1
|
Zhang Y, Wang S, Rha H, Xu C, Pei Y, Ji X, Zhang J, Lu R, Zhang S, Xie Z, Kim JS. Bifunctional black phosphorus quantum dots platform: Delivery and remarkable immunotherapy enhancement of STING agonist. Biomaterials 2024; 311:122696. [PMID: 38971121 DOI: 10.1016/j.biomaterials.2024.122696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/12/2024] [Accepted: 06/28/2024] [Indexed: 07/08/2024]
Abstract
Cancer immunotherapy has been developed to improve therapeutic effects for patients by activating the innate immune stimulator of interferon gene (STING) pathway. However, most patients cannot benefit from this therapy, mainly due to the problems of excessively low immune responses and lack of tumor specificity. Herein, we report a solution to these two problems by developing a bifunctional platform of black phosphorus quantum dots (BPQDs) for STING agonists. Specifically, BPQDs could connect targeted functional groups and regulate surface zeta potential by coordinating metal ions to increase loading (over 5 times) while maintaining high universality (7 STING agonists). The controlled release of STING agonists enabled specific interactions with their proteins, activating the STING pathway and stimulating the secretion release of immunosuppressive factors by phosphorylating TBK1 and IFN-IRF3 and secreting high levels of immunostimulatory cytokines, including IL-6, IFN-α, and IFN-β. Moreover, the immunotherapy was enhanced was enhanced mild photothermal therapy (PTT) of BPQDs platform, producing enough T cells to eliminate tumors and prevent tumor recurrence. This work facilitates further research on targeted delivery of small-molecule immune drugs to enhance the development of clinical immunotherapy.
Collapse
Affiliation(s)
- Yujun Zhang
- Shenzhen Children's Hospital, Clinical Medical College of Shenzhen University, Shenzhen University, Shenzhen, 518060, PR China; Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, PR China; International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Shijing Wang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, 518040, PR China
| | - Hyeonji Rha
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Chang Xu
- Shenzhen Children's Hospital, Clinical Medical College of Shenzhen University, Shenzhen University, Shenzhen, 518060, PR China
| | - Yue Pei
- Shenzhen Children's Hospital, Clinical Medical College of Shenzhen University, Shenzhen University, Shenzhen, 518060, PR China
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, PR China
| | - Junmin Zhang
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Ruitao Lu
- Shenzhen International Institute for Biomedical Research, Shenzhen, 518109, PR China
| | - Shaochong Zhang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, 518040, PR China.
| | - Zhongjian Xie
- Shenzhen Children's Hospital, Clinical Medical College of Shenzhen University, Shenzhen University, Shenzhen, 518060, PR China.
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
2
|
Qin W, Yang Q, Zhu C, Jiao R, Lin X, Fang C, Guo J, Zhang K. A Distinctive Insight into Inorganic Sonosensitizers: Design Principles and Application Domains. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311228. [PMID: 38225708 DOI: 10.1002/smll.202311228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/29/2023] [Indexed: 01/17/2024]
Abstract
Sonodynamic therapy (SDT) as a promising non-invasive anti-tumor means features the preferable penetration depth, which nevertheless, usually can't work without sonosensitizers. Sonosensitizers produce reactive oxygen species (ROS) in the presence of ultrasound to directly kill tumor cells, and concurrently activate anti-tumor immunity especially after integration with tumor microenvironment (TME)-engineered nanobiotechnologies and combined therapy. Current sonosensitizers are classified into organic and inorganic ones, and current most reviews only cover organic sonosensitizers and highlighted their anti-tumor applications. However, there have few specific reviews that focus on inorganic sonosensitizers including their design principles, microenvironment regulation, etc. In this review, inorganic sonosensitizers are first classified according to their design rationales rather than composition, and the action rationales and underlying chemistry features are highlighted. Afterward, what and how TME is regulated based on the inorganic sonosensitizers-based SDT nanoplatform with an emphasis on the TME targets-engineered nanobiotechnologies are elucidated. Additionally, the combined therapy and their applications in non-cancer diseases are also outlined. Finally, the setbacks and challenges, and proposed the potential solutions and future directions is pointed out. This review provides a comprehensive and detailed horizon on inorganic sonosensitizers, and will arouse more attentions on SDT.
Collapse
Affiliation(s)
- Wen Qin
- State Key Laboratory of Targeting Oncology, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, P. R. China
- Department of Pharmacy and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, Sichuan, 610072, P. R. China
| | - Qiaoling Yang
- State Key Laboratory of Targeting Oncology, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, P. R. China
- Department of Pharmacy and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, Sichuan, 610072, P. R. China
| | - Chunyan Zhu
- Department of Pharmacy and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, Sichuan, 610072, P. R. China
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301 Yanchangzhong Road, Shanghai, 200072, P. R. China
| | - Rong Jiao
- State Key Laboratory of Targeting Oncology, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, P. R. China
- Department of Pharmacy and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, Sichuan, 610072, P. R. China
| | - Xia Lin
- State Key Laboratory of Targeting Oncology, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, P. R. China
- Department of Pharmacy and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, Sichuan, 610072, P. R. China
| | - Chao Fang
- Department of Pharmacy and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, Sichuan, 610072, P. R. China
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301 Yanchangzhong Road, Shanghai, 200072, P. R. China
| | - Jiaming Guo
- Department of Radiation Medicine, College of Naval Medicine, Naval Medical University, No. 800 Xiangyin Road, Shanghai, 200433, P. R. China
| | - Kun Zhang
- Department of Pharmacy and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, Sichuan, 610072, P. R. China
| |
Collapse
|
3
|
Su T, Zhao F, Ying Y, Li W, Li J, Zheng J, Qiao L, Che S, Yu J. Self-Monitoring Theranostic Nanomaterials: Emerging Visual Agents for Real-Time Monitoring of Tumor Treatment Processes. SMALL METHODS 2024; 8:e2301470. [PMID: 38044269 DOI: 10.1002/smtd.202301470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/14/2023] [Indexed: 12/05/2023]
Abstract
Self-monitoring in tumor therapy is a concept that allows for real-time monitoring of the location and state of applied nanomaterials. This monitoring relies on dynamic signals, such as wave or magnetic signals, which vary in response to changes in the location and state of nanomaterials. Dynamic changes in nanomaterials can be monitored using dynamic signals, making it possible to determine and control the treatment process. Theranostic nanomaterials, which possess unique physical and chemical properties, have recently been explored as a viable option for self-monitoring. With the help of self-monitoring, theranostic nanomaterials can guide themselves to achieve region-selective treatment with higher controllability and safety. In this review, self-monitoring theranostic nanomaterials will be introduced in three parts according to their roles during therapy: tumor accumulation, tumor therapy, and metabolism. The limitations and future challenges of current self-monitoring theranostic nanomaterials will also be discussed.
Collapse
Affiliation(s)
- Tuo Su
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Fan Zhao
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yao Ying
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Wangchang Li
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Juan Li
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jingwu Zheng
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Liang Qiao
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shenglei Che
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jing Yu
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
4
|
Ye J, Wu Y, Pan J, Cai S, Cheng Y, Chu C, Su M. ICG-based laser treatments for ophthalmic diseases: Toward their safe and rapid strategy. LUMINESCENCE 2023. [PMID: 38151242 DOI: 10.1002/bio.4658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023]
Abstract
The eye is a very important organ, and keratitis, corneal neovascularization, floaters, age-related macular degeneration, and other vision problems have seriously affected people's quality of life. Among the ophthalmic treatments, laser photocoagulations have been proposed and have shown therapeutic effects in clinical settings. However, corneal thinning and bleeding lesions induced by laser damage have led to limit its applications. To treat the issues of traditional hyperthermia treatments, photosensitizers [e.g., indocyanine green (ICG)] have been investigated to increase the therapeutic effects of corneal neovascularization and choroidal neovascularization. In the recent study, with the help of ICG, laser-induced nanobubble was proposed to treat vitreous opacities. The developed strategies could enlarge the effect of laser irradiation and reduce the side effects, so as to expand the scope of laser treatments in clinical ophthalmic diseases.
Collapse
Affiliation(s)
- Jinfa Ye
- Department of Pharmacy, Xiamen Medical College, Xiamen, China
- Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Yiming Wu
- Department of Pharmacy, Xiamen Medical College, Xiamen, China
| | - Jintao Pan
- Department of Pharmacy, Xiamen Medical College, Xiamen, China
| | - Shundong Cai
- Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Yuhang Cheng
- Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Chengchao Chu
- Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Min Su
- Department of Pharmacy, Xiamen Medical College, Xiamen, China
| |
Collapse
|
5
|
Khan S, Falahati M, Cho WC, Vahdani Y, Siddique R, Sharifi M, Jaragh-Alhadad LA, Haghighat S, Zhang X, Ten Hagen TLM, Bai Q. Core-shell inorganic NP@MOF nanostructures for targeted drug delivery and multimodal imaging-guided combination tumor treatment. Adv Colloid Interface Sci 2023; 321:103007. [PMID: 37812992 DOI: 10.1016/j.cis.2023.103007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 08/16/2023] [Accepted: 09/23/2023] [Indexed: 10/11/2023]
Abstract
It is well known that metal-organic framework (MOF) nanostructures have unique characteristics such as high porosity, large surface areas and adjustable functionalities, so they are ideal candidates for developing drug delivery systems (DDSs) as well as theranostic platforms in cancer treatment. Despite the large number of MOF nanostructures that have been discovered, conventional MOF-derived nanosystems only have a single biofunctional MOF source with poor colloidal stability. Accordingly, developing core-shell MOF nanostructures with good colloidal stability is a useful method for generating efficient drug delivery, multimodal imaging and synergistic therapeutic systems. The preparation of core-shell MOF nanostructures has been done with a variety of materials, but inorganic nanoparticles (NPs) are highly effective for drug delivery and imaging-guided tumor treatment. Herein, we aimed to overview the synthesis of core-shell inorganic NP@MOF nanostructures followed by the application of core-shell MOFs derived from magnetic, quantum dots (QDs), gold (Au), and gadolinium (Gd) NPs in drug delivery and imaging-guided tumor treatment. Afterward, we surveyed different factors affecting prolonged drug delivery and cancer therapy, cellular uptake, biocompatibility, biodegradability, and enhanced permeation and retention (EPR) effect of core-shell MOFs. Last but not least, we discussed the challenges and the prospects of the field. We envision this article may hold great promise in providing valuable insights regarding the application of hybrid nanostructures as promising and potential candidates for multimodal imaging-guided combination cancer therapy.
Collapse
Affiliation(s)
- Suliman Khan
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mojtaba Falahati
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, the Netherlands; Nanomedicine Innovation Center Erasmus (NICE), Erasmus MC, Rotterdam, the Netherlands.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, China
| | - Yasaman Vahdani
- Department of Biochemistry and Molecular Medicine, University of Montreal, Canada
| | - Rabeea Siddique
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | | | - Setareh Haghighat
- Department of Microbiology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou, China
| | - Timo L M Ten Hagen
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, the Netherlands; Nanomedicine Innovation Center Erasmus (NICE), Erasmus MC, Rotterdam, the Netherlands.
| | - Qian Bai
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
6
|
Jiang X, Zhang S, Jiang D, Wang Y, Molokeev MS, Wang N, Liu Y, Zhang X, Lin Z. Unexpected giant negative area compressibility in palladium diselenide. Natl Sci Rev 2023; 10:nwad016. [PMID: 37565197 PMCID: PMC10411663 DOI: 10.1093/nsr/nwad016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 12/04/2022] [Accepted: 12/11/2022] [Indexed: 08/12/2023] Open
Abstract
Negative area compressibility (NAC) is a counterintuitive 'squeeze-expand' behavior in solids that is very rare but attractive due to possible pressure-response applications and coupling with rich physicochemical properties. Herein, NAC behavior is reported in palladium diselenide with a large magnitude and wide pressure range. We discover that, apart from the rigid flattening of layers that has been generally recognized, the unexpected giant NAC effect in PdSe2 largely comes from anomalous elongation of intralayer chemical bonds. Both structural variations are driven by intralayer-to-interlayer charge transfer with enhanced interlayer interactions under pressure. Our work updates the mechanical understanding of this anomaly and establishes a new guideline to explore novel compression-induced properties.
Collapse
Affiliation(s)
- Xingxing Jiang
- New Functional Crystals Group, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengzi Zhang
- New Functional Crystals Group, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dequan Jiang
- Center for High Pressure Science & Technology Advanced Research, Beijing 100094, China
| | - Yonggang Wang
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Maxim S Molokeev
- Laboratory of Crystal Physics, Kirensky Institute of Physics, SB RAS, Krasnoyarsk 660036, Russia
- Department of Physics, Far Eastern State Transport University, Khabarovsk 680021, Russia
- International Research Center of Spectroscopy and Quantum Chemistry, Siberian Federal University, Krasnoyarsk 660041, Russia
| | - Naizheng Wang
- New Functional Crystals Group, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Youquan Liu
- New Functional Crystals Group, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingyu Zhang
- New Functional Crystals Group, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheshuai Lin
- New Functional Crystals Group, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Chen B, Song L, Yuan Y, Liu X, Guo Z, Gu Y, Lou Z, Liu Y, Zhang C, Li C, Guo C. Chirality-Dependent Tumor Phototherapy Using Amino Acid-Engineered Chiral Phosphorene. ACS APPLIED MATERIALS & INTERFACES 2023; 15:651-661. [PMID: 36591814 DOI: 10.1021/acsami.2c19291] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Phosphorene, also known as black phosphorus nanosheet (BPNS), has been investigated as a nanoagent for tumor therapy. However, promoting its intracellular accumulation while preventing the cytoplasmic decomposition remains challenging. Herein, for the first time, we propose a chiral BPNS designed through surface engineering based on amino acids with high biocompatibility and an abundant source for application in chirality-dependent tumor phototherapy based on its intracellular metabolism. The advantage of using cysteine (Cys) over other amino acids was that its d, l, or dl-form could efficiently work as the chirality inducer to modify the BPNS through electrostatic interaction and prevent alterations in the intrinsic properties of the BPNS. In particular, d-Cys-BPNS displayed an approximately threefold cytotoxic effect on tumor cells compared with l-Cys-BPNS, demonstrating a chirality-dependent therapy behavior. d-Cys-BPNS not only promoted high intracellular content but also showed resistance to cytoplasmic decomposition. Cys-engineered BPNS also demonstrated chirality-dependent phototherapy effects on tumor-bearing mice, in proximity to the results in vitro. Chiral engineering is expected to open new avenues that could promote the use of BPNS in tumor phototherapy and boost chiral nanomedicine.
Collapse
Affiliation(s)
- Bo Chen
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou215009, Jiangsu, P. R. China
| | - Luping Song
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou215009, Jiangsu, P. R. China
| | - Ying Yuan
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou215009, Jiangsu, P. R. China
| | - Xin Liu
- The Third School of Clinical Medical, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing210028, P. R. China
| | - Zhanhang Guo
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing210096, P. R. China
| | - Yu Gu
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou215009, Jiangsu, P. R. China
| | - Zhichao Lou
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing210037, P. R. China
| | - Yang Liu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing210096, P. R. China
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou215009, Jiangsu, P. R. China
| | - Changming Li
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou215009, Jiangsu, P. R. China
| | - Chunxian Guo
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou215009, Jiangsu, P. R. China
| |
Collapse
|
8
|
Hou Y, Fei Y, Liu Z, Liu Y, Li M, Luo Z. Black phosphorous nanomaterials as a new paradigm for postoperative tumor treatment regimens. J Nanobiotechnology 2022; 20:366. [PMID: 35953821 PMCID: PMC9367102 DOI: 10.1186/s12951-022-01579-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/24/2022] [Indexed: 12/02/2022] Open
Abstract
Surgery is currently a mainstream treatment modality for various solid tumor indications. However, aggressive resection of tumor tissues frequently causes postoperative complications, which severely undermine the well-being of patients. Moreover, the residue tumor cells may substantially increase the risk of local and distant tumor relapse. The recent development in black phosphorus (BP)-based nanomaterials offers a promising opportunity to address these clinical challenges. BP is an emerging nanomaterial with excellent biocompatibility and versatile functionality, which has already demonstrated great potential for a variety of biomedical applications including tumor therapy and tissue engineering. In this review, the recent advances in BP-based nanobiomaterials for the post-surgery treatment of solid tumor have been summarized, while specific emphasis was placed on their capability to continuously inhibit residue tumor growth at the surgery site as well as stimulating various healing mechanisms, aiming to preventing tumor relapse while promoting the healing of surgery-induced traumatic soft/hard tissue injuries. It is anticipated that the nanoengineered BP-based materials may open new avenues to tackle those clinical challenges in surgical treatment of solid tumors.
Collapse
Affiliation(s)
- Yanhua Hou
- Chongqing Engineering Research Center of Pharmaceutical Science, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, China
| | - Yang Fei
- School of Life Science, Chongqing University, Chongqing, 400044, China
| | - Zehong Liu
- Chongqing Engineering Research Center of Pharmaceutical Science, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, China
| | - Yingqi Liu
- School of Life Science, Chongqing University, Chongqing, 400044, China.
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing, 400044, China.
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing, 400044, China. .,111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
9
|
Fan Z, Ji Z, Zhang F, Luo P, Zhang H, Zhou J, Cheng H, Ding Y. Charge reversal hairpin peptide modified synergy therapeutic nanoplatforms for tumor specific drug shuttling. Biomater Sci 2022; 10:4889-4901. [PMID: 35861355 DOI: 10.1039/d2bm00817c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Given the distinct pathological features of neoplasm tissues, multifunctional responsive nanocarriers have been recently considered as promising candidates to optimize the chemotherapy regime. As a result, we propose a graphene oxide-based pH-responsive drug delivery system via covalent assembly of "hairpin-like" cell penetrating peptides with acid sensitive and charge reversal properties to realize superior tumor specificity and lower toxicity. Graphene oxide here can serve as high doxorubicin-loading nanosheets and facilitate swift drug release in response to laser irradiation, which provides an efficient platform for the synergy of photo-chemotherapy. Structurally, polyglycol conjugation on the graphene oxide surface fulfils the function of nanocomposite stabilization. After administration, the elaborately acid sensitive cell penetrating peptides maintain the hairpin structure under physiological conditions, while after entering the tumor acidic microenvironment, they undergo charge reversal and structural conversion to promote the cellular uptake of nanoparticles. The evaluation of nanocomposites in vitro revealed their negligible systematic toxicity and remarkable antitumor effects. In vivo experiments also confirmed the impressive stability and tumor-specific targeting for alleviating breast cancer. In conclusion, hairpin peptide modified graphene oxide nanoparticles show multiple merits including high drug carrying capacity, selective tumor penetration, responsive drug release and effective combination oncotherapy.
Collapse
Affiliation(s)
- Zhechen Fan
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.
| | - Zhongsheng Ji
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.
| | - Feng Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.
| | - Peng Luo
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.
| | - Huaqing Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.
| | - Jianping Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.
| | - Hao Cheng
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.
| | - Yang Ding
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China. .,State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
| |
Collapse
|
10
|
Dynamic nano-assemblies based on two-dimensional inorganic nanoparticles: Construction and preclinical demonstration. Adv Drug Deliv Rev 2022; 180:114031. [PMID: 34736985 DOI: 10.1016/j.addr.2021.114031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/07/2021] [Accepted: 10/27/2021] [Indexed: 12/14/2022]
Abstract
Dynamic drug delivery systems (DDSs) have the ability of transforming their morphology and functionality in response to the biological microenvironments at the disease site and/or external stimuli, show spatio-temporally controllable drug delivery, and enhance the treatment efficacy. Due to the large surface area and modification flexibility, two-dimensional (2D) inorganic nanomaterials are being increasingly exploited for developing intelligent DDSs for biomedical applications. In this review, we summarize the engineering methodologies used to construct transformable 2D DDSs, including changing compositions, creating defects, and surface dot-coating with polymers, biomolecules, or nanodots. Then we present and discuss dynamic inorganic 2D DDSs whose transformation is driven by the diseased characteristics, such as pH gradient, redox, hypoxia, and enzyme in the tumor microenvironment as well as the external stimuli including light, magnetism, and ultrasound. Finally, the limitations and challenges of current transformable inorganic DDSs for clinical translation and their in vivo safety assessment are discussed.
Collapse
|
11
|
Younis MR, He G, Qu J, Lin J, Huang P, Xia X. Inorganic Nanomaterials with Intrinsic Singlet Oxygen Generation for Photodynamic Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102587. [PMID: 34561971 PMCID: PMC8564446 DOI: 10.1002/advs.202102587] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/22/2021] [Indexed: 05/07/2023]
Abstract
Inorganic nanomaterials with intrinsic singlet oxygen (1 O2 ) generation capacity, are emerged yet dynamically developing materials as nano-photosensitizers (NPSs) for photodynamic therapy (PDT). Compared to previously reported nanomaterials that have been used as either carriers to load organic PSs or energy donors to excite the attached organic PSs through a Foster resonance energy transfer process, these NPSs possess intrinsic 1 O2 generation capacity with extremely high 1 O2 quantum yield (e.g., 1.56, 1.3, 1.26, and 1.09) than any classical organic PS reported to date, and thus are facilitating to make a revolution in PDT. In this review, the recent advances in the development of various inorganic nanomaterials as NPSs, including metal-based (gold, silver, and tungsten), metal oxide-based (titanium dioxide, tungsten oxide, and bismuth oxyhalide), metal sulfide-based (copper and molybdenum sulfide), carbon-based (graphene, fullerene, and graphitic carbon nitride), phosphorus-based, and others (hybrids and MXenes-based NPSs) are summarized, with an emphasis on the design principle and 1 O2 generation mechanism, and the photodynamic therapeutic performance against different types of cancers. Finally, the current challenges and an outlook of future research are also discussed. This review may provide a comprehensive account capable of explaining recent progress as well as future research of this emerging paradigm.
Collapse
Affiliation(s)
- Muhammad Rizwan Younis
- Marshall Laboratory of Biomedical EngineeringInternational Cancer CenterLaboratory of Evolutionary Theranostics (LET)School of Biomedical EngineeringShenzhen University Health Science CenterShenzhen518060China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life SciencesSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210093P.R. China
| | - Gang He
- Marshall Laboratory of Biomedical EngineeringInternational Cancer CenterLaboratory of Evolutionary Theranostics (LET)School of Biomedical EngineeringShenzhen University Health Science CenterShenzhen518060China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Jing Lin
- Marshall Laboratory of Biomedical EngineeringInternational Cancer CenterLaboratory of Evolutionary Theranostics (LET)School of Biomedical EngineeringShenzhen University Health Science CenterShenzhen518060China
| | - Peng Huang
- Marshall Laboratory of Biomedical EngineeringInternational Cancer CenterLaboratory of Evolutionary Theranostics (LET)School of Biomedical EngineeringShenzhen University Health Science CenterShenzhen518060China
| | - Xing‐Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life SciencesSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210093P.R. China
| |
Collapse
|