1
|
Liu SS, Song JM, Li XG, Yuan HM, Duan LQ, Li SC, Wang ZB, Ma J. Enhancing CO 2 storage and marine carbon sink based on seawater mineral carbonation. MARINE POLLUTION BULLETIN 2024; 206:116685. [PMID: 39002220 DOI: 10.1016/j.marpolbul.2024.116685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/15/2024]
Abstract
Human activities emitting carbon dioxide (CO2) have caused severe greenhouse effects and accelerated climate change, making carbon neutrality urgent. Seawater mineral carbonation technology offers a promising negative emission strategy. This work investigates current advancements in proposed seawater mineral carbonation technologies, including CO2 storage and ocean chemical carbon sequestration. CO2 storage technology relies on indirect mineral carbonation to fix CO2, involving CO2 dissolution, Ca/Mg extraction, and carbonate precipitation, optimized by adding alkaline substances or using electrochemical methods. Ocean chemical carbon sequestration uses natural seawater for direct mineral carbonation, enhanced by adding specific materials to promote carbonate precipitation and increase CO2 absorption, thus enhancing marine carbon sinks. This study evaluates these technologies' advantages and challenges, including reaction rates, costs, and ecological impacts, and analyzes representative materials' carbon fixation potential. Literature indicates that seawater mineral carbonation can play a significant role in CO2 storage and enhancing marine carbon sinks in the coming decades.
Collapse
Affiliation(s)
- Shan Shan Liu
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Qingdao Marine Science and Technology Center, Laboratory of Marine Ecology and Environmental Sciences, Qingdao 266237, China
| | - Jin Ming Song
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Qingdao Marine Science and Technology Center, Laboratory of Marine Ecology and Environmental Sciences, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xue Gang Li
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Qingdao Marine Science and Technology Center, Laboratory of Marine Ecology and Environmental Sciences, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hua Mao Yuan
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Qingdao Marine Science and Technology Center, Laboratory of Marine Ecology and Environmental Sciences, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Qin Duan
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Qingdao Marine Science and Technology Center, Laboratory of Marine Ecology and Environmental Sciences, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuo Chen Li
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Bo Wang
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Ma
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Qingdao Marine Science and Technology Center, Laboratory of Marine Ecology and Environmental Sciences, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Gopalan J, Buthiyappan A, Rashidi NA, Sufian S, Abdul Raman AA. A sustainable and economical solution for CO 2 capture with biobased carbon materials derived from palm kernel shells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:45887-45912. [PMID: 38980479 DOI: 10.1007/s11356-024-34173-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/25/2024] [Indexed: 07/10/2024]
Abstract
This study investigates the synthesize of activated carbon for carbon dioxide adsorption using palm kernel shell (PKS), a by-product of oil palm industry. The adsorbent synthesis involved a simple two-step carbonization method. Firstly, PKS was activated with potassium oxide (KOH), followed by functionalization with magnesium oxide (MgO). Surface analysis revealed that KOH activated PKS has resulted in a high specific surface area of 1086 m2/g compared to untreated PKS (435 m2/g). However, impregnation of MgO resulted in the reduction of surface area due to blockage of pores by MgO. Thermogravimetric analysis (TGA) demonstrated that PKS-based adsorbents exhibited minimal weight loss of less than 30% up to 500 °C, indicating their suitability for high-temperature applications. CO2 adsorption experiments revealed that PKS-AC-MgO has achieved a higher adsorption capacity of 155.35 mg/g compared to PKS-AC (149.63 mg/g) at 25 °C and 5 bars. The adsorption behaviour of PKS-AC-MgO was well fitted by both the Sips and Langmuir isotherms, suggesting a combination of both heterogeneous and homogeneous adsorption and indicating a chemical reaction between MgO and CO2. Thermodynamic analysis indicated a spontaneous and thermodynamically favourable process for CO2 capture by PKS-AC-MgO, with negative change in enthalpy (- 0.21 kJ/mol), positive change in entropy (2.44 kJ/mol), and negative change in Gibbs free energy (- 729.61 J/mol, - 790.79 J/mol, and - 851.98 J/mol) across tested temperature. Economic assessment revealed that the cost of PKS-AC-MgO is 21% lower than the current market price of commercial activated carbon, indicating its potential for industrial application. Environmental assessment shows a significant reduction in greenhouse gas emissions (381.9 tCO2) through the utilization of PKS-AC-MgO, underscoring its environmental benefits. In summary, the use of activated carbon produced from PKS and functionalised with MgO shows great potential for absorbing CO2. This aligns with the ideas of a circular economy and sustainable development.
Collapse
Affiliation(s)
- Jayaprina Gopalan
- Sustainable Process Engineering Centre (SPEC), Department of Chemical Engineering, Faculty of Engineering,, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Archina Buthiyappan
- Department of Science and Technology Studies, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Nor Adilla Rashidi
- Biomass Processing Lab, Center of Biofuel and Biochemical, Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750, Tronoh, Perak, Malaysia
| | - Suriati Sufian
- Biomass Processing Lab, Center of Biofuel and Biochemical, Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750, Tronoh, Perak, Malaysia
| | - Abdul Aziz Abdul Raman
- Sustainable Process Engineering Centre (SPEC), Department of Chemical Engineering, Faculty of Engineering,, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Hasnain Sayed M, Sadgar AL, Bhanage BM, Jayaram RV. Particle shape anisotropy in pickering interfacial catalysis for Knoevenagel condensation. J Colloid Interface Sci 2024; 659:413-421. [PMID: 38183807 DOI: 10.1016/j.jcis.2023.12.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/08/2024]
Abstract
Dispersions of two immiscible liquids stabilized by solid particles are termed as Pickering emulsions. Stability of such emulsions is affected by various parameters such as amount of solid particle, method of emulsification, size, and shape of particles, etc. In this study, MgO samples prepared by different methods and characterized by XRD, FESEM, HRTEM, DLS, and CO2-TPD techniques were utilized for stabilizing o/w Pickering emulsions. The effect of particle shape on Pickering Interfacial Catalysis (PIC) for Knoevenagel condensation was investigated. It was found that in the case of rod and plate shaped particles, emulsion stability and catalytic activity were higher as compared to those obtained with other MgO samples prepared. The applicability of the MgO-PIC system is also successfully demonstrated for gram scale synthesis (85 % yield in 30 min). The MgO-PIC system was found to be reusable for at least five cycles without substantial loss in activity.
Collapse
Affiliation(s)
- Mohd Hasnain Sayed
- Physical Chemistry Lab, Department of Chemistry Institute of Chemical Technology, Mumbai-400019, India
| | - Amid L Sadgar
- Physical Chemistry Lab, Department of Chemistry Institute of Chemical Technology, Mumbai-400019, India
| | - Bhalchandra M Bhanage
- Physical Chemistry Lab, Department of Chemistry Institute of Chemical Technology, Mumbai-400019, India
| | - Radha V Jayaram
- Physical Chemistry Lab, Department of Chemistry Institute of Chemical Technology, Mumbai-400019, India.
| |
Collapse
|
4
|
Zhuang W, Song X, Liu M, Wang Q, Song J, Duan L, Li X, Yuan H. Potential capture and conversion of CO 2 from oceanwater through mineral carbonation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161589. [PMID: 36640885 DOI: 10.1016/j.scitotenv.2023.161589] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Carbon dioxide (CO2) emitted by human activities not only brings about a serious greenhouse effect but also accelerates global climate change. This has resulted in extreme climate hazards that can obstruct human development in the near future. Hence, there is an urgent need to achieve carbon neutrality by increasing negative emissions. The ocean plays a vital role in absorbing and sequestering CO2. Current research on marine carbon storage and sink enhancement mainly focuses on biological carbon sequestration using carbon sinks (macroalgae, shellfish, and fisheries). However, seawater inorganic carbon accounts for more than 95 % of the total carbon in marine carbon storage. Increasing total alkalinity at a constant dissolved inorganic carbon shifts the balance of existing seawater carbonate system and prompts a greater absorption of atmospheric CO2, thereby increasing the ocean's "carbon sink". This review explores two main mechanisms (i.e., enhanced weathering and ocean alkalinization) and materials (e.g., silicate rocks, metal oxides, and metal hydroxides) that regulate marine chemical carbon sink (MCCS). This work also compares MCCS with other terrestrial and marine carbon sinks and discusses the implementation of MCCS, including the following aspects: chemical reaction rate, cost, and possible ecological and environmental impacts.
Collapse
Affiliation(s)
- Wen Zhuang
- Institute of Eco-environmental Forensics, Shandong University, Qingdao, Shandong 266237, China; School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China; Key Laboratory of Marine Ecology and Environmental Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, China; National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China.
| | - Xiaocheng Song
- Institute of Eco-environmental Forensics, Shandong University, Qingdao, Shandong 266237, China; School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China; National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Min Liu
- Institute of Eco-environmental Forensics, Shandong University, Qingdao, Shandong 266237, China; School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China; National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Qian Wang
- Qingdao Research Institute of Wuhan University of Technology, Qingdao, Shandong 266237, China
| | - Jinming Song
- Key Laboratory of Marine Ecology and Environmental Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, China; National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Liqin Duan
- Key Laboratory of Marine Ecology and Environmental Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, China; National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Xuegang Li
- Key Laboratory of Marine Ecology and Environmental Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, China; National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Huamao Yuan
- Key Laboratory of Marine Ecology and Environmental Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, China; National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| |
Collapse
|
5
|
Gopalan J, Buthiyappan A, Raman AAA. Insight into metal-impregnated biomass based activated carbon for enhanced carbon dioxide adsorption: A review. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.06.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Mesoporous Magnesium Oxide Adsorbent Prepared via Lime (Citrus aurantifolia) Peel Bio-templating for CO2 Capture. BULLETIN OF CHEMICAL REACTION ENGINEERING & CATALYSIS 2021. [DOI: 10.9767/bcrec.16.2.10505.366-373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The utilization of the lime (Citrus aurantifolia) peel as a template can improve the adsorbent’s structural properties, which consequently affect its CO2 uptake capacity. Herein, a mesoporous magnesium oxide (MgO-lime (Citrus aurantifolia) peel template (LPT)) adsorbent was synthesized using an LPT. MgO-LPT demonstrated improved structural properties and excellent CO2 uptake capacity. Moreover, another MgO adsorbent was prepared via thermal decomposition (MgO-TD) for comparison. The prepared adsorbents were characterized by N2 physisorption, Fourier transform infrared spectroscopy and thermogravimetric analysis. The CO2 uptake of these adsorbents was under 100% CO2 gas and ambient temperature and pressure conditions. MgO-LPT exhibited a higher Brunauer–Emmett–Teller surface area, Barrett–Joyner–Halenda pore volume, and pore diameter of 23 m2.g−1, 0.142 cm3.g−1, and 24.6 nm, respectively, than those of MgO-TD, which indicated the mesoporous structure of MgO-LPT. The CO2 uptake capacity of MgO-LPT is 3.79 mmol CO2.g−1, which is 15 times that of MgO-TD. This study shows that the application of lime peel as a template for the synthesis of MgO adsorbents is a promising approach to achieve MgO adsorbents with enhanced surface area and thus increased CO2 capture performance. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Collapse
|
7
|
Ruhaimi A, Aziz M, Jalil A. Magnesium oxide-based adsorbents for carbon dioxide capture: Current progress and future opportunities. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2020.101357] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
8
|
McQueen N, Kelemen P, Dipple G, Renforth P, Wilcox J. Ambient weathering of magnesium oxide for CO 2 removal from air. Nat Commun 2020; 11:3299. [PMID: 32620820 PMCID: PMC7335196 DOI: 10.1038/s41467-020-16510-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/06/2020] [Indexed: 11/09/2022] Open
Abstract
To avoid dangerous climate change, new technologies must remove billions of tonnes of CO2 from the atmosphere every year by mid-century. Here we detail a land-based enhanced weathering cycle utilizing magnesite (MgCO3) feedstock to repeatedly capture CO2 from the atmosphere. In this process, MgCO3 is calcined, producing caustic magnesia (MgO) and high-purity CO2. This MgO is spread over land to carbonate for a year by reacting with atmospheric CO2. The carbonate minerals are then recollected and re-calcined. The reproduced MgO is spread over land to carbonate again. We show this process could cost approximately $46-159 tCO2-1 net removed from the atmosphere, considering grid and solar electricity without post-processing costs. This technology may achieve lower costs than projections for more extensively engineered Direct Air Capture methods. It has the scalable potential to remove at least 2-3 GtCO2 year-1, and may make a meaningful contribution to mitigating climate change.
Collapse
Affiliation(s)
- Noah McQueen
- Department of Chemical Engineering, Clean Energy Conversions Lab, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Peter Kelemen
- Department of Earth & Environmental Sciences, Lamont-Doherty Earth Observatory, Columbia University, 91 Rte 9W, Palisades, NY, 10964, USA
| | - Greg Dipple
- Department of Earth, Ocean, and Atmospheric Sciences, Bradshaw Research Initiative for Minerals and Mining, University of British Columbia, 2020-2207 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Phil Renforth
- Research Centre for Carbon Solutions, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Jennifer Wilcox
- Department of Chemical Engineering, Clean Energy Conversions Lab, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA.
| |
Collapse
|