1
|
Meng Q, Wang W, Wang H, Tao Y, Anastassova N, Sun T, Sun Y, Wang L. Photothermal and enhanced chemodynamic reinforced anti-tumor therapy based on PDA@POM nanocomposites. J Colloid Interface Sci 2025; 678:796-803. [PMID: 39312868 DOI: 10.1016/j.jcis.2024.09.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/05/2024] [Accepted: 09/15/2024] [Indexed: 09/25/2024]
Abstract
Chemodynamic therapy (CDT) and photothermal therapy (PTT) have both demonstrated considerable efficacy in the tumor treatment individually, owing to their non-invasive nature and excellent selectivity. However, due to the propensity of tumors for metastasis and recurrence, a singular therapeutic approach falls short of achieving optimal treatment outcomes. Polydopamine (PDA) has excellent photothermal conversion ability and polyoxometalates (POMs) possess diverse enzymatic activities. Here, we synthesized PDA@POM nanospheres comprising polydopamine-coated Tungsten-based polyoxometalate (W-POM). These nanospheres leverage dual enzymatic activities that synergistically enhance both chemodynamic and photothermal therapies for tumor treatment. The PDA-mediated PTT effect enables precise tumor cell destruction, while the W-POM nanozymes catalyzes the generation of highly toxic reactive oxygen species (ROS) from hydrogen peroxide within tumor cells through a Fenton-like reaction, which mitigates tumor hypoxia and induces tumor cell death. This synergistic photothermal catalytic therapy shows enhanced efficacy in tumor suppression, providing a promising new approach for tumor treatment.
Collapse
Affiliation(s)
- Qingyao Meng
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Wenxin Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Haozhe Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Ying Tao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Neda Anastassova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Building 9, 1113 Sofia, Bulgaria; University of Chemical Technology and Metallurgy, Department of Organic Chemistry, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria
| | - Tiedong Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China.
| | - Yuan Sun
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, China.
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
2
|
Wu X, Wang F, Yang X, Gong Y, Niu T, Chu B, Qu Y, Qian Z. Advances in Drug Delivery Systems for the Treatment of Acute Myeloid Leukemia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403409. [PMID: 38934349 DOI: 10.1002/smll.202403409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Acute myeloid leukemia (AML) is a common and catastrophic hematological neoplasm with high mortality rates. Conventional therapies, including chemotherapy, hematopoietic stem cell transplantation (HSCT), immune therapy, and targeted agents, have unsatisfactory outcomes for AML patients due to drug toxicity, off-target effects, drug resistance, drug side effects, and AML relapse and refractoriness. These intrinsic limitations of current treatments have promoted the development and application of nanomedicine for more effective and safer leukemia therapy. In this review, the classification of nanoparticles applied in AML therapy, including liposomes, polymersomes, micelles, dendrimers, and inorganic nanoparticles, is reviewed. In addition, various strategies for enhancing therapeutic targetability in nanomedicine, including the use of conjugating ligands, biomimetic-nanotechnology, and bone marrow targeting, which indicates the potential to reverse drug resistance, are discussed. The application of nanomedicine for assisting immunotherapy is also involved. Finally, the advantages and possible challenges of nanomedicine for the transition from the preclinical phase to the clinical phase are discussed.
Collapse
Affiliation(s)
- Xia Wu
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Fangfang Wang
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Xijing Yang
- The Experimental Animal Center of West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Yuping Gong
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Ting Niu
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Bingyang Chu
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Ying Qu
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Zhiyong Qian
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| |
Collapse
|
3
|
Chu H, Xue J, Yang Y, Zheng H, Luo D, Li Z. Advances of Smart Stimulus-Responsive Microneedles in Cancer Treatment. SMALL METHODS 2024; 8:e2301455. [PMID: 38148309 DOI: 10.1002/smtd.202301455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/09/2023] [Indexed: 12/28/2023]
Abstract
Microneedles (MNs) have emerged as a highly promising technology for delivering drugs via the skin. They provide several benefits, including high drug bioavailability, non-invasiveness, painlessness, and high safety. Traditional strategies for intravenous delivery of anti-tumor drugs have risks of systemic toxicity and easy development of drug resistance, while MN technology facilitates precise delivery and on-demand release of drugs in local tissues. In addition, by further combining with stimulus-responsive materials, the construction of smart stimulus-responsive MNs can be achieved, which can respond to specific physical/chemical stimuli from the internal or external environment, thereby further improving the accuracy of tumor treatment and reducing toxicity to surrounding tissues/cells. This review systematically summarizes the classification, materials, and reaction mechanisms of stimulus-responsive MNs, outlines the benefits and challenges of various types of MNs, and details their application and latest progress in cancer treatment. Finally, the development prospects of smart MNs in tumor treatment are also discussed, bringing inspiration for future precision treatment of tumors.
Collapse
Affiliation(s)
- Huaqing Chu
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Jiangtao Xue
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuan Yang
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hui Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Dan Luo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| |
Collapse
|
4
|
Ghezloo F, Chang OH, Knezevich SR, Shaw KC, Thigpen KG, Reisch LM, Shapiro LG, Elmore JG. Robust ROI Detection in Whole Slide Images Guided by Pathologists' Viewing Patterns. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024:10.1007/s10278-024-01202-x. [PMID: 39122892 DOI: 10.1007/s10278-024-01202-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/24/2024] [Accepted: 07/05/2024] [Indexed: 08/12/2024]
Abstract
Deep learning techniques offer improvements in computer-aided diagnosis systems. However, acquiring image domain annotations is challenging due to the knowledge and commitment required of expert pathologists. Pathologists often identify regions in whole slide images with diagnostic relevance rather than examining the entire slide, with a positive correlation between the time spent on these critical image regions and diagnostic accuracy. In this paper, a heatmap is generated to represent pathologists' viewing patterns during diagnosis and used to guide a deep learning architecture during training. The proposed system outperforms traditional approaches based on color and texture image characteristics, integrating pathologists' domain expertise to enhance region of interest detection without needing individual case annotations. Evaluating our best model, a U-Net model with a pre-trained ResNet-18 encoder, on a skin biopsy whole slide image dataset for melanoma diagnosis, shows its potential in detecting regions of interest, surpassing conventional methods with an increase of 20%, 11%, 22%, and 12% in precision, recall, F1-score, and Intersection over Union, respectively. In a clinical evaluation, three dermatopathologists agreed on the model's effectiveness in replicating pathologists' diagnostic viewing behavior and accurately identifying critical regions. Finally, our study demonstrates that incorporating heatmaps as supplementary signals can enhance the performance of computer-aided diagnosis systems. Without the availability of eye tracking data, identifying precise focus areas is challenging, but our approach shows promise in assisting pathologists in improving diagnostic accuracy and efficiency, streamlining annotation processes, and aiding the training of new pathologists.
Collapse
Affiliation(s)
- Fatemeh Ghezloo
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA.
| | - Oliver H Chang
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | | | | | - Lisa M Reisch
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Linda G Shapiro
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Joann G Elmore
- Department of Medicine, David Geffen School of Medicine, University of California, Los AngelesLos Angeles, CA, USA
| |
Collapse
|
5
|
Sun Y, Cao Z, Zhang X, Zhu X, Xu Z, Zhou H, Wei X, Du W, Xu L. Rod-Shaped Au@Ce Nano-Platforms for Enhancing Photodynamic Tumor Collaborative Therapy. SMALL METHODS 2024:e2400945. [PMID: 39097952 DOI: 10.1002/smtd.202400945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/22/2024] [Indexed: 08/06/2024]
Abstract
Tumor photodynamic therapy (PDT) relies on intratumoral free radicals, while the limited oxygen source and the depletion of tissue oxygen may exacerbate the hypoxia. As the treatment progresses, there will eventually be a problem of insufficient free radicals. Here, it is found that Au@CeO2 nano-rods (Au@Ce NRs), assembled by gold nano-rods (Au NRs) and ceria nanoparticles (CeO2 NPs), can efficaciously absorb near-infrared light (NIR) to promote the release of oxygen and free radicals. Au@Ce NRs exhibit a higher proportion of Ce3+ (Ce2O3) after oxygen release, while Ce3+ is subsequently oxidized to Ce4+ (CeO2) by trace H2O2. Interestingly, Au@Ce NRs re-oxidized by trace H2O2 can re-releasing oxygen and free radicals again upon NIR treatment, achieving oxygenation/oxygen evolution, similar to charging/discharging. This loop maximizes the conversion of limited oxygen source into highly cytotoxic free radicals. As a result, when B16-F10 cells are treated by NIR/Au@Ce NRs, more tumor cells undergo apoptosis, consistent with the higher level of free radicals. Importantly, NIR/Au@Ce NRs successfully suppresses tumor growth and promotes the generation of epidermal collagen fibers in the transplanted tumor model. Therefore, the rod-shaped Au@Ce NRs provide an ideal platform for maximizing the utilization of intratumoral oxygen sources and improving the treatment of melanoma.
Collapse
Affiliation(s)
- Yuxiang Sun
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, P. R. China
| | - Ziqi Cao
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital, School of Medicine, Shanghai Jiaotong University, No.600, Yishan Road, Xuhui, Shanghai, 200233, P. R. China
| | - Xiaoli Zhang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China
| | - Xingchen Zhu
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China
| | - Zhenyang Xu
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China
| | - Hantong Zhou
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China
| | - Xiaoer Wei
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital, School of Medicine, Shanghai Jiaotong University, No.600, Yishan Road, Xuhui, Shanghai, 200233, P. R. China
| | - Wenxian Du
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital, School of Medicine, Shanghai Jiaotong University, No.600, Yishan Road, Xuhui, Shanghai, 200233, P. R. China
| | - Li Xu
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China
| |
Collapse
|
6
|
Gu P, Zhao J, Zhang W, Ruan X, Hu L, Zeng Y, Hou X, Zheng X, Gao M, Chi J. An Inducible CRISPR-dCas9-Based Transcriptional Repression System for Cancer Therapy. SMALL METHODS 2024; 8:e2301310. [PMID: 38164884 DOI: 10.1002/smtd.202301310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Gene therapy has been adapted for improving malignant tumor treatment. However, pharmacotherapies targeting cancer remain limited and are generally inapplicable for rare disease patients. Oleanolic acid (OA) is a plant-derived triterpenoid that is frequently used in Chinese medicine as a safe but slow-acting treatment for many disorders. Here, the congruent pharmacological activities of OA and CRISPR-dCas9 in targeting AURKA or KDM1A and improving disease-specific prognosis and used a synthetic-biology-inspired design principle to engineer a therapeutic gene circuit that enables a concerted action of both drugs are utilized. In particular, the OA-triggered CRISPR-dCas9 transcriptional repression system rapidly and simultaneously attenuated lung and thyroid cancer. Collectively, this work shows that rationally engineered synthetic gene circuits are capable of treating multifactorial diseases in a synergistic manner by multiplexing the targeting efficiencies of single therapeutics.
Collapse
Affiliation(s)
- Pengfei Gu
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Jie Zhao
- Department of Orthopedics, Tianjin University Tianjin Hospital, Tianjin, 300211, China
| | - Wei Zhang
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Xianhui Ruan
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Linfei Hu
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yu Zeng
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Xiukun Hou
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Xiangqian Zheng
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Ming Gao
- Department of Thyroid and Breast Surgery, Tianjin Union Medical Center, Tianjin, 300121, China
- Tianjin Key Laboratory of General Surgery in construction, Tianjin Union Medical Center, Tianjin, 300121, China
| | - Jiadong Chi
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| |
Collapse
|
7
|
Kumachova TK, Voronkov AS. Cutinsomes of Malus Mill. (Rosaceae) leaf and pericarp: genesis, localization, and transport. Micron 2024; 183:103657. [PMID: 38735105 DOI: 10.1016/j.micron.2024.103657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/14/2024]
Abstract
New data were obtained on specific bionanostructures, cutinsomes, which are involved in the formation of cuticles on the surface of leaf blades and pericarp of Malus domestica Borkh (Malus Mill., Rosaceae)introduced to the mountains at the altitudes of 1200 and 1700 m above sea level. Cutinsomes, which are electron-dense structures of spherical shape, have been identified by transmission electron microscopy. It was demonstrated that plastids can be involved in the synthesis of their constituent nanocomponents. The greatest number of nanoparticles was observed in the granal thylakoid lumen of the chloroplasts in palisade mesophyll cells and pericarp hypodermal cells. The transmembrane transport of cutinsomes into the cell wall cuticle proper by exocytosis has been visualized for the first time. The plasma membrane is directly involved in the excretion of nanostructures from the cell. Nanoparticles of cutinsomes in the form of necklace-like formations line up in a chain near cell walls, merge into larger conglomerates and are loaded into plasmalemma invaginations, and then, in membrane packing, they move into the cuticle, which covers both outer and inner cell walls of external tissues. The original materials obtained by us supplement the ideas about the non-enzymatic synthesis of cuticle components available in the literature and expand the cell compartment geography involved in this process.
Collapse
Affiliation(s)
- Tamara Kh Kumachova
- Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Timiryazevskaya 49, Moscow 127550, Russia
| | - Alexander S Voronkov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, Moscow 127276, Russia.
| |
Collapse
|
8
|
Malik T, Fatima B, Hussain D, Jabeen F, Jawad SEZ, Mohyuddin A, Najam-ul-Haq M. Zeolite Functionalized with Magnesium/Aluminum/Lanthanum Ternary Hydroxide for the Phosphometabolite Profiling of Malignant Neoplastic Serum Samples. ACS OMEGA 2024; 9:31335-31343. [PMID: 39072089 PMCID: PMC11270549 DOI: 10.1021/acsomega.3c08610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/02/2024] [Accepted: 04/01/2024] [Indexed: 07/30/2024]
Abstract
ATP upregulation is a significant driver of aggressive cancer cell phenotypes. Phosphometabolites participate in metabolic pathways and are overexpressed in cancer cell activity. Therefore, developing novel and accurate methods for detecting phosphometabolites in biological fluids is essential. In this research, a novel zeolite composite comprising magnesium, aluminum, and lanthanum hydroxides (MALZ) is developed and used for the first time to enrich phosphorylated metabolites via its inherent interaction with phosphate groups. SEM micrographs show a crystalline cubic structure with a small diameter of 36.62 nm. FTIR analysis confirms the phosphate adsorption and desorption using AMP and ATP as the standards. XRD analysis of MALZ provides structural information about the synthesized composite. Adsorption-desorption parameters, such as pH, shaking time, and MALZ concentration, are optimized to analyze the binding capacity of the fabricated material for phosphorylated metabolites. A kinetic study reveals the rapid and effective AMP and ATP adsorptions on MALZ. The multiple hydroxyl groups of ternary hydroxides and high affinity of lanthanum toward the phosphate group enrich 26 phosphometabolites from serum samples of malignant neoplastic patients. The LC-MS profile shows characteristic phosphometabolites that may act as signatures of cancer-related abnormal metabolic pathways. This study may provide an experimental pathway for detecting metabolites in human body fluids.
Collapse
Affiliation(s)
- Tasbiha Malik
- Department
of Biochemistry, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Batool Fatima
- Department
of Biochemistry, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Dilshad Hussain
- HEJ
Research Institute of Chemistry, International Center for Chemical
and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Fahmida Jabeen
- Institute
of Chemical Sciences, Bahauddin Zakariya
University, Multan 60800, Pakistan
| | - Shan E Zahra Jawad
- Department
of Biochemistry, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Abrar Mohyuddin
- Department
of Chemistry, The Emerson University Multan, Multan 60000, Pakistan
| | - Muhammad Najam-ul-Haq
- Institute
of Chemical Sciences, Bahauddin Zakariya
University, Multan 60800, Pakistan
| |
Collapse
|
9
|
Yu Y, Wei D, Bing T, Wang Y, Liu C, Xiao H. A Polyplatin with Hands-Holding Near-Infrared-II Fluorophores and Prodrugs at a Precise Ratio for Tracking Drug Fate with Realtime Readout and Treatment Feedback. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402452. [PMID: 38691849 DOI: 10.1002/adma.202402452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/16/2024] [Indexed: 05/03/2024]
Abstract
The in vivo fate of chemotherapeutic drugs plays a vital role in understanding the therapeutic outcome, side effects, and the mechanism. However, the lack of imaging abilities of drugs, tedious labeling processes, and premature leakage of imaging agents result in loss of fidelity between the drugs and imaging signals. Herein, an amphiphilic polymer is created by copolymerization of a near-infrared-II (NIR-II) fluorophore tracer (T) and an anticancer Pt(IV) prodrug (D) of cisplatin in a hand-holding manner into one polymer chain for the first time. The obtained PolyplatinDT is capable of delivering the drugs and the fluorophores concomitantly at a precise D/T ratio, thereby resulting in tracking the platinum drugs and even readout of them in real-time via NIR-II imaging. PolyplatinDT can self-assemble into nanoparticles, referred to as NanoplatinDT. Furthermore, a caspase-3 cleavable peptide that serves as an apoptosis reporter is attached to NanoplatinDT, resulting in NanoplatinDTR that are capable of simultaneously tracking platinum drugs and evaluating the therapeutic efficacy. Overall, it is reported here the design of the first theranostic polymer with anticancer drugs, drug tracers, and drug efficacy reporters that can work in concert to provide insight into the drug fate and mechanism of action.
Collapse
Affiliation(s)
- Yingjie Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dengshuai Wei
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Tiejun Bing
- Immunology and Oncology Center, ICE Bioscience, Beijing, 100176, China
| | - Yongheng Wang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Chaoyong Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China
| |
Collapse
|
10
|
Luo R, Le H, Wu Q, Gong C. Nanoplatform-Based In Vivo Gene Delivery Systems for Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312153. [PMID: 38441386 DOI: 10.1002/smll.202312153] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/05/2024] [Indexed: 07/26/2024]
Abstract
Gene therapy uses modern molecular biology methods to repair disease-causing genes. As a burgeoning therapeutic, it has been widely applied for cancer therapy. Since 1989, there have been numerous clinical gene therapy cases worldwide. However, a few are successful. The main challenge of clinical gene therapy is the lack of efficient and safe vectors. Although viral vectors show high transfection efficiency, their application is still limited by immune rejection and packaging capacity. Therefore, the development of non-viral vectors is overwhelming. Nanoplatform-based non-viral vectors become a hotspot in gene therapy. The reasons are mainly as follows. 1) Non-viral vectors can be engineered to be uptaken by specific types of cells or tissues, providing effective targeting capability. 2) Non-viral vectors can protect goods that need to be delivered from degradation. 3) Nanoparticles can transport large-sized cargo such as CRISPR/Cas9 plasmids and nucleoprotein complexes. 4) Nanoparticles are highly biosafe, and they are not mutagenic in themselves compared to viral vectors. 5) Nanoparticles are easy to scale preparation, which is conducive to clinical conversion and application. Here, an overview of the categories of nanoplatform-based non-viral gene vectors, the limitations on their development, and their applications in cancer therapy.
Collapse
Affiliation(s)
- Rui Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hao Le
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qinjie Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Changyang Gong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
11
|
Zhuo W, Wang W, Zhou W, Duan Z, He S, Zhang X, Yi L, Zhang R, Guo A, Gou X, Chen J, Huang N, Sun X, Qian Z, Wang X, Gao X. A Targeted and Responsive Nanoprodrug Delivery System for Synergistic Glioma Chemotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400630. [PMID: 38431937 DOI: 10.1002/smll.202400630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/18/2024] [Indexed: 03/05/2024]
Abstract
Doxorubicin (DOX) is widely used as a chemotherapeutic agent for both hematologic and solid tumors and is a reasonable candidate for glioma treatment. However, its effectiveness is hindered by significant toxicity and drug resistance. Moreover, the presence of the blood-brain barrier (BBB) brings a crucial challenge to glioma therapy. In response, a GSH-responsive and actively targeted nanoprodrug delivery system (cRGD/PSDOX-Cur@NPs) are developed. In this system, a disulfide bond-bridged DOX prodrug (PEG-SS-DOX) is designed to release specifically in the high glutathione (GSH) tumor environment, markedly reducing the cardiotoxicity associated with DOX. To further address DOX resistance, curcumin, serving as a P-glycoprotein (P-gp) inhibitor, effectively increased cellular DOX concentration. Consequently, cRGD/PSDOX-Cur@NPs exhibited synergistic anti-tumor effects in vitro. Furthermore, in vivo experiments validated the superior BBB penetration and brain-targeting abilities of cRGD/PSDOX-Cur@NPs, showcasing the remarkable potential for treating both subcutaneous and orthotopic gliomas. This research underscores that this nanoprodrug delivery system presents a novel approach to inhibiting glioma while addressing resistance and systemic toxicity.
Collapse
Affiliation(s)
- Weiling Zhuo
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Wanyu Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Wenjie Zhou
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children(Sichuan University), Ministry of Education, Chengdu, 610041, China
| | - Zhongxin Duan
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Shi He
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xifeng Zhang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Linbin Yi
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Rui Zhang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Anjie Guo
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xinyu Gou
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Junli Chen
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Ning Huang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xiaodong Sun
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Zhiyong Qian
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xiang Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| |
Collapse
|
12
|
Tang X, Zhao S, Luo J, Wang B, Wu X, Deng R, Chang K, Chen M. Smart Stimuli-Responsive Spherical Nucleic Acids: Cutting-Edge Platforms for Biosensing, Bioimaging, and Therapeutics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310732. [PMID: 38299771 DOI: 10.1002/smll.202310732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/27/2023] [Indexed: 02/02/2024]
Abstract
Spherical nucleic acids (SNAs) with exceptional colloidal stability, multiple modularity, and programmability are excellent candidates to address common molecular delivery-related issues. Based on this, the higher targeting accuracy and enhanced controllability of stimuli-responsive SNAs render them precise nanoplatforms with inestimable prospects for diverse biomedical applications. Therefore, tailored diagnosis and treatment with stimuli-responsive SNAs may be a robust strategy to break through the bottlenecks associated with traditional nanocarriers. Various stimuli-responsive SNAs are engineered through the incorporation of multifunctional modifications to meet biomedical demands with the development of nucleic acid functionalization. This review provides a comprehensive overview of prominent research in this area and recent advancements in the utilization of stimuli-responsive SNAs in biosensing, bioimaging, and therapeutics. For each aspect, SNA nanoplatforms that exhibit responsive behavior to both internal stimuli (including sequence, enzyme, redox reactions, and pH) and external stimuli (such as light and temperature) are highlighted. This review is expected to offer inspiration and guidance strategies for the rational design and development of stimuli-responsive SNAs in the field of biomedicine.
Collapse
Affiliation(s)
- Xiaoqi Tang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Shuang Zhao
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Jie Luo
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Binpan Wang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Xianlan Wu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Ruijia Deng
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Kai Chang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Ming Chen
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
- College of Pharmacy and Laboratory Medicine, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| |
Collapse
|
13
|
Zhu X, Shi Z, Mao Y, Lächelt U, Huang R. Cell Membrane Perforation: Patterns, Mechanisms and Functions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310605. [PMID: 38344881 DOI: 10.1002/smll.202310605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/21/2023] [Indexed: 02/21/2024]
Abstract
Cell membrane is crucial for the cellular activities, and any disruption to it may affect the cells. It is demonstrated that cell membrane perforation is associated with some biological processes like programmed cell death (PCD) and infection of pathogens. Specific developments make it a promising technique to perforate the cell membrane controllably and precisely. The pores on the cell membrane provide direct pathways for the entry and exit of substances, and can also cause cell death, which means reasonable utilization of cell membrane perforation is able to assist intracellular delivery, eliminate diseased or cancerous cells, and bring about other benefits. This review classifies the patterns of cell membrane perforation based on the mechanisms into 1) physical patterns, 2) biological patterns, and 3) chemical patterns, introduces the characterization methods and then summarizes the functions according to the characteristics of reversible and irreversible pores, with the aim of providing a comprehensive summary of the knowledge related to cell membrane perforation and enlightening broad applications in biomedical science.
Collapse
Affiliation(s)
- Xinran Zhu
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Huashan Hospital, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Zhifeng Shi
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 201203, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 201203, China
| | - Ulrich Lächelt
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, 1090, Austria
| | - Rongqin Huang
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Huashan Hospital, School of Pharmacy, Fudan University, Shanghai, 201203, China
| |
Collapse
|
14
|
Wang Y, Xie F, Zhao L. Spatially Confined Nanoreactors Designed for Biological Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310331. [PMID: 38183369 DOI: 10.1002/smll.202310331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/13/2023] [Indexed: 01/08/2024]
Abstract
The applications of nanoreactors in biology are becoming increasingly significant and prominent. Specifically, nanoreactors with spatially confined, due to their exquisite design that effectively limits the spatial range of biomolecules, attracted widespread attention. The main advantage of this structure is designed to improve reaction selectivity and efficiency by accumulating reactants and catalysts within the chambers, thus increasing the frequency of collisions between reactants. Herein, the recent progress in the synthesis of spatially confined nanoreactors and their biological applications is summarized, covering various kinds of nanoreactors, including porous inorganic materials, porous crystalline materials with organic components and self-assembled polymers to construct nanoreactors. These design principles underscore how precise reaction control could be achieved by adjusting the structure and composition of the nanoreactors to create spatial confined. Furthermore, various applications of spatially confined nanoreactors are demonstrated in the biological fields, such as biocatalysis, molecular detection, drug delivery, and cancer therapy. These applications showcase the potential prospects of spatially confined nanoreactors, offering robust guidance for future research and innovation.
Collapse
Affiliation(s)
- Yating Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Fengjuan Xie
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Liang Zhao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| |
Collapse
|
15
|
Liu J, Du C, Chen H, Huang W, Lei Y. Nano-Micron Combined Hydrogel Microspheres: Novel Answer for Minimal Invasive Biomedical Applications. Macromol Rapid Commun 2024; 45:e2300670. [PMID: 38400695 DOI: 10.1002/marc.202300670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/05/2024] [Indexed: 02/25/2024]
Abstract
Hydrogels, key in biomedical research for their hydrophilicity and versatility, have evolved with hydrogel microspheres (HMs) of micron-scale dimensions, enhancing their role in minimally invasive therapeutic delivery, tissue repair, and regeneration. The recent emergence of nanomaterials has ushered in a revolutionary transformation in the biomedical field, which demonstrates tremendous potential in targeted therapies, biological imaging, and disease diagnostics. Consequently, the integration of advanced nanotechnology promises to trigger a new revolution in the realm of hydrogels. HMs loaded with nanomaterials combine the advantages of both hydrogels and nanomaterials, which enables multifaceted functionalities such as efficient drug delivery, sustained release, targeted therapy, biological lubrication, biochemical detection, medical imaging, biosensing monitoring, and micro-robotics. Here, this review comprehensively expounds upon commonly used nanomaterials and their classifications. Then, it provides comprehensive insights into the raw materials and preparation methods of HMs. Besides, the common strategies employed to achieve nano-micron combinations are summarized, and the latest applications of these advanced nano-micron combined HMs in the biomedical field are elucidated. Finally, valuable insights into the future design and development of nano-micron combined HMs are provided.
Collapse
Affiliation(s)
- Jiacheng Liu
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chengcheng Du
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hong Chen
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wei Huang
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yiting Lei
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
16
|
Wang X, Guo Q, Guo J, Wang C. Magnetic composite microspheres with a controlled mesoporous shell for highly efficient DNA extraction and fragment screening. J Mater Chem B 2024; 12:4899-4908. [PMID: 38682549 DOI: 10.1039/d4tb00104d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Rapid extraction and screening of high-purity DNA fragments is an indispensable technology in advanced molecular biology. In this article, mesoporous magnetic composite microspheres (MSP@mTiO2) with tunable pore sizes were successfully fabricated for high-purity DNA extraction and fragment screening. Owing to the strong complexation ability of Ti ions with DNA phosphate groups and the high specific surface area of mesoporous microspheres, the MSP@mTiO2 microspheres possess excellent adsorption performance, where the saturated loading capacity of MSP@mTiO2 with a specific surface area of 122 m2 g-1 is as high as 575 μg mg-1 for a salmon sperm specimen. ITC experiments demonstrated that DNA adsorption on MSP@mTiO2 microspheres is mainly driven by entropy, which gives us more potential ways to regulate the balance of adsorption and desorption. Meanwhile, the mesoporous MSP@mTiO2 microspheres exhibit a much higher extraction efficiency compared with non-porous MSP@TiO2 for whole genome DNA from Arabidopsis thaliana plants. Interestingly, DNA fragments with different lengths could be screened by simply regulating the pore size of MSP@mTiO2 or the concentration of Na3PO4 in the eluent. A small pore size and low phosphate concentration are advantageous for the extraction of short-stranded DNA fragments, and DNA fragments (≤1000 bp) can be efficiently extracted when the mesopore size of MSP@mTiO2 is lower than 7.6 nm. The extraction results from the mesoporous composite microspheres provide new promising insights into the purification and screening of DNA from complex biological samples.
Collapse
Affiliation(s)
- Xiuli Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China.
| | - Qilin Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China.
| | - Jia Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China.
| | - Changchun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China.
| |
Collapse
|
17
|
Park SJ, Park I, Kim S, Kim MK, Kim S, Jeong H, Kim D, Cho SW, Park TE, Ni A, Lim H, Joo J, Lee JH, Kang JH. Extracorporeal Blood Treatment Using Functional Magnetic Nanoclusters Mitigates Organ Dysfunction of Sepsis in Swine. SMALL METHODS 2024; 8:e2301428. [PMID: 38161256 DOI: 10.1002/smtd.202301428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Mitigating sepsis-induced severe organ dysfunction with magnetic nanoparticles has shown remarkable advances in extracorporeal blood treatment. Nevertheless, treating large septic animals remains challenging due to insufficient magnetic separation at rapid blood flow rates (>6 L h-1) and limited incubation time in an extracorporeal circuit. Herein, superparamagnetic nanoclusters (SPNCs) coated with red blood cell (RBC) membranes are developed, which promptly capture and magnetically separate a wide range of pathogens at high blood flow rates in a swine sepsis model. The SPNCs exhibited an ultranarrow size distribution of clustered iron oxide nanocrystals and exceptionally high saturation magnetization (≈ 90 emu g-1) close to that of bulk magnetite. It is also revealed that CD47 on the RBCs allows the RBC-SPNCs to remain at a consistent concentration in the blood by evading innate immunity. The uniform size distribution of the RBC-SPNCs greatly enhances their effectiveness in eradicating various pathogenic materials in extracorporeal blood. The use of RBC-SPNCs for extracorporeal treatment of swine infected with multidrug-resistant E. coli is validated and found that severe bacteremic sepsis-induced organ dysfunction is significantly mitigated after 12 h. The findings highlight the potential application of RBC-SPNCs for extracorporeal therapy of severe sepsis in large animal models and potentially humans.
Collapse
Affiliation(s)
- Sung Jin Park
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Inwon Park
- Department of Emergency Medicine, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, 44919, Republic of Korea
| | - Suhyun Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Min Kyu Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Seonghye Kim
- Department of Emergency Medicine, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, 44919, Republic of Korea
| | - Hwain Jeong
- Department of Emergency Medicine, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, 44919, Republic of Korea
| | - Dongsung Kim
- Department of Emergency Medicine, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, 44919, Republic of Korea
| | - Seung Woo Cho
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Tae-Eun Park
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Aleksey Ni
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hankwon Lim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jinmyoung Joo
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, 44919, Republic of Korea
| | - Jae Hyuk Lee
- Department of Emergency Medicine, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, 44919, Republic of Korea
| | - Joo H Kang
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| |
Collapse
|
18
|
Su T, Zhao F, Ying Y, Li W, Li J, Zheng J, Qiao L, Che S, Yu J. Self-Monitoring Theranostic Nanomaterials: Emerging Visual Agents for Real-Time Monitoring of Tumor Treatment Processes. SMALL METHODS 2024; 8:e2301470. [PMID: 38044269 DOI: 10.1002/smtd.202301470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/14/2023] [Indexed: 12/05/2023]
Abstract
Self-monitoring in tumor therapy is a concept that allows for real-time monitoring of the location and state of applied nanomaterials. This monitoring relies on dynamic signals, such as wave or magnetic signals, which vary in response to changes in the location and state of nanomaterials. Dynamic changes in nanomaterials can be monitored using dynamic signals, making it possible to determine and control the treatment process. Theranostic nanomaterials, which possess unique physical and chemical properties, have recently been explored as a viable option for self-monitoring. With the help of self-monitoring, theranostic nanomaterials can guide themselves to achieve region-selective treatment with higher controllability and safety. In this review, self-monitoring theranostic nanomaterials will be introduced in three parts according to their roles during therapy: tumor accumulation, tumor therapy, and metabolism. The limitations and future challenges of current self-monitoring theranostic nanomaterials will also be discussed.
Collapse
Affiliation(s)
- Tuo Su
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Fan Zhao
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yao Ying
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Wangchang Li
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Juan Li
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jingwu Zheng
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Liang Qiao
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shenglei Che
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jing Yu
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
19
|
Xu Y, Cao L, Chen Y, Zhang Z, Liu W, Li H, Ding C, Pu J, Qian K, Xu W. Integrating Machine Learning in Metabolomics: A Path to Enhanced Diagnostics and Data Interpretation. SMALL METHODS 2024:e2400305. [PMID: 38682615 DOI: 10.1002/smtd.202400305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/07/2024] [Indexed: 05/01/2024]
Abstract
Metabolomics, leveraging techniques like NMR and MS, is crucial for understanding biochemical processes in pathophysiological states. This field, however, faces challenges in metabolite sensitivity, data complexity, and omics data integration. Recent machine learning advancements have enhanced data analysis and disease classification in metabolomics. This study explores machine learning integration with metabolomics to improve metabolite identification, data efficiency, and diagnostic methods. Using deep learning and traditional machine learning, it presents advancements in metabolic data analysis, including novel algorithms for accurate peak identification, robust disease classification from metabolic profiles, and improved metabolite annotation. It also highlights multiomics integration, demonstrating machine learning's potential in elucidating biological phenomena and advancing disease diagnostics. This work contributes significantly to metabolomics by merging it with machine learning, offering innovative solutions to analytical challenges and setting new standards for omics data analysis.
Collapse
Affiliation(s)
- Yudian Xu
- Department of Traditional Chinese Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Linlin Cao
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Yifan Chen
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Ziyue Zhang
- School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Wanshan Liu
- School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - He Li
- Department of Traditional Chinese Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Chenhuan Ding
- Department of Traditional Chinese Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Jun Pu
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Kun Qian
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China
- School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Wei Xu
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China
| |
Collapse
|
20
|
Mo C, Zhang W, Zhu K, Du Y, Huang W, Wu Y, Song J. Advances in Injectable Hydrogels Based on Diverse Gelation Methods for Biomedical Imaging. SMALL METHODS 2024:e2400076. [PMID: 38470225 DOI: 10.1002/smtd.202400076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/01/2024] [Indexed: 03/13/2024]
Abstract
The injectable hydrogels can deliver the loads directly to the predetermined sites and form reservoirs to increase the enrichment and retention of the loads in the target areas. The preparation and injection of injectable hydrogels involve the sol-gel transformation of hydrogels, which is affected by factors such as temperature, ions, enzymes, light, mechanics (self-healing property), and pH. However, tracing the injection, degradation, and drug release from hydrogels based on different ways of gelation is a major concern. To solve this problem, contrast agents are introduced into injectable hydrogels, enabling the hydrogels to be imaged under techniques such as fluorescence imaging, photoacoustic imaging, magnetic resonance imaging, and radionuclide imaging. This review details methods for causing the gelation of imageable hydrogels; discusses the application of injectable hydrogels containing contrast agents in various imaging techniques, and finally explores the potential and challenges of imageable hydrogels based on different modes of gelation.
Collapse
Affiliation(s)
- Chunxiang Mo
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 10010, China
| | - Weiyao Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 10010, China
| | - Kang Zhu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 10010, China
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wei Huang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Ying Wu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 10010, China
| | - Jibin Song
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 10010, China
| |
Collapse
|
21
|
Li T, Zhang Y, Wu F, Chen G, Li C, Wang Q. Rational Design of NIR-II Ratiometric Fluorescence Probes for Accurate Bioimaging and Biosensing In Vivo. SMALL METHODS 2024:e2400132. [PMID: 38470209 DOI: 10.1002/smtd.202400132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/27/2024] [Indexed: 03/13/2024]
Abstract
Intravital fluorescence imaging in the second near-infrared window (NIR-II, 900-1700 nm) has emerged as a promising method for non-invasive diagnostics in complex biological systems due to its advantages of less background interference, high tissue penetration depth, high imaging contrast, and sensitivity. However, traditional NIR-II fluorescence imaging, which is characterized by the "always on" or "turn on" mode, lacks the ability of quantitative detection, leading to low reproducibility and reliability during bio-detection. In contrast, NIR-II ratiometric fluorescence imaging can realize quantitative and reliable analysis and detection in vivo by providing reference signals for fluorescence correction, generating new opportunities and prospects during in vivo bioimaging and biosensing. In this review, the current design strategies and sensing mechanisms of NIR-II ratiometric fluorescence probes for bioimaging and biosensing applications are systematically summarized. Further, current challenges, future perspectives and opportunities for designing NIR-II ratiometric fluorescence probes are also discussed. It is hoped that this review can provide effective guidance for the design of NIR-II ratiometric fluorescence probes and promote its adoption in reliable biological imaging and sensing in vivo.
Collapse
Affiliation(s)
- Tuanwei Li
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yejun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Feng Wu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Guangcun Chen
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Chunyan Li
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Qiangbin Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| |
Collapse
|
22
|
Sun X, Yu Y, Qian K, Wang J, Huang L. Recent Progress in Mass Spectrometry-Based Single-Cell Metabolic Analysis. SMALL METHODS 2024; 8:e2301317. [PMID: 38032130 DOI: 10.1002/smtd.202301317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/10/2023] [Indexed: 12/01/2023]
Abstract
Single-cell analysis enables the measurement of biomolecules at the level of individual cells, facilitating in-depth investigations into cellular heterogeneity and precise interpretation of the related biological mechanisms. Among these biomolecules, cellular metabolites exhibit remarkable sensitivity to environmental and biochemical changes, unveiling a hidden world underlying cellular heterogeneity and allowing for the determination of cell physiological states. However, the metabolic analysis of single cells is challenging due to the extremely low concentrations, substantial content variations, and rapid turnover rates of cellular metabolites. Mass spectrometry (MS), characterized by its high sensitivity, wide dynamic range, and excellent selectivity, is employed in single-cell metabolic analysis. This review focuses on recent advances and applications of MS-based single-cell metabolic analysis, encompassing three key steps of single-cell isolation, detection, and application. It is anticipated that MS will bring profound implications in biomedical practices, serving as advanced tools to depict the single-cell metabolic landscape.
Collapse
Affiliation(s)
- Xuming Sun
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, 453003, P. R. China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang Medical University, Xinxiang, 453003, P. R. China
- Xinxiang Key Laboratory of Neurobiosensor, Xinxiang Medical University, Xinxiang, 453003, P. R. China
| | - Yi Yu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, 453003, P. R. China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang Medical University, Xinxiang, 453003, P. R. China
- Xinxiang Key Laboratory of Neurobiosensor, Xinxiang Medical University, Xinxiang, 453003, P. R. China
| | - Kun Qian
- School of Biomedical Engineering, Institute of Medical Robotics and Med X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Jiayi Wang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| | - Lin Huang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| |
Collapse
|
23
|
Zhang B, Chen J, Zhu Z, Zhang X, Wang J. Advances in Immunomodulatory MOFs for Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307299. [PMID: 37875731 DOI: 10.1002/smll.202307299] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/07/2023] [Indexed: 10/26/2023]
Abstract
Given the crucial role of immune system in the occurrence and progression of various diseases such as cancer, wound healing, bone defect, and inflammation-related diseases, immunomodulation is recognized as a potential solution for treatment of these diseases. Immunomodulation includes both immunosuppression in hyperactive immune conditions and immune activation in hypoactive conditions. For these purposes, metal-organic frameworks (MOFs) are investigated to modulate immune responses either by their own bioactivities or by delivering immunomodulatory agents due to their excellent biodegradability and high delivery capacity. This review starts with an overview of the synthesis strategies of immunomodulatory MOFs, followed by a summarization on the latest applications of immunomodulatory MOFs in cancer immunomodulatory, wound healing, inflammatory disease, and bone tissue engineering. A variety of design considerations, in order to optimize immunomodulatory properties and efficacy of MOFs, is also involved. Last, the challenges and perspectives of future research, which are expected to provide researchers with new insight into the design and application of immunomodulatory MOFs, are discussed.
Collapse
Affiliation(s)
- Binjing Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Junyu Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhou Zhu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xin Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
24
|
Yan X, Xin Y, Yu Y, Li X, Li B, Elsabahy M, Zhang J, Ma F, Gao H. Remotely Controllable Supramolecular Nanomedicine for Drug-Resistant Colorectal Cancer Therapy Caused by Fusobacterium nucleatum. SMALL METHODS 2024; 8:e2301309. [PMID: 38018349 DOI: 10.1002/smtd.202301309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/14/2023] [Indexed: 11/30/2023]
Abstract
Fusobacterium nucleatum (Fn) existing in the community of colorectal cancer (CRC) promotes CRC progression and causes chemotherapy resistance. Despite great efforts that have been made to overcome Fn-induced chemotherapy resistance by co-delivering antibacterial agents and chemotherapeutic drugs, increasing the drug-loading capacity and enabling controlled release of drugs remain challenging. In this study, a novel supramolecular upconversion nanoparticle (SUNP) is constructed by incorporating a positively charged polymer (PAMAM-LA-CD) with Fn inhibition capacity, a negatively charged platinum (IV) oxaliplatin prodrug (OXA-COOH), upconversion nanoparticle (UCNPs) and polyethylene glycol-azobenzene (PEG-Azo) to enhance drug-loading and enable on-demand drug release for drug-resistant CRC treatment. SUNPs exhibit high drug-loading capacity (30.8%) and good structural stability under normal physiological conditions, while disassembled upon exogenous NIR excitation and endogenous azo reductase in the CRC microenvironment to trigger drug release. In vitro and in vivo studies demonstrate that SUNPs presented good biocompatibility and robust performance to overcome chemoresistance, thereby significantly inhibiting Fn-infected cancer cell proliferation. This study leverages multiple dynamic chemical designs to integrate both advantages of drug loading and release in a single system, which provides a promising candidate for precision therapy of bacterial-related drug-resistant cancers.
Collapse
Affiliation(s)
- Xiangjie Yan
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
- Department of Materials Science and Engineering, Jinzhong University, Shanxi, 030619, China
| | - Youtao Xin
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Yunjian Yu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Xiaohui Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Boqiong Li
- Department of Materials Science and Engineering, Jinzhong University, Shanxi, 030619, China
| | - Mahmoud Elsabahy
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, 11829, Egypt
| | - Jimin Zhang
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Feihe Ma
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Hui Gao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
| |
Collapse
|
25
|
Yang Z, Wu S, Gao Y, Kou D, Lu K, Chen C, Zhou Y, Zhou D, Chen L, Ge J, Li C, Zeng J, Gao M. Unveiling the Biologically Dynamic Degradation of Iron Oxide Nanoparticles via a Continuous Flow System. SMALL METHODS 2024; 8:e2301479. [PMID: 38009499 DOI: 10.1002/smtd.202301479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/11/2023] [Indexed: 11/29/2023]
Abstract
Nanomaterials are increasingly being employed for biomedical applications, necessitating a comprehensive understanding of their degradation behavior and potential toxicity in the biological environment. This study utilizes a continuous flow system to simulate the biologically relevant degradation conditions and investigate the effects of pH, protein, redox species, and chelation ligand on the degradation of iron oxide nanoparticles. The morphology, aggregation state, and relaxivity of iron oxide nanoparticles after degradation are systematically characterized. The results reveal that the iron oxide nanoparticles degrade at a significantly higher rate under the acidic environment. Moreover, incubation with bovine serum albumin enhances the stability and decreases the dissolution rate of iron oxide nanoparticles. In contrast, glutathione accelerates the degradation of iron oxide nanoparticles, while the presence of sodium citrate leads to the fastest degradation. This study reveals that iron oxide nanoparticles undergo degradation through various mechanisms in different biological microenvironments. Furthermore, the dissolution and aggregation of iron oxide nanoparticles during degradation significantly impact their relaxivity, which has implications for their efficacy as magnetic resonance imaging contrast agents in vivo. The results provide valuable insights for assessing biosafety and bridge the gap between fundamental research and clinical applications of iron oxide nanoparticles.
Collapse
Affiliation(s)
- Zhe Yang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
- The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Shuwang Wu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Yun Gao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Dandan Kou
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Kuan Lu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
- The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Can Chen
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Yi Zhou
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
- The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Dandan Zhou
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Lei Chen
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Jianxian Ge
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Cang Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Jianfeng Zeng
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
- Suzhou Xinying Biomedical Technology Co. Ltd., Suzhou, 215000, China
| | - Mingyuan Gao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
- The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Suzhou Xinying Biomedical Technology Co. Ltd., Suzhou, 215000, China
| |
Collapse
|
26
|
Qu A, Sun M, Xu L, Liu L, Guo L, Chen P, Wang Q, Du Z, Wu Z, Xu C, Kuang H. Chiral Nanomaterials for Cancer Vaccines. SMALL METHODS 2024; 8:e2301332. [PMID: 37997213 DOI: 10.1002/smtd.202301332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/01/2023] [Indexed: 11/25/2023]
Abstract
Chirality is a fundamental characteristic of living organisms and is commonly observed at the biomolecule, cellular, and tissue levels. Chiral nanomaterials play an irreplaceable role in nanomedicine and nanobiology because of their unique enantioselectivity with biological components. Here, research progress relating to chiral nanomaterials in the field of vaccines is reviewed, including antigen presenting systems, immune adjuvants, and cancer vaccines. First, the common synthesis methods are outlined for different types of chiral nanomaterials, as well as their chiral sources, optical properties, and potential biological applications. Then, the application of chiral nanomaterials are discussed in the field of vaccines with reference to the promotion of antigen presentation and activation of the immune system for tumor immunotherapy. Finally, the current obstacles and future research directions of chiral nanomaterials are revealed with regard to regulating the immune system.
Collapse
Affiliation(s)
- Aihua Qu
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Maozhong Sun
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Liqiang Liu
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Lingling Guo
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Panpan Chen
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Qing Wang
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu, 214002, P. R. China
| | - Zhiyong Du
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu, 214002, P. R. China
| | - Zhimeng Wu
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| |
Collapse
|
27
|
Li J, Cai X, Jiang P, Wang H, Zhang S, Sun T, Chen C, Fan K. Co-based Nanozymatic Profiling: Advances Spanning Chemistry, Biomedical, and Environmental Sciences. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307337. [PMID: 37724878 DOI: 10.1002/adma.202307337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/12/2023] [Indexed: 09/21/2023]
Abstract
Nanozymes, next-generation enzyme-mimicking nanomaterials, have entered an era of rational design; among them, Co-based nanozymes have emerged as captivating players over times. Co-based nanozymes have been developed and have garnered significant attention over the past five years. Their extraordinary properties, including regulatable enzymatic activity, stability, and multifunctionality stemming from magnetic properties, photothermal conversion effects, cavitation effects, and relaxation efficiency, have made Co-based nanozymes a rising star. This review presents the first comprehensive profiling of the Co-based nanozymes in the chemistry, biology, and environmental sciences. The review begins by scrutinizing the various synthetic methods employed for Co-based nanozyme fabrication, such as template and sol-gel methods, highlighting their distinctive merits from a chemical standpoint. Furthermore, a detailed exploration of their wide-ranging applications in biosensing and biomedical therapeutics, as well as their contributions to environmental monitoring and remediation is provided. Notably, drawing inspiration from state-of-the-art techniques such as omics, a comprehensive analysis of Co-based nanozymes is undertaken, employing analogous statistical methodologies to provide valuable guidance. To conclude, a comprehensive outlook on the challenges and prospects for Co-based nanozymes is presented, spanning from microscopic physicochemical mechanisms to macroscopic clinical translational applications.
Collapse
Affiliation(s)
- Jingqi Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Xinda Cai
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Peng Jiang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Huayuan Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Shiwei Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Tiedong Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Chunxia Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
28
|
Lu Y, Fan L, Wang J, Hu M, Wei B, Shi P, Li J, Feng J, Zheng Y. Cancer Cell Membrane-Based Materials for Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306540. [PMID: 37814370 DOI: 10.1002/smll.202306540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/18/2023] [Indexed: 10/11/2023]
Abstract
The nanodelivery system provides a novel direction for disease diagnosis and treatment; however, its delivery effectiveness is restricted by the short biological half-life and inadequate tumor targeting. The immune evasion properties and homologous targeting capabilities of natural cell membranes, particularly those of cancer cell membranes (CCM), have gained significant interest. The integration of CCM and nanoparticles has resulted in the emergence of CCM-based nanoplatforms (CCM-NPs), which have gained significant attention due to their unique properties. CCM-NPs not only prolong the blood circulation time of core nanoparticles, but also direct them for homologous tumor targeting. Herein, the history and development of CCM-NPs as well as how these platforms have been used for biomedical applications are discussed. The application of CCM-NPs for cancer therapy will be described in detail. Translational efforts are currently under way and further research to address key areas of need will ultimately be required to facilitate the successful clinical adoption of CCM-NPs.
Collapse
Affiliation(s)
- Yongping Lu
- Science and Technologv Innovation Center, Guangyuan Central Hospital, Guangyuan, 628000, China
- Guangyuan Key Laboratory of Multifunctional Medical Hydrogel, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Linming Fan
- Science and Technologv Innovation Center, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Jun Wang
- Science and Technologv Innovation Center, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Mingxiang Hu
- Science and Technologv Innovation Center, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Baogang Wei
- Science and Technologv Innovation Center, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Ping Shi
- Science and Technologv Innovation Center, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| | - Jinyan Feng
- Science and Technologv Innovation Center, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Yu Zheng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
29
|
Zhang D, Wang M, Li Y, Liang G, Zheng W, Gui L, Li X, Zhang L, Zeng W, Yang Y, Zeng Y, Huang Z, Fan R, Lu Y, Guan J, Li T, Cheng J, Yang H, Chen L, Zhou J, Gong M. Integrated metabolomics revealed the photothermal therapy of melanoma by Mo 2C nanosheets: toward rehabilitated homeostasis in metabolome combined lipidome. J Mater Chem B 2024; 12:730-741. [PMID: 38165726 DOI: 10.1039/d3tb02123h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Melanoma, the most aggressive and life-threatening form of skin cancer, lacks innovative therapeutic approaches and deeper bioinformation. In this study, we developed a photothermal therapy (PTT) based on Mo2C nanosheets to eliminate melanoma while utilizing integrated metabolomics to investigate the metabolic shift of metabolome combined lipidome during PTT at the molecular level. Our results demonstrated that 1 mg ml-1 Mo2C nanosheets could efficiently convert laser energy into heat with a strong and stable photothermal effect (74 ± 0.9 °C within 7 cycles). Furthermore, Mo2C-based PTT led to a rapid decrease in melanoma volume (from 3.299 to 0 cm2) on the sixth day, indicating the effective elimination of melanoma. Subsequent integrated metabolomics analysis revealed significant changes in aqueous metabolites (including organic acids, amino acids, fatty acids, and amines) and lipid classes (including phospholipids, lysophospholipids, and sphingolipids), suggesting that melanoma caused substantial fluctuations in both metabolome and lipidome, while Mo2C-based PTT helped improve amino acid metabolism-related biological events (such as tryptophan metabolism) impaired by melanoma. These findings suggest that Mo2C nanosheets hold significant potential as an effective therapeutic agent for skin tumors, such as melanoma. Moreover, through exploring multidimensional bioinformation, integrated metabolomics technology provides novel insights for studying the metabolic effects of tumors, monitoring the correction of metabolic abnormalities by Mo2C nanosheet therapy, and evaluating the therapeutic effect on tumors.
Collapse
Affiliation(s)
- Dingkun Zhang
- Department of Plastic and Burn Surgery, Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P. R. China.
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Wang
- Department of Neurosurgery, Sichuan Clinical Medical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, P. R. China.
| | - Yijin Li
- Department of Plastic and Burn Surgery, Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P. R. China.
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Ge Liang
- Metabolomics and Proteomics Technology Platform, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Wen Zheng
- Metabolomics and Proteomics Technology Platform, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Luolan Gui
- Metabolomics and Proteomics Technology Platform, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Xin Li
- Metabolomics and Proteomics Technology Platform, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Lu Zhang
- Metabolomics and Proteomics Technology Platform, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Wenjuan Zeng
- Metabolomics and Proteomics Technology Platform, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Yin Yang
- Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Zeng
- Metabolomics and Proteomics Technology Platform, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Zhe Huang
- Department of Neurosurgery, Sichuan Clinical Medical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, P. R. China.
| | - Rong Fan
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, P. R. China
- Chengdu Research Institute, City University of Hong Kong, Chengdu, P. R. China
| | - Yang Lu
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, P. R. China
- Chengdu Research Institute, City University of Hong Kong, Chengdu, P. R. China
| | - Junwen Guan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Li
- Laboratory of Mitochondria and Metabolism, Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jingqiu Cheng
- Department of Plastic and Burn Surgery, Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P. R. China.
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Yang
- Department of Plastic and Burn Surgery, Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P. R. China.
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Ligang Chen
- Department of Neurosurgery, Sichuan Clinical Medical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, P. R. China.
| | - Jie Zhou
- Department of Neurosurgery, Sichuan Clinical Medical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, P. R. China.
| | - Meng Gong
- Department of Plastic and Burn Surgery, Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P. R. China.
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
30
|
Cheng Q, Shi X, Li Q, Wang L, Wang Z. Current Advances on Nanomaterials Interfering with Lactate Metabolism for Tumor Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305662. [PMID: 37941489 PMCID: PMC10797484 DOI: 10.1002/advs.202305662] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/15/2023] [Indexed: 11/10/2023]
Abstract
Increasing numbers of studies have shown that tumor cells prefer fermentative glycolysis over oxidative phosphorylation to provide a vast amount of energy for fast proliferation even under oxygen-sufficient conditions. This metabolic alteration not only favors tumor cell progression and metastasis but also increases lactate accumulation in solid tumors. In addition to serving as a byproduct of glycolytic tumor cells, lactate also plays a central role in the construction of acidic and immunosuppressive tumor microenvironment, resulting in therapeutic tolerance. Recently, targeted drug delivery and inherent therapeutic properties of nanomaterials have attracted great attention, and research on modulating lactate metabolism based on nanomaterials to enhance antitumor therapy has exploded. In this review, the advanced tumor therapy strategies based on nanomaterials that interfere with lactate metabolism are discussed, including inhibiting lactate anabolism, promoting lactate catabolism, and disrupting the "lactate shuttle". Furthermore, recent advances in combining lactate metabolism modulation with other therapies, including chemotherapy, immunotherapy, photothermal therapy, and reactive oxygen species-related therapies, etc., which have achieved cooperatively enhanced therapeutic outcomes, are summarized. Finally, foreseeable challenges and prospective developments are also reviewed for the future development of this field.
Collapse
Affiliation(s)
- Qian Cheng
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalHuazhong University of Science and TechnologyWuhan430022China
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhongUniversity of Science and TechnologyWuhan430022China
| | - Xiao‐Lei Shi
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalHuazhong University of Science and TechnologyWuhan430022China
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhongUniversity of Science and TechnologyWuhan430022China
| | - Qi‐Lin Li
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalHuazhong University of Science and TechnologyWuhan430022China
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhongUniversity of Science and TechnologyWuhan430022China
| | - Lin Wang
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalHuazhong University of Science and TechnologyWuhan430022China
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhongUniversity of Science and TechnologyWuhan430022China
| | - Zheng Wang
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchWuhan430022China
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhongUniversity of Science and TechnologyWuhan430022China
| |
Collapse
|
31
|
Jiang Z, Sun S, Liu J, Sun X. Recent Advances of Halloysite Nanotubes in Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306169. [PMID: 37670217 DOI: 10.1002/smll.202306169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/23/2023] [Indexed: 09/07/2023]
Abstract
Halloysite nanotubes (HNTs) have emerged as a highly regarded choice in biomedical research due to their exceptional attributes, including superior loading capacity, customizable surface characteristics, and excellent biocompatibility. HNTs feature tubular structures comprising alumina and silica layers, endowing them with a large surface area and versatile surface chemistries that facilitate selective modifications. Moreover, their substantial pore volume and wide range of pore sizes enable efficient entrapment of diverse functional molecules. This comprehensive review highlights the broad biomedical application spectrum of HNTs, shedding light on their potential as innovative and effective therapeutic agents across various diseases. It emphasizes the necessity of optimizing drug delivery techniques, developing targeted delivery systems, rigorously evaluating biocompatibility and safety through preclinical and clinical investigations, exploring combination therapies, and advancing scientific understanding. With further advancements, HNTs hold the promise to revolutionize the pharmaceutical industry, opening new avenues for the development of transformative treatments.
Collapse
Affiliation(s)
- Zheng Jiang
- Department of Otolaryngology, Head and Neck surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Shengjun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Jun Liu
- Department of Otolaryngology, Head and Neck surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xuping Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| |
Collapse
|
32
|
Xiao W, Zhao L, Sun Y, Yang X, Fu Q. Stimuli-Responsive Nanoradiosensitizers for Enhanced Cancer Radiotherapy. SMALL METHODS 2024; 8:e2301131. [PMID: 37906050 DOI: 10.1002/smtd.202301131] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/10/2023] [Indexed: 11/02/2023]
Abstract
Radiotherapy (RT) has been a classical therapeutic method of cancer for several decades. It attracts tremendous attention for the precise and efficient treatment of local tumors with stimuli-responsive nanomaterials, which enhance RT. However, there are few systematic reviews summarizing the newly emerging stimuli-responsive mechanisms and strategies used for tumor radio-sensitization. Hence, this review provides a comprehensive overview of recently reported studies on stimuli-responsive nanomaterials for radio-sensitization. It includes four different approaches for sensitized RT, namely endogenous response, exogenous response, dual stimuli-response, and multi stimuli-response. Endogenous response involves various stimuli such as pH, hypoxia, GSH, and reactive oxygen species (ROS), and enzymes. On the other hand, exogenous response encompasses X-ray, light, and ultrasound. Dual stimuli-response combines pH/enzyme, pH/ultrasound, and ROS/light. Lastly, multi stimuli-response involves the combination of pH/ROS/GSH and X-ray/ROS/GSH. By elaborating on these responsive mechanisms and applying them to clinical RT diagnosis and treatment, these methods can enhance radiosensitive efficiency and minimize damage to surrounding normal tissues. Finally, this review discusses the additional challenges and perspectives related to stimuli-responsive nanomaterials for tumor radio-sensitization.
Collapse
Affiliation(s)
- Wenjing Xiao
- Department of Radiotherapy, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China
| | - Lin Zhao
- Department of Radiotherapy, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Yang Sun
- Department of Radiotherapy, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China
| | - Xiao Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Qinrui Fu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| |
Collapse
|
33
|
Alhawamdeh M, Almajali B, Hourani W, Al-Jamal HAN, Al-Wajeeh AS, Mwafi NR, Al-Hajaya Y, Saad HKM, Anderson D, Odeh M, Tarawneh IA. Effect of IFN‑γ encapsulated liposomes on major signal transduction pathways in the lymphocytes of patients with lung cancer. Oncol Lett 2024; 27:8. [PMID: 38028180 PMCID: PMC10664063 DOI: 10.3892/ol.2023.14141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/28/2023] [Indexed: 12/01/2023] Open
Abstract
Globally, lung cancer affected 2.2 million individuals and caused 1.8 million deaths in 2021. Lung cancer is caused by smoking, genetics and other factors. IFN-γ has anticancer activity. However, the mechanism by which IFN-γ has an effect on lung cancer is not fully understood. The present study aimed to assess the effect of IFN-γ on the peripheral lymphocytes of patients with lung cancer compared with healthy controls. The efficacy of IFN-γ against oxidative stress was assessed using a comet repair assay and the effects of IFN-γ on p53, PARP1 and OGG1 genes and protein levels in lymphocytes was evaluated by RT-qPCR and western blotting. DNA damage was significantly reduced in the lymphocytes of patients treated with IFN-γ. However, there was no effect in the cells of healthy individuals after treatment with naked IFN-γ [IFN-γ (N)] and liposomal IFN-γ [IFN-γ (L)]. Following treatment with IFN-γ (N) and IFN-γ (L), the p53, PARP1 and OGG1 protein and gene expression levels were significantly increased (P<0.001). It has been suggested that IFN-γ may induce p53-mediated cell cycle arrest and DNA repair in patients. These findings supported the idea that IFN-γ (N) and IFN-γ (L) may serve a significant role in the treatment of lung cancer, via cell cycle arrest of cancer cells and repair mechanisms.
Collapse
Affiliation(s)
- Maysa Alhawamdeh
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Mutah University, Al-Karak 61710, Jordan
| | - Belal Almajali
- Department of Medical Laboratory Science, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19111, Jordan
| | - Wafa Hourani
- Faculty of Pharmacy, Philadelphia University, Amman 19392, Jordan
| | - Hamid Ali Nagi Al-Jamal
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Nerus, Terengganu 21300, Malaysia
| | | | - Nesrin Riad Mwafi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Mutah University, Al-Karak 61710, Jordan
| | - Yousef Al-Hajaya
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Mutah University, Al-Karak 61710, Jordan
| | - Hanan Kamel M. Saad
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Nerus, Terengganu 21300, Malaysia
| | - Diana Anderson
- Division of Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, BD7 1DP, UK
| | - Mahmoud Odeh
- Business Faculty, Zarqa University, Zarqa 13110, Jordan
| | - Ibraheam A. Tarawneh
- School of Graduate Studies, Management and Science University, Shah Alam, Selangor 40100, Malaysia
| |
Collapse
|
34
|
Zheng C, Wang Z, Xu H, Huang H, Tao X, Hu Y, He Y, Zhang Z, Huang X. Redox-Activatable Magnetic Nanoarchitectonics for Self-Enhanced Tumor Imaging and Synergistic Photothermal-Chemodynamic Therapy. SMALL METHODS 2024; 8:e2301099. [PMID: 37890280 DOI: 10.1002/smtd.202301099] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/07/2023] [Indexed: 10/29/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is a prevalent malignancy of the head and neck region associated with high recurrence rates and poor prognosis under current diagnostic and treatment methods. The development of nanomaterials that can improve diagnostic accuracy and therapeutic efficacy is of great importance for OSCC. In this study, a redox-activatable nanoarchitectonics is designed via the construction of dual-valence cobalt oxide (DV-CO) nanospheres, which can serve as a contrast agent for magnetic resonance (MR) imaging, and exhibit enhanced transverse and longitudinal relaxivities through the release and redox of Co3+ /Co2+ in an acidic condition with glutathione (GSH), resulting in self-enhanced T1 /T2 -weighted MR contrast. Moreover, DV-CO demonstrates properties of intracellular GSH-depletion and hydroxyl radicals (•OH) generation through a Fenton-like reaction, enabling strengthened chemodynamic (CD) effect. Additionally, DV-CO displays efficient near-infrared laser-induced photothermal (PT) effect, thereby exhibiting synergistic PT-CD therapy for suppressing OSCC tumor cells. It further investigates the tumor-specific self-enhanced MR imaging of DV-CO both in subcutaneous and orthotopic OSCC mouse models, and demonstrate the therapeutic effects of DV-CO in orthotopic OSCC mouse models. Overall, the in vitro and in vivo findings highlight the excellent theranositc potentials of DV-CO for OSCC and offer new prospects for future advancement of nanomaterials.
Collapse
Affiliation(s)
- Chongyang Zheng
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- College of Stomatology, Shanghai Jiao Tong University & National Center for Stomatology, Shanghai, 200011, P. R. China
- National Clinical Research Center for Oral Diseases & Shanghai Key Laboratory of Stomatology, Shanghai, 200011, P. R. China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, P. R. China
| | - Zhen Wang
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- College of Stomatology, Shanghai Jiao Tong University & National Center for Stomatology, Shanghai, 200011, P. R. China
- National Clinical Research Center for Oral Diseases & Shanghai Key Laboratory of Stomatology, Shanghai, 200011, P. R. China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, P. R. China
| | - Hongtao Xu
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- College of Stomatology, Shanghai Jiao Tong University & National Center for Stomatology, Shanghai, 200011, P. R. China
- National Clinical Research Center for Oral Diseases & Shanghai Key Laboratory of Stomatology, Shanghai, 200011, P. R. China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, P. R. China
| | - Hailong Huang
- Department of Molten Salt Chemistry and Engineering, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P. R. China
| | - Xiaofeng Tao
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Yongjie Hu
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- College of Stomatology, Shanghai Jiao Tong University & National Center for Stomatology, Shanghai, 200011, P. R. China
- National Clinical Research Center for Oral Diseases & Shanghai Key Laboratory of Stomatology, Shanghai, 200011, P. R. China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, P. R. China
| | - Yue He
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- College of Stomatology, Shanghai Jiao Tong University & National Center for Stomatology, Shanghai, 200011, P. R. China
- National Clinical Research Center for Oral Diseases & Shanghai Key Laboratory of Stomatology, Shanghai, 200011, P. R. China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, P. R. China
| | - Zhiyuan Zhang
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- College of Stomatology, Shanghai Jiao Tong University & National Center for Stomatology, Shanghai, 200011, P. R. China
- National Clinical Research Center for Oral Diseases & Shanghai Key Laboratory of Stomatology, Shanghai, 200011, P. R. China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, P. R. China
| | - Xiaojuan Huang
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- College of Stomatology, Shanghai Jiao Tong University & National Center for Stomatology, Shanghai, 200011, P. R. China
- National Clinical Research Center for Oral Diseases & Shanghai Key Laboratory of Stomatology, Shanghai, 200011, P. R. China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, P. R. China
| |
Collapse
|
35
|
Xu S, Zhang G, Zhang J, Liu W, Wang Y, Fu X. Advances in Brain Tumor Therapy Based on the Magnetic Nanoparticles. Int J Nanomedicine 2023; 18:7803-7823. [PMID: 38144513 PMCID: PMC10749175 DOI: 10.2147/ijn.s444319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/15/2023] [Indexed: 12/26/2023] Open
Abstract
Brain tumors, including primary gliomas and brain metastases, are one of the deadliest tumors because effective macromolecular antitumor drugs cannot easily penetrate the blood-brain barrier (BBB) and blood-brain tumor barrier (BTB). Magnetic nanoparticles (MNPs) are considered the most suitable nanocarriers for the delivery of brain tumor drugs because of their unique properties compared to other nanoparticles. Numerous preclinical and clinical studies have demonstrated the potential of these nanoparticles in magnetic targeting, nuclear magnetic resonance, magnetic thermal therapy, and ultrasonic hyperthermia. To further develop and optimize MNPs for the diagnosis and treatment of brain tumors, we attempt to outline recent advances in the use of MNPs to deliver drugs, with a particular focus on their efficacy in the delivery of anti-brain tumor drugs based on magnetic targeting and low-intensity focused ultrasound, magnetic resonance imaging for surgical real-time guidance, and magnetothermal and ultrasonic hyperthermia therapy. Furthermore, we summarize recent findings on the clinical application of MNPs and the research limitations that need to be addressed in clinical translation.
Collapse
Affiliation(s)
- Songbai Xu
- Department of Neurosurgery, Department of Obstetrics, Obstetrics and Gynaecology Center, the First Hospital Jilin University, Changchun, People’s Republic of China
| | - Guangxin Zhang
- Department of Endocrinology, Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, Department of Thoracic Surgery, the Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Jiaomei Zhang
- Department of Neurosurgery, Department of Obstetrics, Obstetrics and Gynaecology Center, the First Hospital Jilin University, Changchun, People’s Republic of China
| | - Wei Liu
- Department of Endocrinology, Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, Department of Thoracic Surgery, the Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Yicun Wang
- Department of Endocrinology, Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, Department of Thoracic Surgery, the Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Xiying Fu
- Department of Endocrinology, Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, Department of Thoracic Surgery, the Second Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
36
|
Li T, Luo R, Su L, Lv F, Mei L, Yu Y. Advanced Materials and Delivery Systems for Enhancement of Chimeric Antigen Receptor Cells. SMALL METHODS 2023; 7:e2300880. [PMID: 37653606 DOI: 10.1002/smtd.202300880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/12/2023] [Indexed: 09/02/2023]
Abstract
Chimeric antigen receptor (CAR) cell therapy is a great success and breakthrough in immunotherapy. However, there are still lots of barriers to its wide use in clinical, including long time consumption, high cost, and failure against solid tumors. For these challenges, researches are deplored to explore CAR cells to more appliable products in clinical. This minireview focuses on the advanced non-viral materials for CAR-T transfection ex vivo with better performance, delivery systems combined with other therapy for enhancement of CAR-T therapy in solid tumors. In addition, the targeted delivery platform for CAR cells in vivo generation as a breakthrough technology as its low cost and convenience. In the end, the prospective direction and future of CAR cell therapy are discussed.
Collapse
Affiliation(s)
- Tingxuan Li
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Ran Luo
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Lina Su
- Department of Pharmacy, Qujing Medical College, Qujing, Yunnan, 655000, P. R. China
| | - Feng Lv
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Lin Mei
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, P. R. China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Yongkang Yu
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, P. R. China
| |
Collapse
|
37
|
Li J, Lin C, Zhu Y, Shao C, Wang T, Chen B. Colorectal cancer cell membrane biomimetic ferroferric oxide nanomaterials for homologous bio-imaging and chemotherapy application. Med Oncol 2023; 40:322. [PMID: 37801170 DOI: 10.1007/s12032-023-02175-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/29/2023] [Indexed: 10/07/2023]
Abstract
The research of nanomaterials for bio-imaging and theranostic are very active nowadays with unprecedented advantages in nanomedicine. Homologous targeting and bio-imaging greatly improve the ability of targeted drug delivery and enhance active targeting and treatment ability of nanomedicine for the tumor. In this work, lycorine hydrochloride (LH) and magnetic iron oxide nanoparticles coated with a colorectal cancer (CRC) cell membrane (LH-Fe3O4@M) were prepared, for homologous targeting, magnetic resonance imaging (MRI), and chemotherapy. Results showed that the LH-Fe3O4@M and Fe3O4@M intensity at HT29 tumor was significantly higher than that Fe3O4@PEG, proving the superior selectivity of cancer cell membrane-camouflaged nanomedicine for homologous tumors and the MRI effect of darkening contrast enhancement were remarkable at HT29 tumor. The LH-Fe3O4@M exhibited excellent chemotherapy effect in CRC models as well as LH alone and achieved a high tumor ablation rate but no damage to normal tissues and cells. Therefore, our biomimetic system achieved a homologous targeting, bio-imaging, and efficient therapeutic effect of CRC.
Collapse
Affiliation(s)
- Jun Li
- The Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, 200120, China
| | - Chenyu Lin
- The Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yuqian Zhu
- The Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, 200120, China
| | - Chengwei Shao
- Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, No. 168 Changhai Road, Shanghai, 200433, China
| | - Tiegong Wang
- Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, No. 168 Changhai Road, Shanghai, 200433, China.
| | - Bingdi Chen
- The Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, 200120, China.
| |
Collapse
|
38
|
Li HZ, Zhu J, Weng GJ, Li JJ, Li L, Zhao JW. Application of nanotechnology in bladder cancer diagnosis and therapeutic drug delivery. J Mater Chem B 2023; 11:8368-8386. [PMID: 37580958 DOI: 10.1039/d3tb01323e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Bladder cancer (BC) is one of the most common malignant tumors in the urinary system, and its high recurrence rate is a great economic burden to patients. Traditional diagnosis and treatment methods have the disadvantages of insufficient targeting, obvious side effects and low sensitivity, which seriously limit the accurate diagnosis and efficient treatment of BC. Due to their small size, easy surface modification, optical properties such as plasmon resonance, and surface enhanced Raman scattering, good electrical conductivity and photothermal conversion properties, nanomaterials have great potential application value in the realization of specific diagnosis and targeted therapy of BC. At present, the application of nanomaterials in the diagnosis and treatment of BC is attracting great attention and achieving rich research results. Therefore, this paper summarizes the recent research on nanomaterials in the diagnosis and treatment of BC, clarifies the existing advantages and disadvantages, and provides theoretical guidance for promoting the accurate diagnosis and efficient treatment of BC.
Collapse
Affiliation(s)
- Hang-Zhuo Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Jian Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Guo-Jun Weng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Jian-Jun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Lei Li
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jun-Wu Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
39
|
Nurzat Y, Dai D, Hu J, Zhang F, Lin Z, Huang Y, Gang L, Ji H, Zhang X. Prognostic biomarker CCR6 and its correlation with immune infiltration in cutaneous melanoma. Front Oncol 2023; 13:1162406. [PMID: 37182147 PMCID: PMC10166847 DOI: 10.3389/fonc.2023.1162406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
Background Cutaneous melanoma (CM) is an aggressive type of skin cancer. Even after standard treatment, the recurrence and malignant progression of CM were almost inevitable. The overall survival (OS) of patients with CM varied widely, making it critical for prognostic prediction. Based on the correlation between CCR6 and melanoma incidence, we aimed to investigate the prognostic role of CCR6 and its relationship with immune infiltration in CM. Methods We obtained RNA sequencing data from The Cancer Genome Atlas (TCGA) to analyze the CM expression. Functional enrichment analyses, immune infiltration analyses, immune checkpoint analyses, and clinicopathology analyses were performed. Univariate and multivariate Cox regression analyses were used to identify independent prognostic factors. A nomogram model had been developed. Kaplan-Meier survival analysis and log-rank test were used to estimate the relationship between OS and CCR6 expression. Results CCR6 was significantly upregulated in CM. Functional enrichment analyses revealed that CCR6 was correlated with immune response. Most immune cells and immune checkpoints were positively correlated with CCR6 expression. Kaplan-Meier analyses showed that high CCR6 expression was associated with a good outcome in CM and its subtypes. Cox regression showed that CCR6 was an independent prognostic factor in patients with CM (HR = 0.550, 95% CI = 0.332-0.912, p<0.05). Conclusions CCR6 is considered to be a new prognostic biomarker for patients with CM, and our study provides a potential therapeutic target for CM treatment.
Collapse
Affiliation(s)
- Yeltai Nurzat
- State Key Laboratory of Respiratory Disease, Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Damao Dai
- Department of Plastic and Cosmetic Surgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Julong Hu
- State Key Laboratory of Respiratory Disease, Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Feiyu Zhang
- State Key Laboratory of Respiratory Disease, Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zaihuan Lin
- State Key Laboratory of Respiratory Disease, Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yang Huang
- Department of Operating Room, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Liang Gang
- Department of Plastic Surgery, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hang Ji
- Department of Plastic Surgery, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaowen Zhang
- State Key Laboratory of Respiratory Disease, Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Allergy and Clinical Immunology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Cancer, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
40
|
Li D, Zhao A, Zhu J, Wang C, Shen J, Zheng Z, Pan F, Liu Z, Chen Q, Yang Y. Inhaled Lipid Nanoparticles Alleviate Established Pulmonary Fibrosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300545. [PMID: 37058092 DOI: 10.1002/smll.202300545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/19/2023] [Indexed: 06/19/2023]
Abstract
Pulmonary fibrosis, a sequela of lung injury resulting from severe infection such as severe acute respiratory syndrome-like coronavirus (SARS-CoV-2) infection, is a kind of life-threatening lung disease with limited therapeutic options. Herein, inhalable liposomes encapsulating metformin, a first-line antidiabetic drug that has been reported to effectively reverse pulmonary fibrosis by modulating multiple metabolic pathways, and nintedanib, a well-known antifibrotic drug that has been widely used in the clinic, are developed for pulmonary fibrosis treatment. The composition of liposomes made of neutral, cationic or anionic lipids, and poly(ethylene glycol) (PEG) is optimized by evaluating their retention in the lung after inhalation. Neutral liposomes with suitable PEG shielding are found to be ideal delivery carriers for metformin and nintedanib with significantly prolonged retention in the lung. Moreover, repeated noninvasive aerosol inhalation delivery of metformin and nintedanib loaded liposomes can effectively diminish the development of fibrosis and improve pulmonary function in bleomycin-induced pulmonary fibrosis by promoting myofibroblast deactivation and apoptosis, inhibiting transforming growth factor 1 (TGFβ1) action, suppressing collagen formation, and inducing lipogenic differentiation. Therefore, this work presents a versatile platform with promising clinical translation potential for the noninvasive inhalation delivery of drugs for respiratory disease treatment.
Collapse
Affiliation(s)
- Dongjun Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Ang Zhao
- Department of medical affair, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, P. R. China
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, P. R. China
| | - Jiafei Zhu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Chunjie Wang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Jingjing Shen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Zixuan Zheng
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, P. R. China
| | - Feng Pan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, P. R. China
| | - Zhuang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Qian Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, P. R. China
| |
Collapse
|
41
|
Zhang H, Wang R, Wu C, Feng W, Zhong Q, Chen X, Wang T, Mao C. Diffusion-mediated carving of interior topologies of all-natural protein nanoparticles to tailor sustained drug release for effective breast cancer therapy. Biomaterials 2023; 295:122027. [PMID: 36805237 DOI: 10.1016/j.biomaterials.2023.122027] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/01/2023] [Accepted: 01/25/2023] [Indexed: 01/30/2023]
Abstract
Proteins are promising base materials for developing drug carriers with efficient blood circulation due to low possibilities of clearance by macrophages. However, such natural biopolymers have highly sophisticated molecular structures, preventing them from being assembled into nano-platforms with manipulable payload release profiles. Here, we report the self-assembly of two natural proteins (milk casein and rice protein) into protein nanoparticles (NPs, ∼150 nm) with tailorable release profiles. Diffusion of plant-derived paclitaxel (PTX)-containing eugenol into the hydrophobic cores of the NPs and subsequent dialysis to remove eugenol from the cores lead to the carving of the NP interiors. With the increase in the mass ratios of casein and rice protein, this process generates all-natural NPs with PTX loaded in their full cavities, semi-full cavities, or solid cores. These NPs can be efficiently uptaken by breast cancer cells and could kill the cancer cells efficiently. PTX in these NPs demonstrates increasingly sustained in vivo release profiles from full cavities, semi-full cavities, to solid cores, gradually extending its pharmacokinetic profiles in blood plasma to favor drug accumulation in breast tumor models. Consequently, the NPs with solid cores completely inhibit tumor growth in vivo, more effectively than those with full and semi-full cavities. Our work opens up a new avenue to the use of diffusion-mediated nanoscale carving in producing biomaterials with controllable interior topologies relevant to drug release profiles.
Collapse
Affiliation(s)
- Hao Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Jiangnan University, Wuxi 21422, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 21422, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 21422, China; School of Food Science and Technology, Jiangnan University, Wuxi 21422, China
| | - Ren Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Jiangnan University, Wuxi 21422, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 21422, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 21422, China; School of Food Science and Technology, Jiangnan University, Wuxi 21422, China
| | - Chao Wu
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Wei Feng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Jiangnan University, Wuxi 21422, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 21422, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 21422, China; School of Food Science and Technology, Jiangnan University, Wuxi 21422, China
| | - Qixin Zhong
- Department of Food Science, The University of Tennessee, Knoxville, TN 37996, USA
| | - Xianfu Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Tao Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Jiangnan University, Wuxi 21422, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 21422, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 21422, China; School of Food Science and Technology, Jiangnan University, Wuxi 21422, China.
| | - Chuanbin Mao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, China; Department of Chemistry and Biochemistry and Stephenson Life Science Research Center, University of Oklahoma, Norman, OK 73019, USA.
| |
Collapse
|
42
|
Wei C, Fu Q. Cell death mediated by nanotechnology via the cuproptosis pathway: A novel horizon for cancer therapy. VIEW 2023. [DOI: 10.1002/viw.20230001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
43
|
Wang LJ, Han Q, Hu JP, Wang HX, Liu M, Zhang CY. Structure-Switchable Hairpin-Powered Exponential Replications for Sensing Attomolar microRNA-Related Single Nucleotide Polymorphisms in Human Cancer Tissues with Zero Background. Anal Chem 2022; 94:15171-15175. [DOI: 10.1021/acs.analchem.2c04281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Li-juan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Qian Han
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Jin-ping Hu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Hou-xiu Wang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Meng Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Chun-yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| |
Collapse
|