1
|
Bryan JN. Updates in Osteosarcoma. Vet Clin North Am Small Anim Pract 2024; 54:523-539. [PMID: 38158305 DOI: 10.1016/j.cvsm.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Clinical care of osteosarcoma (OSA) in dogs has seen little change during the past 2 decades, relying on amputation and platinum-based chemotherapy for pain control and survival. Recent advancements offer hope for improved outcomes. Genomic research reveals shared genetic abnormalities between canine and human OSA. Multidimensional imaging provides valuable staging and prognostic information. Limb-sparing approaches including stereotactic body radiation therapy are routine. Ablative therapies such as microwave ablation and histotripsy show promise. Immunotherapy including cell therapy and immune checkpoint inhibition are available. Radiopharmaceuticals are tuned to target OSA cells directly. These innovations may enhance treatment and prognosis for dogs with OSA.
Collapse
Affiliation(s)
- Jeffrey N Bryan
- Comparative Oncology Radiobiology and Epigenetics Laboratory, University of Missouri Columbia, Ellis Fischel Cancer Center, 900 East Campus Drive, Columbia, MO 65211, USA.
| |
Collapse
|
2
|
Norquest CJ, Rogic A, Gimotty PA, Maitz CA, Rindt H, Ashworth HL, Bryan JN, Donnelly LL, McCleary-Wheeler AL, Flesner BK. Effects of neoadjuvant zoledronate and radiation therapy on cell survival, cell cycle distribution, and clinical status in canine osteosarcoma. Front Vet Sci 2024; 11:1237084. [PMID: 38362299 PMCID: PMC10867971 DOI: 10.3389/fvets.2024.1237084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/12/2024] [Indexed: 02/17/2024] Open
Abstract
Introduction Zoledronic acid (ZOL) is a third-generation bisphosphonate with a higher affinity for bone resorption areas than earlier bisphosphonates (i.e., pamidronate, PAM). In human medicine, ZOL provides improved bone pain relief and prolonged time to skeletal-related events compared to its older generational counterparts. Preclinical studies have investigated its role as an anti-neoplastic agent, both independently and synergistically, with radiation therapy (RT). ZOL and RT act synergistically in several neoplastic human cell lines: prostate, breast, osteosarcoma, and fibrosarcoma. However, the exact mechanism of ZOL's radiosensitization has not been fully elucidated. Methods We investigated ZOL's ability to induce apoptosis in canine osteosarcoma cell lines treated with various doses of megavoltage external beam radiotherapy. Second, we evaluated cell cycle arrest in ZOL-treated cells to assess several neo-adjuvant time points. Finally, we treated 20 dogs with naturally occurring appendicular OS with 0.1 mg/kg ZOL IV 24 h before receiving 8 Gy of RT (once weekly fraction x 4 weeks). Results We found that apoptosis was increased in all ZOL-treated cell lines compared to controls, and the combination of ZOL and RT resulted in dissimilar apoptosis between Abrams and D-17 and HMPOS cell lines. Cell cycle arrest (G2/M phase) was minimal and variable between cell lines but perhaps greatest at 48 h post-ZOL treatment. Only 10% of dogs treated with ZOL and RT developed pathologic fractures, compared to 44% of dogs historically treated with PAM and RT (p = 0.027). Discussion ZOL and RT appear to be a well-tolerated combination treatment scheme for non-surgical candidates; future studies must elucidate the ideal timing of ZOL.
Collapse
Affiliation(s)
- Carissa J. Norquest
- Department of Veterinary Medicine & Surgery, University of Missouri College of Veterinary Medicine, Columbia, MO, United States
| | - Anita Rogic
- Department of Veterinary Medicine & Surgery, University of Missouri College of Veterinary Medicine, Columbia, MO, United States
| | - Phyllis A. Gimotty
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| | - Charles A. Maitz
- Department of Veterinary Medicine & Surgery, University of Missouri College of Veterinary Medicine, Columbia, MO, United States
| | - Hansjorg Rindt
- Department of Veterinary Medicine & Surgery, University of Missouri College of Veterinary Medicine, Columbia, MO, United States
| | - Hayley L. Ashworth
- Department of Veterinary Medicine & Surgery, University of Missouri College of Veterinary Medicine, Columbia, MO, United States
| | - Jeffrey N. Bryan
- Department of Veterinary Medicine & Surgery, University of Missouri College of Veterinary Medicine, Columbia, MO, United States
| | - Lindsay L. Donnelly
- Department of Veterinary Medicine & Surgery, University of Missouri College of Veterinary Medicine, Columbia, MO, United States
| | - Angela L. McCleary-Wheeler
- Department of Veterinary Medicine & Surgery, University of Missouri College of Veterinary Medicine, Columbia, MO, United States
| | - Brian K. Flesner
- Department of Veterinary Medicine & Surgery, University of Missouri College of Veterinary Medicine, Columbia, MO, United States
- Department of Clinical Sciences & Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, United States
| |
Collapse
|
3
|
Altwal J, Martin TW, Thamm DH, Séguin B. Configuration of pathologic fractures in dogs with osteosarcoma following stereotactic body radiation therapy: A retrospective analysis. Vet Comp Oncol 2023; 21:131-137. [PMID: 36633386 DOI: 10.1111/vco.12877] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 01/13/2023]
Abstract
For some cases of canine appendicular osteosarcoma (OSA), limb-sparing treatment options are often desired, one of which is stereotactic body radiation therapy (SBRT). A major complication of SBRT is fracture of the irradiated bone at the site of treatment. The present study evaluated 127 appendicular OSA sites in 122 dogs treated with SBRT to identify the most common pathologic fracture locations and configurations. A total of 50 tumours experienced a pathologic fracture, and 38 had imaging sufficient to identify fracture configuration. The distal tibia was more likely to develop a fracture than other sites. Multiple types of fracture configuration (transverse, oblique, spiral and comminuted) were observed. The distal radius was significantly more likely to develop a transverse fracture than other sites. Documentation of fracture location and configuration leads to the identification of the forces contributing to fracture occurrence, since each configuration is a result of different forces acting on each affected bone. Such knowledge is imperative for the development of new approaches to diminish the occurrence of pathologic fractures.
Collapse
Affiliation(s)
- Johnny Altwal
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Tiffany Wormhoudt Martin
- Flint Animal Cancer Center and Department of Environmental and Radiological Health Science, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Douglas H Thamm
- Flint Animal Cancer Center and Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Bernard Séguin
- Flint Animal Cancer Center and Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|