1
|
Ali R, Zhen Y, Zanna X, Lin J, Zhang C, Ma J, Zhong Y, Husien HM, Saleh AA, Wang M. Impact of Circadian Clock PER2 Gene Overexpression on Rumen Epithelial Cell Dynamics and VFA Transport Protein Expression. Int J Mol Sci 2024; 25:12428. [PMID: 39596493 PMCID: PMC11594904 DOI: 10.3390/ijms252212428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/05/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
The circadian gene PER2 is recognized for its regulatory effects on cell proliferation and lipid metabolism across various non-ruminant cells. This study investigates the influence of PER2 gene overexpression on goat rumen epithelial cells using a constructed pcDNA3.1-PER2 plasmid, assessing its impact on circadian gene expression, cell proliferation, and mRNA levels of short-chain fatty acid (SCFA) transporters, alongside genes related to lipid metabolism, cell proliferation, and apoptosis. Rumen epithelial cells were obtained every four hours from healthy dairy goats (n = 3; aged 1.5 years; average weight 45.34 ± 4.28 kg), cultured for 48 h in vitro, and segregated into control (pcDNA3.1) and overexpressed (pcDNA3.1-PER2) groups, each with four biological replicates. The study examined the potential connection between circadian rhythms and nutrient assimilation in ruminant, including cell proliferation, apoptosis, cell cycle dynamics, and antioxidant activity and the expression of circadian-related genes, VFA transporter genes and regulatory factors. The introduction of the pcDNA3.1-PER2 plasmid drastically elevated PER2 expression levels by 3471.48-fold compared to controls (p < 0.01), confirming effective overexpression. PER2 overexpression resulted in a significant increase in apoptosis rates (p < 0.05) and a notable reduction in cell proliferation at 24 and 48 h post-transfection (p < 0.05), illustrating an inhibitory effect on rumen epithelial cell growth. PER2 elevation significantly boosted the expression of CCND1, WEE1, p21, and p16 (p < 0.05) while diminishing CDK4 expression (p < 0.05). While the general expression of intracellular inflammation genes remained stable, TNF-α expression notably increased. Antioxidant marker levels (SOD, MDA, GSH-Px, CAT, and T-AOC) exhibited no significant change, suggesting no oxidative damage due to PER2 overexpression. Furthermore, PER2 overexpression significantly downregulated AE2, NHE1, MCT1, and MCT4 mRNA expressions while upregulating PAT1 and VH+ ATPase. These results suggest that PER2 overexpression impairs cell proliferation, enhances apoptosis, and modulates VFA transporter-related factors in the rumen epithelium. This study implies that the PER2 gene may regulate VFA absorption through modulation of VFA transporters in rumen epithelial cells, necessitating further research into its specific regulatory mechanisms.
Collapse
Affiliation(s)
- Rahmat Ali
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (R.A.); (H.M.H.)
| | - Yongkang Zhen
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (R.A.); (H.M.H.)
| | - Xi Zanna
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (R.A.); (H.M.H.)
| | - Jiaqi Lin
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (R.A.); (H.M.H.)
| | - Chong Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (R.A.); (H.M.H.)
| | - Jianjun Ma
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (R.A.); (H.M.H.)
| | - Yuhong Zhong
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (R.A.); (H.M.H.)
| | - Hosameldeen Mohamed Husien
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (R.A.); (H.M.H.)
| | - Ahmad A. Saleh
- College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China;
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (R.A.); (H.M.H.)
| |
Collapse
|
2
|
Shen Z, Hou Y, Zhao G, Tan L, Chen J, Dong Z, Ni C, Pei L. Physiological functions of glucose transporter-2: From cell physiology to links with diabetes mellitus. Heliyon 2024; 10:e25459. [PMID: 38333863 PMCID: PMC10850595 DOI: 10.1016/j.heliyon.2024.e25459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024] Open
Abstract
Glucose is a sugar crucial for human health since it participates in many biochemical reactions. It produces adenosine 5'-triphosphate (ATP) and nucleosides through glucose metabolic and pentose phosphate pathways. These processes require many transporter proteins to assist in transferring glucose across cells, and the most notable ones are glucose transporter-2 (GLUT-2) and sodium/glucose cotransporter 1 (SGLT1). Glucose enters small intestinal epithelial cells from the intestinal lumen by crossing the brush boundary membrane via the SGLT1 cotransporter. It exits the cells by traversing the basolateral membrane through the activity of the GLUT-2 transporter, supplying energy throughout the body. Dysregulation of these glucose transporters is involved in the pathogenesis of several metabolic diseases, such as diabetes. Natural loss of GLUT-2 or its downregulation causes abnormal blood glucose concentrations in the body, such as fasting hypoglycemia and glucose tolerance. Therefore, understanding GLUT-2 physiology is necessary for exploring the mechanisms of diabetes and targeted treatment development. This article reviews how the apical GLUT-2 transporter maintains normal physiological functions of the human body and the adaptive changes this transporter produces under pathological conditions such as diabetes.
Collapse
Affiliation(s)
- Zhean Shen
- Xinjiang Institute of Technology, Aksu, China
| | - Yingze Hou
- Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Guo Zhao
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Libi Tan
- School of Laboratory Medicine and Biotechnology, Southern Medical University, China
| | - Jili Chen
- Department of Nutrition and Food Hygiene School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Ziqi Dong
- School of Public Health, Peking University Health Science Center, Beijing 100021, China
| | - Chunxiao Ni
- Hangzhou Lin ‘an District Center for Disease Control and Prevention, Hangzhou, China
| | | |
Collapse
|