1
|
Song Y, Zhang S, Cao C, Yan J, Li M, Li X, Chen F, Gu N. Imaging Structural and Electrical Changes of Aging Cells Using Scanning Ion Conductance Microscopy. SMALL METHODS 2024; 8:e2301315. [PMID: 38072619 DOI: 10.1002/smtd.202301315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/21/2023] [Indexed: 08/18/2024]
Abstract
The local charge density and distribution of extracellular membranes play a crucial role in the various cellular processes, such as regulation and localization of membrane proteins, electrophysiological signal transduction, transcriptional control, cell growth, and cell death. In this study, a novel scanning ion conductance microscopy-based method is employed to extracellular membrane mapping. This method allows to not only visualize the dynamic topography and surface charge distribution around individual cells, but also distinguish the charge difference. To validate the accuracy and effectiveness of this method, the charge density on model sample surfaces are initially manipulated and the charge sensing mechanism using finite element modeling (FEM) is explored subsequently. By applying this method, both the extracellular charge distributions and topography structures of normal and senescent human dental pulp stem cells (hDPSCs) are able to monitor. Interestingly, it is observed that the surface charge became significantly more negative after cellular senescence. This innovative approach enables us to gain valuable insights into surface charge changes during cellular senescence, which can contribute to a better understanding of the underlying mechanisms and potential therapeutic strategies for age-related diseases.
Collapse
Affiliation(s)
- Yao Song
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of biomedical engineering and informatics, Nanjing Medical University, Nanjing, 211166, P.R. China
| | - Shuting Zhang
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of biomedical engineering and informatics, Nanjing Medical University, Nanjing, 211166, P.R. China
| | - Chen Cao
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of biomedical engineering and informatics, Nanjing Medical University, Nanjing, 211166, P.R. China
| | - Jia Yan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, P.R. China
| | - Mei Li
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of biomedical engineering and informatics, Nanjing Medical University, Nanjing, 211166, P.R. China
| | - Xinyu Li
- The first school of clinical medicine, Nanjing Medical University, Nanjing, 211166, P.R. China
| | - Feng Chen
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of biomedical engineering and informatics, Nanjing Medical University, Nanjing, 211166, P.R. China
| | - Ning Gu
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of biomedical engineering and informatics, Nanjing Medical University, Nanjing, 211166, P.R. China
- School of Medicine, Nanjing University, Nanjing, 210093, P.R. China
| |
Collapse
|
2
|
Araújo-Gomes N, Zambito G, Johnbosco C, Calejo I, Leijten J, Löwik C, Karperien M, Mezzanotte L, Teixeira LM. Bioluminescence imaging on-chip platforms for non-invasive high-content bioimaging. Biosens Bioelectron 2023; 237:115510. [PMID: 37442028 DOI: 10.1016/j.bios.2023.115510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/09/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023]
Abstract
Incorporating non-invasive biosensing features in organ-on-chip models is of paramount importance for a wider implementation of these advanced in vitro microfluidic platforms. Optical biosensors, based on Bioluminescence Imaging (BLI), enable continuous, non-invasive, and in-situ imaging of cells, tissues or miniaturized organs without the drawbacks of conventional fluorescence imaging. Here, we report the first-of-its-kind integration and optimization of BLI in microfluidic chips, for non-invasive imaging of multiple biological readouts. The cell line HEK293T-GFP was engineered to express NanoLuc® luciferase under the control of a constitutive promoter and were cultured on-chip in 3D, in standard ECM-like hydrogels, to assess optimal cell detection conditions. Using real-time in-vitro dual-color microscopy, Bioluminescence (BL) and fluorescence (FL) were detectable using distinct imaging setups. Detection of the bioluminescent signals were observed at single cell resolution on-chip 20 min post-addition of Furimazine substrate and under perfusion. All hydrogels enabled BLI with higher signal-to-noise ratios as compared to fluorescence. For instance, agarose gels showed a ∼5-fold greater BL signal over background after injection of the substrate as compared to the FL signal. The use of BLI with microfluidic chip technologies opens up the potential for simultaneous in situ detection with continuous monitoring of multicolor cell reporters. Moreover, this can be achieved in a non-invasive manner. BL has great promise as a highly desirable biosensor for studying organ-on-chip platforms.
Collapse
Affiliation(s)
- Nuno Araújo-Gomes
- Department of Developmental Bioengineering, Technical Medical Centre, University of Twente, Enschede, the Netherlands
| | - Giorgia Zambito
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Molecular Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Castro Johnbosco
- Department of Developmental Bioengineering, Technical Medical Centre, University of Twente, Enschede, the Netherlands
| | - Isabel Calejo
- Department of Developmental Bioengineering, Technical Medical Centre, University of Twente, Enschede, the Netherlands
| | - Jeroen Leijten
- Department of Developmental Bioengineering, Technical Medical Centre, University of Twente, Enschede, the Netherlands
| | - Clemens Löwik
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Molecular Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Marcel Karperien
- Department of Developmental Bioengineering, Technical Medical Centre, University of Twente, Enschede, the Netherlands
| | - Laura Mezzanotte
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Molecular Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Liliana Moreira Teixeira
- Department of Advanced Organ Bioengineering and Therapeutics, University of Twente, Enschede, the Netherlands.
| |
Collapse
|
3
|
Zhang D, Qiao L. Intestine‐on‐a‐chip for intestinal disease study and pharmacological research. VIEW 2022. [DOI: 10.1002/viw.20220037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Dongxue Zhang
- Department of Chemistry, Institutes of Biomedical Sciences, and Shanghai Stomatological Hospital Fudan University Shanghai China
| | - Liang Qiao
- Department of Chemistry, Institutes of Biomedical Sciences, and Shanghai Stomatological Hospital Fudan University Shanghai China
| |
Collapse
|
4
|
Wang Y, Tan P, Wu Y, Luo D, Li Z. Artificial intelligence‐enhanced skin‐like sensors based on flexible nanogenerators. VIEW 2022. [DOI: 10.1002/viw.20220026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Yiqian Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro‐nano Energy and Sensor Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing China
- Center on Nanoenergy Research, School of Physical Science and Technology Guangxi University Nanning China
| | - Puchuan Tan
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro‐nano Energy and Sensor Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing China
| | - Yuxiang Wu
- Department of Health and Kinesiology, School of Physical Education Jianghan University Wuhan Hubei China
| | - Dan Luo
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro‐nano Energy and Sensor Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing China
- School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing China
| | - Zhou Li
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro‐nano Energy and Sensor Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing China
- Center on Nanoenergy Research, School of Physical Science and Technology Guangxi University Nanning China
- School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing China
- Institute for Stem Cell and Regeneration Chinese Academy of Sciences Beijing China
| |
Collapse
|
5
|
Meng F, Yu W, Chen C, Guo S, Tian X, Miao Y, Ma L, Zhang X, Yu Y, Huang L, Qian K, Wang J. A Versatile Electrochemical Biosensor for the Detection of Circulating MicroRNA toward Non-Small Cell Lung Cancer Diagnosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200784. [PMID: 35332677 DOI: 10.1002/smll.202200784] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Circulating microRNAs (miRNAs) can be used as noninvasive biomarkers and are also found circulating in body fluids such as blood. Dysregulated miRNA expression is associated with many diseases, including non-small cell lung cancer (NSCLC), and the miRNA assay is helpful in cancer diagnosis, prognosis, and monitoring. In this work, a versatile electrochemical biosensing system is developed for miRNA detection by DNAzyme-cleavage cycling amplification and hybridization chain reaction (HCR) amplification. With cleavage by Mn2+ targeted DNAzyme, DNA-walker can move along the predesigned DNA tracks and contribute to the transduction and enhancement of signals. For the electrochemical process, the formation of multiple G-quadruplex-incorporated long double-stranded DNA (dsDNA/G-quadruplex) structures is triggered through HCR amplification. The introduction of G-quadruplex allows sensitive measurement of miRNA down to 5.68 fM with good specificity. Furthermore, by profiling miRNA in the NSCLC cohort, this designed strategy shows high efficiency (area under the curve (AUC) of 0.879 using receiver operating characteristic (ROC) analysis) with the sensitivity of 80.0% for NSCLC early diagnosis (stage I). For the discrimination of NSCLC and benign disease, the assay displays an AUC of 0.907, superior to six clinically-acceptable protein tumor markers. Therefore, this platform holds promise in clinical application toward NSCLC diagnosis and prognosis.
Collapse
Affiliation(s)
- Fanyu Meng
- Country Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Wenjun Yu
- Country Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Changqiang Chen
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201801, China
| | - Susu Guo
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xiaoting Tian
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yayou Miao
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Lifang Ma
- Country Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xiao Zhang
- Country Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yongchun Yu
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Lin Huang
- Country Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Kun Qian
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jiayi Wang
- Country Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| |
Collapse
|