1
|
Oltedal A, Gaustad AH, Peltoniemi O, Björkman S, Skaare A, Oropeza-Moe M. Experiences with transvaginal Ovum Pick-Up (OPU) in sows. Theriogenology 2024; 214:157-165. [PMID: 37879285 DOI: 10.1016/j.theriogenology.2023.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/01/2023] [Accepted: 09/24/2023] [Indexed: 10/27/2023]
Abstract
Transvaginal ultrasound-guided Ovum Pick-Up (OPU) is an established technique in other species. Due to several challenges, there are few publications addressing the procedure in sows. An efficient OPU technique may allow for the collection of numerous oocytes from valuable sows for porcine in vitro embryo production, gene editing and cloning programmes, or cryopreservation. We aimed to improve transvaginal OPU and equipment for this technique in sows. In experiment 1, we conducted 13 OPU sessions on three Landrace x Large White hybrid sows under general anaesthesia, while the second experiment explored OPU in non-sedated animals (N = 6) physically restrained in a commercial claw trimming chute. The experiments resulted in 6.6 ± 5.6 (mean ± SD) and 7.7 ± 8.9 recovered cumulus-oocyte complexes per session, respectively. Post-mortem examination of the pelvic and abdominal cavities of the three sows subjected to repeated OPU sessions did not reveal major acute or chronic pathological lesions. The only sow which was inseminated after the experiment delivered 16 liveborn piglets at term. Salivary cortisol levels increased during the procedure in non-sedated and physically restrained sows but returned to baseline 1 h later (n = 5), indicating a short-term stress response. The described OPU technique and equipment have the potential to retrieve considerable numbers of oocytes by repeated procedures on valuable mature sows. Follow-up studies are needed to optimize the efficiency of the aspiration of high-quality oocytes and to describe the developmental competence of these OPU-derived oocytes. It is also essential to further investigate sow welfare during and after the procedure before recommending porcine transvaginal OPU as a sustainable and welfare-friendly procedure.
Collapse
Affiliation(s)
- Aslak Oltedal
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Sandnes, Norway.
| | | | | | | | | | - Marianne Oropeza-Moe
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Sandnes, Norway
| |
Collapse
|
2
|
Murin M, Nemcova L, Bartkova A, Gad A, Lucas-Hahn A, Strejcek F, Prochazka R, Laurincik J. Porcine oocytes matured in a chemically defined medium are transcriptionally active. Theriogenology 2023; 203:89-98. [PMID: 37001226 DOI: 10.1016/j.theriogenology.2023.03.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/11/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023]
Abstract
The statement that fully-grown porcine oocytes (oocytes from follicles with diameter from 3 to 6 mm) are transcriptionally quiescent is not as strongly supported as it was before. Currently, we know that there is a difference between the transcription profile of germinal vesicle (GV) and metaphase II (MII) oocytes. The goal of our study was to compare the transcription profile of GV, germinal vesicle breakdown (GVBD), metaphase I (MI), and MII oocytes matured in the chemically defined medium FLI. Oocytes were sequenced, and the results were subsequently validated using quantitative reverse transcription polymerase chain reaction (RT-qPCR). We detected multiple differentially transcribed mRNAs, of which many were upregulated. Among them we found mRNAs necessary for protein production, mitochondrial functions and cytoplasmic maturation. Collectively, these data support the hypothesis that transcription activity in fully-grown porcine oocytes is necessary for key processes during their successful maturation in vitro in a chemically defined maturation medium.
Collapse
|
3
|
Pan P, Huang X. The Clinical Application of Growth Hormone and Its Biological and Molecular Mechanisms in Assisted Reproduction. Int J Mol Sci 2022; 23:ijms231810768. [PMID: 36142677 PMCID: PMC9505823 DOI: 10.3390/ijms231810768] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/26/2022] Open
Abstract
Growth hormone (GH) has been used as a co-gonadotrophin in assisted reproduction, particularly in poor ovarian responders. The application of GH has been alleged to activate primordial follicles and improve oocyte quality, embryo quality, and steroidogenesis. However, the effects of GH on the live birth rate among women is controversial. Additionally, although the basic biological mechanisms that lead to the above clinical differences have been investigated, they are not yet well understood. The actions of GH are mediated by GH receptors (GHRs) or insulin-like growth factors (IGFs). GH regulates the vital signal transduction pathways that are involved in primordial follicular activation, steroidogenesis, and oocyte maturation. However, the therapeutic windows and duration of GH administration during assisted reproductive technology require further investigation. The review aimed to clarify the role of GH in human fertility from a molecular and biological point of view to provide evidence for proper GH administration.
Collapse
|
4
|
Guo L, Zhao Y, Huan Y. Pterostilbene Alleviates Chlorpyrifos-Induced Damage During Porcine Oocyte Maturation. Front Cell Dev Biol 2022; 9:803181. [PMID: 34993205 PMCID: PMC8724426 DOI: 10.3389/fcell.2021.803181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/30/2021] [Indexed: 12/16/2022] Open
Abstract
Chlorpyrifos (CPF), a widely used organophosphate pesticide, is reported to severely impair mammalian reproductive system. Pterostilbene (PTS), an effective free radical scavenger, is considered as beneficial for mammalian reproduction. However, the toxicity of CPF on oocyte maturation and whether PTS can eliminate the detrimental effect of CPF on oocytes remain unclear. Here, porcine oocytes were applied to investigate the potential effect and possible mechanism of CPF and PTS during oocyte maturation. This work demonstrated that CPF significantly delayed the meiotic progression and decreased the polar body extrusion by disturbing spindle assembly and chromosome alignment and causing DNA damage in oocytes (p < 0.05). And, CPF significantly impaired oocyte cytoplasmic maturation by inducing the high level of reactive oxygen species and decreasing glutathione content (p < 0.05). Moreover, CPF significantly triggered embryo apoptosis and reduced the blastocyst rate and cell number following parthenogenetic activation (p < 0.05). Whereas CPF-exposed oocytes were treated with PTS, these defects caused by CPF were obviously rescued, and oocyte maturation and subsequent embryonic development were also significantly ameliorated (p < 0.05). In conclusion, these results revealed that CPF exerted the toxic effect on porcine oocytes, while PTS effectively alleviated CPF-induced damage on oocytes. This work provides a potential strategy to protect oocyte maturation in mammalian species.
Collapse
Affiliation(s)
- Lili Guo
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China.,National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yongda Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Yanjun Huan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
5
|
He Q, Wu S, Huang M, Wang Y, Zhang K, Kang J, Zhang Y, Quan F. Effects of Diluent pH on Enrichment and Performance of Dairy Goat X/Y Sperm. Front Cell Dev Biol 2021; 9:747722. [PMID: 34660605 PMCID: PMC8517142 DOI: 10.3389/fcell.2021.747722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/14/2021] [Indexed: 01/07/2023] Open
Abstract
In this paper, on the basis of the differences in the hydrogen ion concentration (pH) of the diluent dairy goat semen on X/Y sperm motility, an X/Y sperm enrichment study was conducted to establish a simple and effective method for gender control in dairy goats. Dairy goat semen was diluted using different pH dilutions and was incubated. Then, the X/Y sperm ratio in the isolated upper sperm was determined using the double TaqMan qPCR method. The internal pH change pattern of sperm cells at different pH dilutions was measured using BCECF-AM probe, and the functional parameters of the isolated sperm were tested with the corresponding kit. Next, an in vitro fertilization test was conducted using isolated spermatozoa and oocytes to determine their fertilization rates, the percentages of female embryos, and the expression of genes related to developing potentially fertilized embryos. Results showed that the percentages of the X sperm cells in the upper sperm layer were 67.24% ± 2.61% at sperm dilution pH of 6.2 and 30.45% ± 1.03% at sperm dilution pH of 7.4, which was significantly different from 52.35% ± 1.72% of the control group (pH 6.8) (P < 0.01). Results also showed that there is a relationship between the external pHo and internal pHi of sperm cells. Furthermore, the percentages of female embryos after the in vitro fertilization of the isolated upper sperm with mature oocytes at pH 6.2 and 7.4 were 66.67% ± 0.05 and 29.73% ± 0.04%, respectively, compared with 48.57% ± 0.02% in the control group (pH 6.8). Highly significant differences occurred between groups (P < 0.01). Additionally, no significant difference was observed during the expression of genes related to embryonic development between the blastocysts formed from sperm isolated by changing the pH of the diluent and the control sperm (P > 0.05). Therefore, this study successfully established a simple and effective method for enriched X/Y sperms from dairy goats, which is important for regulating the desired sex progeny during dairy goat breeding and for guiding dairy goat production.
Collapse
Affiliation(s)
- Qifu He
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, China.,College of Veterinary Medicine, Northwest A&F University, Xianyang, China.,Key Laboratory of Animal Biotechnology, Northwest A&F University, Xianyang, China
| | - Shenghui Wu
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, China.,College of Veterinary Medicine, Northwest A&F University, Xianyang, China.,Key Laboratory of Animal Biotechnology, Northwest A&F University, Xianyang, China
| | - Ming Huang
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, China.,College of Veterinary Medicine, Northwest A&F University, Xianyang, China.,Key Laboratory of Animal Biotechnology, Northwest A&F University, Xianyang, China
| | - Ying Wang
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, China.,College of Veterinary Medicine, Northwest A&F University, Xianyang, China.,Key Laboratory of Animal Biotechnology, Northwest A&F University, Xianyang, China
| | - Kang Zhang
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, China.,College of Veterinary Medicine, Northwest A&F University, Xianyang, China.,Key Laboratory of Animal Biotechnology, Northwest A&F University, Xianyang, China
| | - Jian Kang
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, China.,College of Veterinary Medicine, Northwest A&F University, Xianyang, China.,Key Laboratory of Animal Biotechnology, Northwest A&F University, Xianyang, China
| | - Yong Zhang
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, China.,College of Veterinary Medicine, Northwest A&F University, Xianyang, China.,Key Laboratory of Animal Biotechnology, Northwest A&F University, Xianyang, China
| | - Fusheng Quan
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, China.,College of Veterinary Medicine, Northwest A&F University, Xianyang, China.,Key Laboratory of Animal Biotechnology, Northwest A&F University, Xianyang, China
| |
Collapse
|