1
|
Markey BK, Leonard FC. Special Issue-Resistant Staphylococci in Animals. Vet Sci 2023; 10:vetsci10040240. [PMID: 37104395 PMCID: PMC10142333 DOI: 10.3390/vetsci10040240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 04/28/2023] Open
Abstract
Staphylococci figure prominently among those bacteria demonstrating antimicrobial resistance (AMR) and are thus responsible for significant problems concerning the treatment of the animals and humans that they infect [...].
Collapse
Affiliation(s)
- Bryan K Markey
- Section of Veterinary Pathobiology, School of Veterinary Medicine, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland
| | - Finola C Leonard
- Section of Veterinary Pathobiology, School of Veterinary Medicine, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland
| |
Collapse
|
2
|
Detecting mecA in Faecal Samples: A Tool for Assessing Carriage of Meticillin-Resistant Staphylococci in Pets and Owners in the Microbiological ‘Fast Age’? MICROBIOLOGY RESEARCH 2023. [DOI: 10.3390/microbiolres14010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Sampling animals for carriage of meticillin-resistant, coagulase-positive staphylococci (MRCoPS), considered zoonotic pathogens, can be challenging and time-consuming. Developing methods to identify mecA from non-invasive samples, e.g., faeces, would benefit AMR surveillance and management of MRS carrier animals. This study aimed to distinguish MRS carriers from non-carriers from faecal samples using quantitative polymerase chain reaction (qPCR) for mecA. Paired faecal and nasal swab samples (n = 86) were obtained from 13 dogs and 20 humans as part of a longitudinal study. Nasal MRCoPS carriage (either MR-Staphylococcus aureus or MR-Staphylococcus pseudintermedius was confirmed by identification of species (nuc) and meticillin resistance (mecA) (PCR). Faecal DNA (n = 69) was extracted and a qPCR method was optimised to provide a robust detection method. The presence of faecal mecA was compared between MRS carriers and non-carriers (Kruskal–Wallis test). Nasal swabbing identified seven canine and four human MRCoPS carriers. mecA was detected in 13/69 faecal samples, including four MRCoPS carriers and nine non-carriers. For dogs, there was no significant association (p = 1.000) between carrier status and mecA detection; for humans, mecA was more commonly detected in MRCoPS carriers (p = 0.047). mecA was detected in faeces of MRCoPS carriers and non-carriers by qPCR, but larger sample sizes are required to determine assay sensitivity. This rapid method enables passive surveillance of mecA in individuals and the environment.
Collapse
|
3
|
Sebola DC, Oguttu JW, Kock MM, Qekwana DN. Hospital-acquired and zoonotic bacteria from a veterinary hospital and their associated antimicrobial-susceptibility profiles: A systematic review. Front Vet Sci 2023; 9:1087052. [PMID: 36699325 PMCID: PMC9868922 DOI: 10.3389/fvets.2022.1087052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Background Hospital-acquired infections (HAIs) are associated with increased mortality, morbidity, and an economic burden due to costs associated with extended hospital stays. Furthermore, most pathogens associated with HAIs in veterinary medicine are zoonotic. This study used published data to identify organisms associated with HAIs and zoonosis in veterinary medicine. Furthermore, the study also investigated the antimicrobial-susceptibility profile of these bacterial organisms. Methods A systematic literature review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. Search terms and five electronic databases were used to identify studies published over 20 years (2000-2020). The risk of bias was assessed using the "Strengthening the Reporting of Observational Studies in Epidemiology-Vet" (STROBE-Vet) checklist. Results Out of the identified 628 papers, 27 met the inclusion criteria for this study. Most studies (63%, 17/27) included were either from small animal or companion animal clinics/hospitals, while 5% (4/27) were from large animal clinics/hospitals inclusive of bovine and equine hospitals. Hospital-acquired bacteria were reported from environmental surfaces (33%, 9/27), animal clinical cases (29.6%, 8/27), and fomites such as cell phones, clippers, stethoscopes, and computers (14.8%, 4/27). Staphylococcus spp. was the most (63%; 17/27) reported organism, followed by Escherichia coli (19%; 5/27), Enterococcus spp. (15%, 4/27), Salmonella spp. (15%; 4/27), Acinetobacter baumannii (15%, 4/27), Clostridioides difficile (4%, 1/27), and Pseudomonas aeruginosa (4%; 1/27). Multidrug-resistant (MDR) organisms were reported in 71% (12/17) of studies linked to Methicillin-resistant Staphylococcus aureus (MRSA), Methicillin-resistant Staphylococcus pseudintermedius (MRSP), Enterococcus spp., Salmonella Typhimurium, A. baumannii, and E. coli. The mecA gene was identified in both MRSA and MRSP, the blaCMY-2 gene in E. coli and Salmonella spp., and the vanA gene in E. faecium isolate. Six studies reported organisms from animals with similar clonal lineage to those reported in human isolates. Conclusion Organisms associated with hospital-acquired infections and zoonosis have been reported from clinical cases, environmental surfaces, and items used during patient treatment and care. Staphylococcus species is the most reported organism in cases of HAIs and some isolates shared similar clonal lineage to those reported in humans. Some organisms associated with HAIs exhibit a high level of resistance and contain genes associated with antibiotic resistance.
Collapse
Affiliation(s)
- Dikeledi C. Sebola
- Section Veterinary Public Health, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - James W. Oguttu
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Johannesburg, South Africa
| | - Marleen M. Kock
- Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa,Tshwane Academic Division, National Health Laboratory Service, Pretoria, South Africa
| | - Daniel N. Qekwana
- Section Veterinary Public Health, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa,*Correspondence: Daniel N. Qekwana ✉
| |
Collapse
|
4
|
Wang Z, Guo L, Li J, Li J, Cui L, Dong J, Meng X, Qian C, Wang H. Antibiotic resistance, biofilm formation, and virulence factors of isolates of staphylococcus pseudintermedius from healthy dogs and dogs with keratitis. Front Vet Sci 2022; 9:903633. [PMID: 36032292 PMCID: PMC9399793 DOI: 10.3389/fvets.2022.903633] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Canine bacterial keratitis is a common infection that can potentially threaten vision. Staphylococcus pseudintermedius (S. pseudintermedius) is an opportunistic pathogen that has been isolated from the canine conjunctival sac but there are only a few reports on the role of this bacterium in canine keratitis. This study focused on the distribution rate of S. pseudintermedius in the canine conjunctival sac, and the antibiotic resistance, biofilm-producing ability, and dissemination of virulence factors in strains of S. pseudintermedius isolated from healthy dogs and dogs with keratitis. The study included 35 healthy dogs and 40 dogs with keratitis. Bacterial species were confirmed by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI–TOF MS). Strains of S. pseudintermedius were screened for resistance against nine different antibiotics by the Kirby–Bauer assay. The ability to produce biofilm was investigated by microtiter plate assay (MtP) and amplification of icaA and icaD genes. Virulence factors in the strains were also evaluated. A total of 132 aerobic bacteria were isolated from the 119 samples in the study. Among them, 67 bacterial strains were isolated from 70 eyes of healthy dogs, and 65 bacterial strains were isolated from 49 eyes of dogs with keratitis. The prevalence of S. pseudintermedius, which was the most frequent bacterial isolate in both the groups, was 20.9% in the healthy group and 23.08% in the keratitis group. Most of the isolates of S. pseudintermedius were sensitive to rifampin (96.6%), oxacillin (100%), and neomycin (96.6%), and resistant to tetracycline (96.6%). Virulence factors such as lip (96.6%), hlgB (96.6%), and hlgA (96.6%) were found in most of the isolates, and 89.66% of isolates were classed as biofilm producers. In conclusion, S. pseudintermedius was the common bacterium in the conjunctivital sac of the healthy dogs and dogs with keratitis in Yangzhou, China, and the presence of virulence factors and biofilm-formation ability were high in the strains isolated from the dogs with keratitis.
Collapse
Affiliation(s)
- Zhihao Wang
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, China
| | - Long Guo
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, China
| | - Jun Li
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, China
| | - Jianji Li
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, China
| | - Luying Cui
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, China
| | - Junsheng Dong
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, China
| | - Xia Meng
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, China
| | - Chen Qian
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, China
| | - Heng Wang
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, China
- *Correspondence: Heng Wang
| |
Collapse
|
5
|
Harbour L, Schick A, Mount R, White A. Rifampicin treatment of canine multidrug-resistant meticillin-resistant staphylococcal pyoderma: A retrospective study of 51 cases. Vet Dermatol 2022; 33:384-391. [PMID: 35945630 DOI: 10.1111/vde.13105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 01/23/2023]
Abstract
BACKGROUND Rifampicin (RFP) is a potential treatment for canine multidrug-resistant (MDR) meticillin-resistant staphylococci (MRS), yet the use of lower doses based on recent MIC data has not been evaluated in vivo. HYPOTHESIS/OBJECTIVES To provide information on the efficacy and safety of low-dose range RFP (≤6 mg/kg/day) for the treatment of canine MDR MRS pyoderma. ANIMALS Fifty-one client-owned dogs. MATERIALS AND METHODS Retrospective review of dogs medical records. Dogs were from 11 US dermatology referral practices and had oral RFP at ≤6 mg/kg/day. Data evaluated included response to treatment, adverse events, and serum changes in alanine aminotransferase (ALT) and alkaline phosphatase (ALP). RESULTS Complete resolution of pyoderma occurred in 39 of 51 dogs (76.5%). Topical antimicrobials were used concurrently in most cases (47 of 51; 92.2%). ALP elevation >1.5-fold of baseline or the high end of the reference range occurred in nine of 37 (24.3%) dogs, while ALT elevation above baseline and the high end of the reference range occurred in two of 36 (5.6%). Only six of 51 (11.8%) had clinical adverse events during treatment; five of six (83.3%) were mild reactions consisting of lethargy and gastrointestinal signs, while one dog had a possible cutaneous adverse drug reaction. Of those that experienced clinical adverse events, four of six (66.7%) did not have concurrent increased liver enzyme activity, while two of six (33.3%) had elevations in ALP alone. CONCLUSIONS AND CLINICAL RELEVANCE Low-dose RFP (≤6 mg/kg/day) appears to be a relatively safe and effective single-agent systemic antibiotic in combination with topical antimicrobials for canine MDR MRS pyoderma.
Collapse
Affiliation(s)
| | | | | | - Amelia White
- Department of Clinical Sciences, Auburn University, Auburn, AL, USA
| |
Collapse
|
6
|
Fungwithaya P, Sontigun N, Boonhoh W, Boonchuay K, Wongtawan T. Antimicrobial resistance in Staphylococcus pseudintermedius on the environmental surfaces of a recently constructed veterinary hospital in Southern Thailand. Vet World 2022; 15:1087-1096. [PMID: 35698521 PMCID: PMC9178593 DOI: 10.14202/vetworld.2022.1087-1096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/17/2022] [Indexed: 11/26/2022] Open
Abstract
Background and Aim: Staphylococcus pseudintermedius is a zoonotic bacterium commonly found in animals, especially dogs. These bacteria can survive on environmental surfaces for several months. The infection of S. pseudintermedius from the environment is possible, but properly cleaning surface objects can prevent it. This study aimed to investigate the prevalence of methicillin-resistant S. pseudintermedius (MRSP) in the environment of a recently constructed veterinary hospital in Southern Thailand, where we hypothesized that the prevalence of MRSP might be very low. Materials and Methods: At three different time points, 150 samples were collected from different environmental surfaces and wastewater across the veterinary hospital. The collection was done after the hospital’s cleaning. Bacteria were purified in the culture before being identified as species by biochemical tests and polymerase chain reaction (PCR). Next, the antimicrobial-resistant profile was performed using an automated system (Vitek 2). Finally, the antimicrobial resistance genes were identified using PCR. Results: Fifteen colonies of S. pseudintermedius were isolated from the surfaces of eight floors, four tables, two chairs, and one rebreathing tube. Fourteen colonies (93.3%) were multidrug-resistant (MDR) and carried the blaZ gene (93.3%). The majority of colonies were resistant to benzylpenicillin (93.3%), cefovecin (93.3%), ceftiofur (93.3%), kanamycin (93.3%), and neomycin (93.3%). Notably, only four colonies (26.7%) were methicillin-susceptible S. pseudintermedius, whereas 11 colonies (73.3%) were MRSP and carried both the mecA and blaZ genes. Five MRSP (45.5%) were resistant to at least 14 antimicrobial drugs, represented as extensively drug-resistant (XDR) bacteria. Ten of eleven MRSP (90.9%) were Staphylococcal chromosomal mec type V, while another displayed untypeable. Despite the routine and extensive cleaning with detergent and disinfectant, MRSP isolates were still detectable. Conclusion: Many isolates of MRSP were found in this veterinary hospital. Almost all of them were MDR, and nearly half were XDR, posing a threat to animals and humans. In addition, the current hospital cleaning procedure proved ineffective. Future research should be conducted to determine the bacterial biofilm properties and bacterial sensitivity to certain detergents and disinfectants.
Collapse
Affiliation(s)
- Punpichaya Fungwithaya
- Centre of Excellence Research for Melioidosis and other Microorganism, Walailak University, Nakhon Si Thammarat 80160, Thailand; Centre for One Health, Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Narin Sontigun
- Centre of Excellence Research for Melioidosis and other Microorganism; Walailak University, Nakhon Si Thammarat 80160, Thailand; Centre for One Health, Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Worakan Boonhoh
- Centre for One Health, Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Kanpapat Boonchuay
- Centre for One Health, Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Tuempong Wongtawan
- Centre of Excellence Research for Melioidosis and other Microorganism, Walailak University, Nakhon Si Thammarat 80160, Thailand; Centre for One Health, Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|