McCarter
- Department of Obstetrics, Gynecology & Women's Health, University of Minnesota, Eden Prairie, MN
| | - Sarah N Cross
- Department of Obstetrics, Gynecology & Women's Health, University of Minnesota, Eden Prairie, MN
| |
Collapse
|
42
|
Lamont RE, Xi Y, Popko C, Lazier J, Bernier FP, Lauzon JL, Innes AM, Parboosingh JS, Thomas MA. Next-Generation Sequencing Using a Cardiac Gene Panel in Prenatally Diagnosed Cardiac Anomalies. JOURNAL OF OBSTETRICS AND GYNAECOLOGY CANADA 2019; 40:1417-1423. [PMID: 30473118 DOI: 10.1016/j.jogc.2018.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 02/01/2018] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Most prenatally identified congenital heart defects (CHDs) are the sole structural anomaly detected; however, there is a subgroup of cases where the specific genetic cause will impact prognosis, including chromosome abnormalities and single-gene causes. Next-generation sequencing of all the protein coding regions in the genome or targeted to genes involved in cardiac development is currently possible in the prenatal period, but there are minimal data on the clinical utility of such an approach. This study assessed the outcome of a CHD gene panel that included single-gene causes of syndromic and non-syndromic CHDs. METHOD Sixteen cases with a fetal CHD identified on prenatal ultrasound were studied using a 108 CHD gene panel. DNA was extracted from cultured amniocytes. RESULTS There was no diagnostic pathogenic variant identified in these cases. There was an average of 2.9 reportable variants identified per case and the majority of them were variants of uncertain significance. CONCLUSION Next-generation sequencing has the potential for increased genetic diagnosis for fetal anomalies. However, the large number of variants and the absence of an examinable patient make the interpretation of these variants challenging.
Collapse
Affiliation(s)
- Ryan E Lamont
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB; Alberta Children's Hospital Research Institute, Calgary, AB
| | - Yanwei Xi
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB
| | - Claire Popko
- Bachelor of Health Sciences Program, University of Calgary, Calgary, AB
| | - Joanna Lazier
- Department of Medical Genetics, University of Alberta, Edmonton, AB
| | - Francois P Bernier
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB; Alberta Children's Hospital Research Institute, Calgary, AB
| | - Julie L Lauzon
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB
| | - A Micheil Innes
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB; Alberta Children's Hospital Research Institute, Calgary, AB
| | - Jillian S Parboosingh
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB; Alberta Children's Hospital Research Institute, Calgary, AB
| | - Mary Ann Thomas
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB; Alberta Children's Hospital Research Institute, Calgary, AB.
| |
Collapse
|
43
|
Zhang X, He P, Han J, Pan M, Yang X, Zhen L, Liao C, Li DZ. Prenatal detection of 1p36 deletion syndrome: ultrasound findings and microarray testing results. J Matern Fetal Neonatal Med 2019; 34:2180-2184. [PMID: 31446820 DOI: 10.1080/14767058.2019.1660764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Only a small number of reports have been made on the prenatal ultrasound findings observed in 1p36 deletion syndrome. We explored prenatal diagnosis of 1p36 deletion by ultrasound as well as chromosomal microarray (CMA), and delineated the fetal presentation of this syndrome. STUDY DESIGN This was a retrospective analysis of 10 new prenatal cases of 1p36 deletion identified by CMA at a single Chinese medical center. Clinical data were reviewed for these cases, including maternal demographics, indications for invasive testing, sonographic findings, CMA results and pregnancy outcomes. RESULTS One case was diagnosed because of a positive cell-free DNA (cfDNA) testing result for terminal 1p deletion, and the remaining nine cases were identified because of an abnormal ultrasound findings, including early miscarriage, structural abnormalities and fetal growth restriction. CMA revealed 1p36 deletions to be terminal in six cases, and interstitial in four cases. Deletion sizes ranged from 1.7 to 42.7 Mb. CONCLUSIONS Prenatal findings such as cardiac malformations, especially Ebstein anomaly, and fetal growth retardation should warrant the diagnosis of 1p36 deletion and invasive genetic testing using CMA.
Collapse
Affiliation(s)
- Xun Zhang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center affiliated to Guangzhou Medical University, Guangzhou, China.,Department of Obstetrics and Gynecology, Yue Bei People's Hospital, Shaoguan, China
| | - Ping He
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center affiliated to Guangzhou Medical University, Guangzhou, China
| | - Jin Han
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center affiliated to Guangzhou Medical University, Guangzhou, China
| | - Min Pan
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center affiliated to Guangzhou Medical University, Guangzhou, China
| | - Xin Yang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center affiliated to Guangzhou Medical University, Guangzhou, China
| | - Li Zhen
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center affiliated to Guangzhou Medical University, Guangzhou, China
| | - Can Liao
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center affiliated to Guangzhou Medical University, Guangzhou, China
| | - Dong-Zhi Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center affiliated to Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
44
|
Petracchi F, Sisterna S, Igarzabal L, Wilkins-Haug L. Fetal cardiac abnormalities: Genetic etiologies to be considered. Prenat Diagn 2019; 39:758-780. [PMID: 31087396 DOI: 10.1002/pd.5480] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/16/2019] [Accepted: 04/27/2019] [Indexed: 12/21/2022]
Abstract
Congenital heart diseases are a common prenatal finding. The prenatal identification of an associated genetic syndrome or a major extracardiac anomaly helps to understand the etiopathogenic diagnosis. Besides, it also assesses the prognosis, management, and familial recurrence risk while strongly influences parental decision to choose termination of pregnancy or postnatal care. This review article describes the most common genetic diagnoses associated with a prenatal finding of a congenital heart disease and a suggested diagnostic process.
Collapse
Affiliation(s)
- Florencia Petracchi
- Sección Genética Departamento de Ginecología y Obstetricia, CEMIC Instituto Universitario, Buenos Aires, Argentina
| | - Silvina Sisterna
- Sección Genética Departamento de Ginecología y Obstetricia, CEMIC Instituto Universitario, Buenos Aires, Argentina
| | - Laura Igarzabal
- Sección Genética Departamento de Ginecología y Obstetricia, CEMIC Instituto Universitario, Buenos Aires, Argentina
| | - Louise Wilkins-Haug
- Harvard Medical School Department of Obstetrics, Gynecology and Reproductive Medicine Division Chief Maternal Fetal Medicine and Reproductive Genetics, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
45
|
Peng R, Zheng J, Xie HN, He M, Lin MF. Genetic anomalies in fetuses with tetralogy of Fallot by using high-definition chromosomal microarray analysis. Cardiovasc Ultrasound 2019; 17:8. [PMID: 31060568 PMCID: PMC6503353 DOI: 10.1186/s12947-019-0159-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/24/2019] [Indexed: 12/17/2022] Open
Abstract
Background The etiology of TOF is complex and the genesis of TOF has been associated with environmental factors and genetic disorders, including chromosomal anomalies, aneuploidies, 22q11.2 deletion and single-gene disease. Previous literatures have shown that a chromosome alteration in about 30% patients with TOF and recently published articles reported that 22q11.2 deletion syndrome accounts for 16% cases with TOF diagnosed postnatally. CMA now is considered as gold standard for detecting genetic anomalies in fetuses with congenital malformations. CMA could detect a 6.6–25% incremental yield of CNVs in CHDs. The aim of this study was to assess the genetic anomalies in fetal tetralogy of Fallot (TOF) by using high-definition CMA. Methods This retrospective study reviewed all the fetuses diagnosed with TOF between 2013 and 2018. Prenatal ultrasongraphic findings, including cardiac angle, and the findings of CMA using Affymetrix CytoScan HD array were collected. Results Ninety-six fetuses with TOF and known genetic results were enrolled. Right aortic arch was the most common associated anomalies (22.9%). One fetus with trisomy 18, one with 46, XX, t (7;10)(q36;q22), one with 47, XYY and five with trisomy 21 were identified. Clinically significant CNVs occurred in 6.8% and uncertain significant CNVs in 3.4% fetal TOF with normal karyotype. A total of four cases with 22q11.2 microdeletion and two fetuses with Yq11.223q11.23 microduplication have been identified. Genetic anomalies, including chromosomal aberrations and pathogenic CNVs, were significantly higher in the TOF with extracardiac anomaly group than in the TOF without extracardiac anomaly group (P = 0.005). Abnormal cardiac angle was noticed in 24.0% fetal TOF. Genetic anomalies were more common in the TOF with abnormal cardiac angle than with normal cardiac angle (P = 0.001). On the other hand, abnormal cardiac angle was noticed in 64.3% fetal TOF with genetic anomalies while abnormal cardiac angle occurred in 17.1% fetal TOF with normal genetic results (P = 0.001). Conclusions Genetic testing should be offered, specially using microarray analysis, for the fetal TOF with abnormal cardiac angle or extracardiac defects.
Collapse
Affiliation(s)
- Ruan Peng
- Department of Ultrasonic Medicine, Fetal Medical Centre, The First Affiliated Hospital of Sun Yat-sen University, Zhongshan Er Road 58#, Guangzhou, Guangdong, China
| | - Ju Zheng
- Department of Ultrasonic Medicine, Fetal Medical Centre, The First Affiliated Hospital of Sun Yat-sen University, Zhongshan Er Road 58#, Guangzhou, Guangdong, China
| | - Hong-Ning Xie
- Department of Ultrasonic Medicine, Fetal Medical Centre, The First Affiliated Hospital of Sun Yat-sen University, Zhongshan Er Road 58#, Guangzhou, Guangdong, China.
| | - Miao He
- Department of Ultrasonic Medicine, Fetal Medical Centre, The First Affiliated Hospital of Sun Yat-sen University, Zhongshan Er Road 58#, Guangzhou, Guangdong, China
| | - Mei-Fang Lin
- Department of Ultrasonic Medicine, Fetal Medical Centre, The First Affiliated Hospital of Sun Yat-sen University, Zhongshan Er Road 58#, Guangzhou, Guangdong, China
| |
Collapse
|
46
|
Hureaux M, Guterman S, Hervé B, Till M, Jaillard S, Redon S, Valduga M, Coutton C, Missirian C, Prieur F, Simon-Bouy B, Beneteau C, Kuentz P, Rooryck C, Gruchy N, Marle N, Plutino M, Tosca L, Dupont C, Puechberty J, Schluth-Bolard C, Salomon L, Sanlaville D, Malan V, Vialard F. Chromosomal microarray analysis in fetuses with an isolated congenital heart defect: A retrospective, nationwide, multicenter study in France. Prenat Diagn 2019; 39:464-470. [PMID: 30896039 DOI: 10.1002/pd.5449] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/05/2019] [Accepted: 03/15/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Congenital heart defects (CHDs) may be isolated or associated with other malformations. The use of chromosome microarray (CMA) can increase the genetic diagnostic yield for CHDs by between 4% and 10%. The objective of this study was to evaluate the value of CMA after the prenatal diagnosis of an isolated CHD. METHODS In a retrospective, nationwide study performed in France, we collected data on all cases of isolated CHD that had been explored using CMAs in 2015. RESULTS A total of 239 fetuses were included and 33 copy number variations (CNVs) were reported; 19 were considered to be pathogenic, six were variants of unknown significance, and eight were benign variants. The anomaly detection rate was 10.4% overall but ranged from 0% to 16.7% as a function of the isolated CHD in question. The known CNVs were 22q11.21 deletions (n = 10), 22q11.21 duplications (n = 2), 8p23 deletions (n = 2), an Alagille syndrome (n = 1), and a Kleefstra syndrome (n = 1). CONCLUSION The additional diagnostic yield was clinically significant (3.1%), even when anomalies in the 22q11.21 region were not taken into account. Hence, patients with a suspected isolated CHD and a normal karyotype must be screened for chromosome anomalies other than 22q11.21 duplications and deletions.
Collapse
Affiliation(s)
- Marguerite Hureaux
- Service d'Histologie-Embryologie-Cytogénétique, Hôpital Necker-Enfants Malades, APHP, Paris, France
| | - Sarah Guterman
- EA7404-GIG, UFR des sciences de la Santé Simone Veil, UVSQ, Montigny le Bretonneux, France.,Service de Gynécologie Obstétrique, CHI de Poissy, St Germain, Poissy, France
| | - Bérénice Hervé
- EA7404-GIG, UFR des sciences de la Santé Simone Veil, UVSQ, Montigny le Bretonneux, France.,Unité de Cytogénétique, CHI de Poissy St Germain, Poissy, France
| | - Marianne Till
- Service de Génétique, Hospices civils de Lyon, Lyon, France
| | | | - Sylvie Redon
- Laboratoire de Cytogénétique, Cytologie et Biologie de la Reproduction, CHRU, Brest, France
| | | | - Charles Coutton
- Service de Génétique Chromosomique, Hôpital Couple-Enfant, CHU Grenoble Alpes, La Tronche, France.,Equipe GETI - IAB, INSERM U1209, Université Grenoble-Alpes, La Tronche, France
| | - Chantal Missirian
- Département de Génétique Médicale, CHU Timone Enfants, APHM, Marseille, France
| | - Fabienne Prieur
- Service de Génétique Clinique Chromosomique Moléculaire, CHU Saint-Etienne, Saint-Etienne, France
| | - Brigitte Simon-Bouy
- Génétique Constitutionnelle, Laboratoire de Biologie, Centre Hospitalier de Versailles, Le Chesnay, France
| | | | - Paul Kuentz
- Service de Génétique Biologique, CHRU Besançon, Besançon, France
| | - Caroline Rooryck
- CHU de Bordeaux, Service de Génétique Médicale, Bordeaux, France
| | | | - Nathalie Marle
- Laboratoire de Génétique Chromosomique et Moléculaire, CHU Dijon, Dijon, France
| | | | - Lucie Tosca
- Service d'Histologie Embryologie Cytogénétique, Hôpital Antoine Béclère, Clamart, France
| | - Celine Dupont
- Service de Cytogénétique, APHP Hôpital Robert Debré, Paris, France
| | | | | | - Laurent Salomon
- Service d'Obstétrique, Hôpital Necker-Enfants Malades, APHP, Paris, France
| | | | - Valérie Malan
- Service d'Histologie-Embryologie-Cytogénétique, Hôpital Necker-Enfants Malades, APHP, Paris, France.,Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - François Vialard
- EA7404-GIG, UFR des sciences de la Santé Simone Veil, UVSQ, Montigny le Bretonneux, France.,Unité de Cytogénétique, CHI de Poissy St Germain, Poissy, France
| |
Collapse
|
47
|
He X, Zhang X, Jing H, Zhang X, Gao M, Chen H, Geng J, Zheng Z, Fu Q, Zhu Z, Zheng J. Rare Copy Number Variations Might Not be Involved in the Molecular Pathogenesis of PA-IVS in an Unselected Chinese Cohort. Pediatr Cardiol 2019; 40:762-767. [PMID: 30868185 DOI: 10.1007/s00246-019-02062-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 01/29/2019] [Indexed: 11/30/2022]
Abstract
Congenital heart defect (CHD) is one of the most common birth defects in China, while pulmonary atresia with intact ventricular septum (PA-IVS) is the life-threatening form of CHD. Numerous previous studies revealed that rare copy number variants (CNVs) play important roles in CHD, but little is known about the prevalence and role of rare CNVs in PA-IVS. In this study, we conducted a genome-wide scanning of rare CNVs in an unselected cohort consisted of 54 Chinese patients with PA-IVS and 20 patients with pulmonary atresia with ventricular septal defect (PA-VSD). CNVs were identified in 6/20 PA-VSD patients (30%), and three of these CNVs (15%) were considered potentially pathogenic. Two pathogenic CNVs occurred at a known CHD locus (22q11.2) and one likely pathogenic deletion located at 13q12.12. However, no rare CNVs were detected in patients with PA-IVS. Potentially pathogenic CNVs were more enriched in PA-VSD patients than in PA-IVS patients (p = 0.018). No rare CNVs were detected in patients with PA-IVS in our study. PA/IVS might be different from PA/VSD in terms of genetics as well as anatomy.
Collapse
Affiliation(s)
- Xiaomin He
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, China
| | - Xiaoqing Zhang
- The Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Hui Jing
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, China
| | - Xiaoyang Zhang
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, China
| | - Manchen Gao
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, China
| | - Huiwen Chen
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, China
| | - Juan Geng
- Hangzhou Joingenome Diagnostics, Hangzhou, 311188, China
| | - Zhaojing Zheng
- Hangzhou Joingenome Diagnostics, Hangzhou, 311188, China
| | - Qihua Fu
- The Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Zhongqun Zhu
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, China.
| | - Jinghao Zheng
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, China.
| |
Collapse
|
48
|
Cheng SSW, Chan KYK, Leung KKP, Au PKC, Tam WK, Li SKM, Luk HM, Kan ASY, Chung BHY, Lo IFM, Tang MHY. Experience of chromosomal microarray applied in prenatal and postnatal settings in Hong Kong. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 181:196-207. [PMID: 30903683 DOI: 10.1002/ajmg.c.31697] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 12/14/2022]
Abstract
Chromosomal microarray (CMA) is recommended as a first tier investigation for patients with developmental delay (DD), intellectual disability (ID), autistic spectrum disorder (ASD), and multiple congenital anomalies (MCA). It is widely used in the prenatal and postnatal settings for detection of chromosomal aberrations. This is a retrospective review of all array comparative genomic hybridization (aCGH/ array CGH) findings ascertained in two major prenatal and postnatal genetic diagnostic centers in Hong Kong from June 2012 to December 2017. Medical records were reviewed for cases with pathogenic and variants of uncertain clinical significance (VUS). Classification of copy number variants (CNVs) was based on current knowledge and experience by August 2018. The aims of this review are to study the diagnostic yield of array CGH application in prenatal and postnatal settings in Hong Kong and to describe the spectrum of abnormalities found. Prenatal indications included abnormal ultrasound findings, positive Down syndrome screening, abnormal noninvasive prenatal test results, advanced maternal age and family history of chromosomal or genetic abnormalities. Postnatal indications included unexplained DD, ID, ASD, and MCA. A total of 1,261 prenatal subjects and 3,096 postnatal patients were reviewed. The prenatal diagnostic yield of pathogenic CNV and VUS (excluding those detectable by karyotype) was 3.5%. The postnatal diagnostic yield of pathogenic CNV was 15.2%. The detection rates for well-defined microdeletion and microduplication syndromes were 4.6% in prenatal and 6.1% (1 in 16 index patients) in postnatal cases, respectively. Chromosomes 15, 16, and 22 accounted for over 21 and 25% of pathogenic CNVs detected in prenatal and postnatal cohorts, respectively. This review provides the first large scale overview of genomic imbalance of mostly Chinese patients in prenatal and postnatal settings.
Collapse
Affiliation(s)
| | - Kelvin Y K Chan
- Prenatal Diagnostic Laboratory, Tsan Yuk Hospital, Hong Kong
| | | | - Patrick K C Au
- Prenatal Diagnostic Laboratory, Tsan Yuk Hospital, Hong Kong
| | - Wai-Keung Tam
- Prenatal Diagnostic Laboratory, Tsan Yuk Hospital, Hong Kong
| | - Samuel K M Li
- Prenatal Diagnostic Laboratory, Tsan Yuk Hospital, Hong Kong
| | - Ho-Ming Luk
- Department of Health, Clinical Genetic Service, Hong Kong
| | - Anita S Y Kan
- Department of Obstetrics and Gynaecology, Queen Mary Hospital, Hong Kong
| | - Brian H Y Chung
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, HKSAR.,Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, HKSAR
| | - Ivan F M Lo
- Department of Health, Clinical Genetic Service, Hong Kong
| | - Mary H Y Tang
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, HKSAR
| |
Collapse
|
49
|
Grati FR, Gross SJ. Noninvasive screening by cell-free DNA for 22q11.2 deletion: Benefits, limitations, and challenges. Prenat Diagn 2019; 39:70-80. [PMID: 30625249 DOI: 10.1002/pd.5391] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 12/16/2022]
Abstract
Cell-free DNA (cfDNA) testing for fetal aneuploidy is one of the most important technical advances in prenatal care. Additional chromosome targets beyond common aneuploidies, including the 22q11.2 microdeletion, are now available because of this clinical testing technology. While there are numerous potential benefits, 22q11.2 microdeletion screening using cfDNA testing also presents significant limitations and pitfalls. Practitioners who are offering this test should provide comprehensive pretest and posttest prenatal counselling. The discussion should include the possibility of an absence of a result, as well as the risk of possible discordance between cfDNA screening results and the actual fetal genetic chromosomal constitution. The goal of this review is to provide an overview of the cfDNA testing technologies for 22q11.2 microdeletions screening, describe the current state of test validation and clinical experience, review "no results" and discordant findings based on differing technologies, and discuss management options.
Collapse
Affiliation(s)
- Francesca Romana Grati
- Research and Development, Cytogenetics and Medical Genetics Unit, TOMA Advanced Biomedical Assays S.p.A., Busto Arsizio (Varese), Italy
| | - Susan J Gross
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| |
Collapse
|
50
|
Cai M, Huang H, Su L, Lin N, Wu X, Xie X, An G, Li Y, Lin Y, Xu L. Fetal congenital heart disease: Associated anomalies, identification of genetic anomalies by single-nucleotide polymorphism array analysis, and postnatal outcome. Medicine (Baltimore) 2018; 97:e13617. [PMID: 30558042 PMCID: PMC6320040 DOI: 10.1097/md.0000000000013617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Congenital heart disease (CHD) is one of the most common birth defects; however, the mechanisms underlying its development are poorly understood. Recently, heritable genetic factors, including copy number variations (CNVs) and single nucleotide polymorphisms (SNPs), have been implicated in its etiology. The aim of this study was to investigate the utility of a SNP array for the prenatal diagnosis of CHD and the improvement of prenatal genetic counseling and to compare this approach to traditional chromosome analysis. METHODS One hundred and fortysix cases of CHD detected by prenatal echocardiography were analyzed. Of these, 110 were isolated CHD and 36 were of CHD with extracardiac defects. SNP analysis was performed using the Affymetrix CytoScan HD platform, which was followed by karyotype analysis. All annotated CNVs were validated by fluorescence in situ hybridization. RESULTS Karyotype analysis identified chromosomal abnormalities in 19 of 146 cases. In addition to the 15 chromosomal abnormalities that were consistent with the results of karyotype analysis, the SNP array identified abnormal CNVs in an additional 15.2% (22/145) cases; of these, 15 were pathogenic CNVs, three were variations of uncertain clinical significance, and four were benign CNVs. The rates at which the SNP array detected pathogenic CNVs differed significantly between cases of isolated CHD and CHD with extracardiac defects (13.6% vs. 72.2%, P = .001). The results of the SNP array also affected the rate of pregnancy termination. CONCLUSION Combining SNP array with cytogenetic analyses is particularly effective for identifying chromosomal abnormalities in CNVs in fetuses with CHD, which also affects obstetrical outcomes.
Collapse
|