1
|
Calderón-Chagoya R, Vega-Murillo VE, García-Ruiz A, Ríos-Utrera Á, Martínez-Velázquez G, Montaño-Bermúdez M. Genome and chromosome wide association studies for growth traits in Simmental and Simbrah cattle. Anim Biosci 2023; 36:19-28. [PMID: 35798032 PMCID: PMC9834659 DOI: 10.5713/ab.21.0517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/27/2022] [Indexed: 01/27/2023] Open
Abstract
OBJECTIVE The objective of this study was to perform genome (genome wide association studies [GWAS]) and chromosome (CWAS) wide association analyses to identify single nucleotide polymorphisms (SNPs) associated with growth traits in registered Simmental and Simbrah cattle. METHODS The phenotypes were deregressed BLUP EBVs for birth weight, weaning weight direct, weaning weight maternal, and yearling weight. The genotyping was performed with the GGP Bovine 150k chip. After the quality control analysis, 105,129 autosomal SNP from 967 animals (473 Simmental and 494 Simbrah) were used to carry out genotype association tests. The two association analyses were performed per breed and using combined information of the two breeds. The SNP associated with growth traits were mapped to their corresponding genes at 100 kb on either side. RESULTS A difference in magnitude of posterior probabilities was found across breeds between genome and chromosome wide association analyses. A total of 110, 143, and 302 SNP were associated with GWAS and CWAS for growth traits in the Simmental-, Simbrah-and joint -data analyses, respectively. It stands out from the enrichment analysis of the pathways for RNA polymerase (POLR2G, POLR3E) and GABAergic synapse (GABRR1, GABRR3) for Simmental cattle and p53 signaling pathway (BID, SERPINB5) for Simbrah cattle. CONCLUSION Only 6,265% of the markers associated with growth traits were found using CWAS and GWAS. The associated markers using the CWAS analysis, which were not associated using the GWAS, represents information that due to the model and priors was not associated with the traits.
Collapse
Affiliation(s)
- René Calderón-Chagoya
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510,
México,Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Colón, Querétaro 76280,
México
| | | | - Adriana García-Ruiz
- Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Colón, Querétaro 76280,
México
| | - Ángel Ríos-Utrera
- Campo Experimental La Posta, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Medellín, Veracruz 94277,
México
| | - Guillermo Martínez-Velázquez
- Campo Experimental Santiago Ixcuintla, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Santiago Ixcuintla, Nayarit 63570,
México
| | - Moisés Montaño-Bermúdez
- Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Colón, Querétaro 76280,
México,Corresponding Author: Moisés Montaño-Bermúdez, Tel: +52-55-38-71-8700 Ext. 80220, E-mail:
| |
Collapse
|
2
|
Nguyen LT, Lau LY, Fortes MRS. Proteomic Analysis of Hypothalamus and Pituitary Gland in Pre and Postpubertal Brahman Heifers. Front Genet 2022; 13:935433. [PMID: 35774501 PMCID: PMC9237413 DOI: 10.3389/fgene.2022.935433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/25/2022] [Indexed: 11/28/2022] Open
Abstract
The hypothalamus and the pituitary gland are directly involved in the complex systemic changes that drive the onset of puberty in cattle. Here, we applied integrated bioinformatics to elucidate the critical proteins underlying puberty and uncover potential molecular mechanisms from the hypothalamus and pituitary gland of prepubertal (n = 6) and postpubertal (n = 6) cattle. Proteomic analysis in the hypothalamus and pituitary gland revealed 275 and 186 differentially abundant (DA) proteins, respectively (adjusted p-value < 0.01). The proteome profiles found herein were integrated with previously acquired transcriptome profiles. These transcriptomic studies used the same tissues harvested from the same heifers at pre- and post-puberty. This comparison detected a small number of matched transcripts and protein changes at puberty in each tissue, suggesting the need for multiple omics analyses for interpreting complex biological systems. In the hypothalamus, upregulated DA proteins at post-puberty were enriched in pathways related to puberty, including GnRH, calcium and oxytocin signalling pathways, whereas downregulated proteins were observed in the estrogen signalling pathway, axon guidance and GABAergic synapse. Additionally, this study revealed that ribosomal pathway proteins in the pituitary were involved in the pubertal development of mammals. The reported molecules and derived protein-protein networks are a starting point for future experimental approaches that might dissect with more detail the role of each molecule to provide new insights into the mechanisms of puberty onset in cattle.
Collapse
Affiliation(s)
- Loan To Nguyen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia
- *Correspondence: Loan To Nguyen,
| | - Li Yieng Lau
- Agency of Science, Technology and Research, Singapore, Singapore
| | | |
Collapse
|
3
|
Garcia LA, Zapata-Bustos R, Day SE, Campos B, Hamzaoui Y, Wu L, Leon AD, Krentzel J, Coletta RL, De Filippis E, Roust LR, Mandarino LJ, Coletta DK. Can Exercise Training Alter Human Skeletal Muscle DNA Methylation? Metabolites 2022; 12:metabo12030222. [PMID: 35323665 PMCID: PMC8953782 DOI: 10.3390/metabo12030222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 12/26/2022] Open
Abstract
Skeletal muscle is highly plastic and dynamically regulated by the body’s physical demands. This study aimed to determine the plasticity of skeletal muscle DNA methylation in response to 8 weeks of supervised exercise training in volunteers with a range of insulin sensitivities. We studied 13 sedentary participants and performed euglycemic hyperinsulinemic clamps with basal vastus lateralis muscle biopsies and peak aerobic activity (VO2 peak) tests before and after training. We extracted DNA from the muscle biopsies and performed global methylation using Illumina’s Methylation EPIC 850K BeadChip. Training significantly increased peak aerobic capacity and insulin-stimulated glucose disposal. Fasting serum insulin and insulin levels during the steady state of the clamp were significantly lower post-training. Insulin clearance rates during the clamp increased following the training. We identified 13 increased and 90 decreased differentially methylated cytosines (DMCs) in response to 8 weeks of training. Of the 13 increased DMCs, 2 were within the following genes, FSTL3, and RP11-624M8.1. Of the 90 decreased DMCs, 9 were within the genes CNGA1, FCGR2A, KIF21A, MEIS1, NT5DC1, OR4D1, PRPF4B, SLC26A7, and ZNF280C. Moreover, pathway analysis showed an enrichment in metabolic and actin-cytoskeleton pathways for the decreased DMCs, and for the increased DMCs, an enrichment in signal-dependent regulation of myogenesis, NOTCH2 activation and transmission, and SMAD2/3: SMAD4 transcriptional activity pathways. Our findings showed that 8 weeks of exercise training alters skeletal muscle DNA methylation of specific genes and pathways in people with varying degrees of insulin sensitivity.
Collapse
Affiliation(s)
- Luis A. Garcia
- Department of Medicine, Division of Endocrinology, University of Arizona, Tucson, AZ 85724, USA; (L.A.G.); (R.Z.-B.); (B.C.); (A.D.L.); (J.K.); (L.J.M.)
- Center for Disparities in Diabetes Obesity and Metabolism, University of Arizona, Tucson, AZ 85724, USA;
| | - Rocio Zapata-Bustos
- Department of Medicine, Division of Endocrinology, University of Arizona, Tucson, AZ 85724, USA; (L.A.G.); (R.Z.-B.); (B.C.); (A.D.L.); (J.K.); (L.J.M.)
- Center for Disparities in Diabetes Obesity and Metabolism, University of Arizona, Tucson, AZ 85724, USA;
| | - Samantha E. Day
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ 85004, USA;
| | - Baltazar Campos
- Department of Medicine, Division of Endocrinology, University of Arizona, Tucson, AZ 85724, USA; (L.A.G.); (R.Z.-B.); (B.C.); (A.D.L.); (J.K.); (L.J.M.)
- Center for Disparities in Diabetes Obesity and Metabolism, University of Arizona, Tucson, AZ 85724, USA;
| | - Yassin Hamzaoui
- Department of Physiology, University of Arizona, Tucson, AZ 85724, USA; (Y.H.); (L.W.)
| | - Linda Wu
- Department of Physiology, University of Arizona, Tucson, AZ 85724, USA; (Y.H.); (L.W.)
| | - Alma D. Leon
- Department of Medicine, Division of Endocrinology, University of Arizona, Tucson, AZ 85724, USA; (L.A.G.); (R.Z.-B.); (B.C.); (A.D.L.); (J.K.); (L.J.M.)
- Center for Disparities in Diabetes Obesity and Metabolism, University of Arizona, Tucson, AZ 85724, USA;
| | - Judith Krentzel
- Department of Medicine, Division of Endocrinology, University of Arizona, Tucson, AZ 85724, USA; (L.A.G.); (R.Z.-B.); (B.C.); (A.D.L.); (J.K.); (L.J.M.)
- Center for Disparities in Diabetes Obesity and Metabolism, University of Arizona, Tucson, AZ 85724, USA;
| | - Richard L. Coletta
- Center for Disparities in Diabetes Obesity and Metabolism, University of Arizona, Tucson, AZ 85724, USA;
| | - Eleanna De Filippis
- Department of Endocrinology, Metabolism and Diabetes, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA; (E.D.F.); (L.R.R.)
| | - Lori R. Roust
- Department of Endocrinology, Metabolism and Diabetes, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA; (E.D.F.); (L.R.R.)
| | - Lawrence J. Mandarino
- Department of Medicine, Division of Endocrinology, University of Arizona, Tucson, AZ 85724, USA; (L.A.G.); (R.Z.-B.); (B.C.); (A.D.L.); (J.K.); (L.J.M.)
- Center for Disparities in Diabetes Obesity and Metabolism, University of Arizona, Tucson, AZ 85724, USA;
| | - Dawn K. Coletta
- Department of Medicine, Division of Endocrinology, University of Arizona, Tucson, AZ 85724, USA; (L.A.G.); (R.Z.-B.); (B.C.); (A.D.L.); (J.K.); (L.J.M.)
- Center for Disparities in Diabetes Obesity and Metabolism, University of Arizona, Tucson, AZ 85724, USA;
- Department of Physiology, University of Arizona, Tucson, AZ 85724, USA; (Y.H.); (L.W.)
- Correspondence: ; Tel.: +1-(520)-626-9316
| |
Collapse
|
4
|
Alexandre PA, Naval-Sánchez M, Menzies M, Nguyen LT, Porto-Neto LR, Fortes MRS, Reverter A. Chromatin accessibility and regulatory vocabulary across indicine cattle tissues. Genome Biol 2021; 22:273. [PMID: 34548076 PMCID: PMC8454054 DOI: 10.1186/s13059-021-02489-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 09/08/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Spatiotemporal changes in the chromatin accessibility landscape are essential to cell differentiation, development, health, and disease. The quest of identifying regulatory elements in open chromatin regions across different tissues and developmental stages is led by large international collaborative efforts mostly focusing on model organisms, such as ENCODE. Recently, the Functional Annotation of Animal Genomes (FAANG) has been established to unravel the regulatory elements in non-model organisms, including cattle. Now, we can transition from prediction to validation by experimentally identifying the regulatory elements in tropical indicine cattle. The identification of regulatory elements, their annotation and comparison with the taurine counterpart, holds high promise to link regulatory regions to adaptability traits and improve animal productivity and welfare. RESULTS We generate open chromatin profiles for liver, muscle, and hypothalamus of indicine cattle through ATAC-seq. Using robust methods for motif discovery, motif enrichment and transcription factor binding sites, we identify potential master regulators of the epigenomic profile in these three tissues, namely HNF4, MEF2, and SOX factors, respectively. Integration with transcriptomic data allows us to confirm some of their target genes. Finally, by comparing our results with Bos taurus data we identify potential indicine-specific open chromatin regions and overlaps with indicine selective sweeps. CONCLUSIONS Our findings provide insights into the identification and analysis of regulatory elements in non-model organisms, the evolution of regulatory elements within two cattle subspecies as well as having an immediate impact on the animal genetics community in particular for a relevant productive species such as tropical cattle.
Collapse
Affiliation(s)
- Pâmela A Alexandre
- CSIRO Agriculture & Food, 306 Carmody Rd., QLD, 4067, Brisbane, Australia.
| | - Marina Naval-Sánchez
- CSIRO Agriculture & Food, 306 Carmody Rd., QLD, 4067, Brisbane, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Moira Menzies
- CSIRO Agriculture & Food, 306 Carmody Rd., QLD, 4067, Brisbane, Australia
| | - Loan T Nguyen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, 4072, Australia
| | | | - Marina R S Fortes
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Antonio Reverter
- CSIRO Agriculture & Food, 306 Carmody Rd., QLD, 4067, Brisbane, Australia
| |
Collapse
|
5
|
NFX1, Its Isoforms and Roles in Biology, Disease and Cancer. BIOLOGY 2021; 10:biology10040279. [PMID: 33808060 PMCID: PMC8067315 DOI: 10.3390/biology10040279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/17/2021] [Accepted: 03/25/2021] [Indexed: 12/20/2022]
Abstract
Simple Summary The NFX1 gene, and its gene products, were identified over 30 years ago. Since then, the literature on NFX1 homologs and NFX1 itself has grown. In this review, we summarize the studies to-date on the NFX1 gene and its proteins across species and in humans, describing their role in gene regulation, embryonic development, cellular growth and differentiation, exogenous stress tolerance and metabolism, and an organism’s immune response. We also highlight the roles NFX1 has in human disease and in cancer, with a strong focus on its collaborative role with high-risk human papillomavirus infections that cause cervical and head and neck cancers. We believe this is the first comprehensive review of NFX1 and its functional significance in organisms ranging from yeast to human. Abstract In 1989, two NFX1 protein products were identified as nuclear proteins with the ability to bind to X-box cis-elements. Since that publication, the NFX1 gene and its homologs have been identified, from yeast to humans. This review article summarizes what is known about the NFX1 gene across species. We describe the gene and protein motifs of NFX1 homologs and their functions in cellular biology, then turn to NFX1 in human biology and disease development. In that, we focus on more recent literature about NFX1 and its two splice variants protein products (NFX1-91 and NFX1-123) that are expressed in epithelial cells. We describe new evidence of conserved protein motifs, direct and indirect gene expression regulation, and critical protein-protein interactions. Finally, we stress the emerging roles of these NFX1 splice variants in high-risk human papillomavirus-associated cancers, and the increased expression of the longer splice variant, NFX1-123, found in these cancers.
Collapse
|
6
|
Lau LY, Nguyen LT, Reverter A, Moore SS, Lynn A, McBride‐Kelly L, Phillips‐Rose L, Plath M, Macfarlane R, Vasudivan V, Morton L, Ardley R, Ye Y, Fortes MRS. Gene regulation could be attributed to TCF3 and other key transcription factors in the muscle of pubertal heifers. Vet Med Sci 2020; 6:695-710. [PMID: 32432381 PMCID: PMC7738712 DOI: 10.1002/vms3.278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 03/13/2020] [Accepted: 04/09/2020] [Indexed: 01/17/2023] Open
Abstract
Puberty is a whole-body event, driven by the hypothalamic integration of peripheral signals such as leptin or IGF-1. In the process of puberty, reproductive development is simultaneous to growth, including muscle growth. To enhance our understanding of muscle function related to puberty, we performed transcriptome analyses of muscle samples from six pre- and six post-pubertal Brahman heifers (Bos indicus). Our aims were to perform differential expression analyses and co-expression analyses to derive a regulatory gene network associate with puberty. As a result, we identified 431 differentially expressed (DEx) transcripts (genes and non-coding RNAs) when comparing pre- to post-pubertal average gene expression. The DEx transcripts were compared with all expressed transcripts in our samples (over 14,000 transcripts) for functional enrichment analyses. The DEx transcripts were associated with "extracellular region," "inflammatory response" and "hormone activity" (adjusted p < .05). Inflammatory response for muscle regeneration is a necessary aspect of muscle growth, which is accelerated during puberty. The term "hormone activity" may signal genes that respond to progesterone signalling in the muscle, as the presence of this hormone is an important difference between pre- and post-pubertal heifers in our experimental design. The DEx transcript with the highest average expression difference was a mitochondrial gene, ENSBTAG00000043574 that might be another important link between energy metabolism and puberty. In the derived co-expression gene network, we identified six hub genes: CDC5L, MYC, TCF3, RUNX2, ATF2 and CREB1. In the same network, 48 key regulators of DEx transcripts were identified, using a regulatory impact factor metric. The hub gene TCF3 was also a key regulator. The majority of the key regulators (22 genes) are members of the zinc finger family, which has been implicated in bovine puberty in other tissues. In conclusion, we described how puberty may affect muscle gene expression in cattle.
Collapse
Affiliation(s)
- Li Yieng Lau
- School of Chemistry and Molecular BiologyThe University of QueenslandBrisbaneQLDAustralia
| | - Loan T. Nguyen
- Queensland Alliance for Agriculture and Food InnovationThe University of QueenslandBrisbaneQLDAustralia
| | - Antonio Reverter
- CSIRO Agriculture and FoodQueensland Biosciences PrecinctBrisbaneQLDAustralia
| | - Stephen S. Moore
- Queensland Alliance for Agriculture and Food InnovationThe University of QueenslandBrisbaneQLDAustralia
| | - Aaron Lynn
- School of Chemistry and Molecular BiologyThe University of QueenslandBrisbaneQLDAustralia
| | - Liam McBride‐Kelly
- School of Chemistry and Molecular BiologyThe University of QueenslandBrisbaneQLDAustralia
| | - Louis Phillips‐Rose
- School of Chemistry and Molecular BiologyThe University of QueenslandBrisbaneQLDAustralia
| | - Mackenzie Plath
- School of Chemistry and Molecular BiologyThe University of QueenslandBrisbaneQLDAustralia
| | - Rhys Macfarlane
- School of Chemistry and Molecular BiologyThe University of QueenslandBrisbaneQLDAustralia
| | - Vanisha Vasudivan
- School of Chemistry and Molecular BiologyThe University of QueenslandBrisbaneQLDAustralia
| | - Lachlan Morton
- School of Chemistry and Molecular BiologyThe University of QueenslandBrisbaneQLDAustralia
| | - Ryan Ardley
- School of Chemistry and Molecular BiologyThe University of QueenslandBrisbaneQLDAustralia
| | - Yunan Ye
- School of Chemistry and Molecular BiologyThe University of QueenslandBrisbaneQLDAustralia
| | - Marina R. S. Fortes
- School of Chemistry and Molecular BiologyThe University of QueenslandBrisbaneQLDAustralia
- Queensland Alliance for Agriculture and Food InnovationThe University of QueenslandBrisbaneQLDAustralia
| |
Collapse
|