1
|
Bai S, Zhang S, Huang C, Shi Q. Hierarchical Equations of Motion for Quantum Chemical Dynamics: Recent Methodology Developments and Applications. Acc Chem Res 2024. [PMID: 39381954 DOI: 10.1021/acs.accounts.4c00492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
ConspectusQuantum effects are critical to understanding many chemical dynamical processes in condensed phases, where interactions between molecules and their environment are usually strong and non-Markovian. In this Account, we review recent progress from our group in development and application of the hierarchical equations of motion (HEOM) method, highlighting its ability to address some challenging problems in quantum chemical dynamics.In the HEOM method, the bath degrees of freedom are represented using effective modes from exponential decomposition of the bath correlation function. Complex spectral densities and low temperature simulations often require a larger number of modes, making the simulations very expensive. Recent advances, such as the barycentric spectral decomposition (BSD) technique, can significantly reduce the number of effective modes, allowing to handle complex spectral densities and enabling simulations at very low temperatures, including near-zero temperature dynamics.Another key improvement in the computational efficiency is the use of tensor network methods like matrix product states and hierarchical tensor networks. These techniques allow for efficient HEOM propagation with thousands of effective modes, crucial for simulating large molecular systems interacting with multiple baths. This combination enables simulations of excitation energy transfer (EET) in systems like the Fenna-Matthews-Olson (FMO) complex and even larger systems with experimentally determined spectral densities.The versatility of the HEOM method is demonstrated through applications to a wide range of chemical dynamics problems. Simulations of EET and related ultrafast spectroscopy are first briefly covered. Applications of the HEOM to quantum tunneling effects in proton transfer reactions are then presented. Early works have studied the non-Kramers dependence of the rate constant as a function of bath friction due to deep tunneling and revealed vibrationally nonadiabatic dynamics within the so-called nontraditional view of proton transfer reactions. A recent work on the large kinetic isotope effects in soybean lipoxygenase also indicated that many quantum correction approximations to classical transition-state theory may fall short in describing deep tunneling effects.Charge transport and separation dynamics in organic semiconductors are another area where the HEOM method has been instrumental. We first demonstrate that the HEOM provides a unified description of both band-like and thermally assisted charge carrier transport in organic materials. The effect of non-nearest neighbor transitions is then investigated by combining generalized master equations with exact memory kernels. The HEOM method also enables simulation of charge separation in organic photovoltaics (OPVs) and reveals how factors such as external electric fields, entropy, and charge delocalization influence the charge separation barrier and dynamics.Moreover, HEOM has been applied to investigate hydrogen atom scattering on the Au(111) surface and vibrational energy relaxation at molecule-metal interfaces. These studies provide deeper insights into how electron-hole pair excitations and temporary charge transfer states influence the nuclear motion, offering a new framework for simulating nonadiabatic dynamics on metal surfaces.In summary, the HEOM method has developed into a robust tool for simulating quantum effects in condensed phases. Future developments in algorithm efficiency and computational power will likely expand its applicability to even more complex systems.
Collapse
Affiliation(s)
- Shuming Bai
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuocang Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenghong Huang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Shi
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Mäck M, Thoss M, Rudge SL. Nonadiabatic dynamics of molecules interacting with metal surfaces: Extending the hierarchical equations of motion and Langevin dynamics approach to position-dependent metal-molecule couplings. J Chem Phys 2024; 161:064106. [PMID: 39132787 DOI: 10.1063/5.0222076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024] Open
Abstract
Electronic friction and Langevin dynamics is a popular mixed quantum-classical method for simulating the nonadiabatic dynamics of molecules interacting with metal surfaces, as it can be computationally more efficient than fully quantum approaches. In this work, we extend the theory of electronic friction within the hierarchical equations of motion formalism to models with a position-dependent metal-molecule coupling. We show that the addition of a position-dependent metal-molecule coupling adds new contributions to the electronic friction and other forces, which are highly relevant for many physical processes. Our expressions for the electronic forces within the Langevin equation are valid both in and out of equilibrium and for molecular models containing strong interactions. We demonstrate the approach by applying it to different models of interest.
Collapse
Affiliation(s)
- Martin Mäck
- Institute of Physics, University of Freiburg, Hermann-Herder-Strasse 3, 79104 Freiburg, Germany
| | - Michael Thoss
- Institute of Physics, University of Freiburg, Hermann-Herder-Strasse 3, 79104 Freiburg, Germany
| | - Samuel L Rudge
- Institute of Physics, University of Freiburg, Hermann-Herder-Strasse 3, 79104 Freiburg, Germany
| |
Collapse
|
3
|
Wang X, Zhu X, Wu P, Li Q, Li Z, Zhang X, Liu Z, Zhang Y, Du P. Differences in Kondo Splitting of Surface Quantum Systems Induced by Two Distinct Magnetic Tips: A Joint Method of DFT and HEOM. J Phys Chem A 2024; 128:4750-4760. [PMID: 38832647 DOI: 10.1021/acs.jpca.4c02067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The interactions between a magnetic tip and local spin impurities initiate unconventional Kondo phenomena, such as asymmetric suppression or even splitting of the Kondo peak. However, a lack of realistic theoretical models and comprehensive explanations for this phenomenon persists due to the complexity of the interactions. This research employs a joint method of density functional theory (DFT) and hierarchical equation of motion (HEOM) to simulate and contrast the modulation of the spin state and Kondo behavior in the Fe/Cu(100) system with two distinct magnetic tips. A cobalt tip, possessing a larger magnetic moment, incites greater atomic displacement of the iron atom, more notable alterations in electronic structure, and enhanced charge transfer with the environment compared with the control process utilizing a nickel tip. Furthermore, the Kondo resonance undergoes asymmetric splitting as a result of the ferromagnetic correlation between the iron atom and the magnetic tip. The Co tip's higher spin polarization results in a wider spacing between the splitting peaks. This investigation underscores the precision of the DFT + HEOM approach in predicting complex quantum phenomena and explaining the underlying physical principles. This provides valuable theoretical support for developing more sophisticated quantum regulation experiments.
Collapse
Affiliation(s)
- Xiaoli Wang
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, PR China
| | - Xinru Zhu
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, PR China
| | - Ping Wu
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, PR China
| | - Qing Li
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, PR China
| | - Zhen Li
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, PR China
| | - Xiaolei Zhang
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, PR China
| | - Zhongmin Liu
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, PR China
| | - Yuexing Zhang
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, PR China
| | - Pengli Du
- College of Chemical Engineering, Qinghai University, Xining 810016, PR China
| |
Collapse
|
4
|
Zuo L, Ye L, Li X, Xu RX, Yan Y, Zheng X. Unraveling the Nature of Spin Coupling in a Metal-Free Diradical: Theoretical Distinction of Ferromagnetic and Antiferromagnetic Interactions. J Phys Chem Lett 2024; 15:5761-5769. [PMID: 38776132 DOI: 10.1021/acs.jpclett.4c01063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Metal-free diradicals based on polycyclic aromatic hydrocarbons are promising candidates for organic spintronics due to their stable magnetism and tunable spin coupling. However, distinguishing and elucidating the origins of ferromagnetic and antiferromagnetic interactions in these systems remain challenging. Here, we investigate the 2-OS diradical molecule sandwiched between gold electrodes using a combined density functional theory and hierarchical equations of motion approach. We find that the dihedral angle between the radical moieties controls the nature and strength of the intramolecular spin coupling, transitioning smoothly from antiferromagnetic to ferromagnetic as the angle increases. Distinct features in the inelastic electron tunneling spectra are identified that can discern the two coupling regimes, including spin excitation steps whose energies directly reveal the exchange coupling constant. Mechanical stretching of the junction is predicted to modulate the spectral line shapes by adjusting the hybridization of the molecular radicals with the electrodes. Our work elucidates the electronic origin of tunable spin interactions in 2-OS and provides spectroscopic fingerprints for characterizing magnetism in metal-free diradicals.
Collapse
Affiliation(s)
- Lijun Zuo
- Hefei National Research Center for Physical Sciences at the Microscale & Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Lyuzhou Ye
- Hefei National Research Center for Physical Sciences at the Microscale & Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiangyang Li
- Hefei National Research Center for Physical Sciences at the Microscale & Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Rui-Xue Xu
- Hefei National Research Center for Physical Sciences at the Microscale & Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - YiJing Yan
- Hefei National Research Center for Physical Sciences at the Microscale & Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiao Zheng
- Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
5
|
Kang M, Nuomin H, Chowdhury SN, Yuly JL, Sun K, Whitlow J, Valdiviezo J, Zhang Z, Zhang P, Beratan DN, Brown KR. Seeking a quantum advantage with trapped-ion quantum simulations of condensed-phase chemical dynamics. Nat Rev Chem 2024; 8:340-358. [PMID: 38641733 DOI: 10.1038/s41570-024-00595-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 04/21/2024]
Abstract
Simulating the quantum dynamics of molecules in the condensed phase represents a longstanding challenge in chemistry. Trapped-ion quantum systems may serve as a platform for the analog-quantum simulation of chemical dynamics that is beyond the reach of current classical-digital simulation. To identify a 'quantum advantage' for these simulations, performance analysis of both analog-quantum simulation on noisy hardware and classical-digital algorithms is needed. In this Review, we make a comparison between a noisy analog trapped-ion simulator and a few choice classical-digital methods on simulating the dynamics of a model molecular Hamiltonian with linear vibronic coupling. We describe several simple Hamiltonians that are commonly used to model molecular systems, which can be simulated with existing or emerging trapped-ion hardware. These Hamiltonians may serve as stepping stones towards the use of trapped-ion simulators for systems beyond the reach of classical-digital methods. Finally, we identify dynamical regimes in which classical-digital simulations seem to have the weakest performance with respect to analog-quantum simulations. These regimes may provide the lowest hanging fruit to make the most of potential quantum advantages.
Collapse
Affiliation(s)
- Mingyu Kang
- Duke Quantum Center, Duke University, Durham, NC, USA.
- Department of Physics, Duke University, Durham, NC, USA.
| | - Hanggai Nuomin
- Department of Chemistry, Duke University, Durham, NC, USA
| | | | - Jonathon L Yuly
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Ke Sun
- Duke Quantum Center, Duke University, Durham, NC, USA
- Department of Physics, Duke University, Durham, NC, USA
| | - Jacob Whitlow
- Duke Quantum Center, Duke University, Durham, NC, USA
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA
| | - Jesús Valdiviezo
- Kenneth S. Pitzer Theory Center, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- Departamento de Ciencias, Sección Química, Pontificia Universidad Católica del Perú, Lima, Peru
| | - Zhendian Zhang
- Department of Chemistry, Duke University, Durham, NC, USA
| | - Peng Zhang
- Department of Chemistry, Duke University, Durham, NC, USA
| | - David N Beratan
- Department of Physics, Duke University, Durham, NC, USA.
- Department of Chemistry, Duke University, Durham, NC, USA.
- Department of Biochemistry, Duke University, Durham, NC, USA.
| | - Kenneth R Brown
- Duke Quantum Center, Duke University, Durham, NC, USA.
- Department of Physics, Duke University, Durham, NC, USA.
- Department of Chemistry, Duke University, Durham, NC, USA.
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
6
|
Chen ZH, Wang Y, Xu RX, Yan Y. Open quantum systems with nonlinear environmental backactions: Extended dissipaton theory vs core-system hierarchy construction. J Chem Phys 2023; 158:074102. [PMID: 36813728 DOI: 10.1063/5.0134700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In this paper, we present a comprehensive account of quantum dissipation theories with the quadratic environment couplings. The theoretical development includes the Brownian solvation mode embedded hierarchical quantum master equations, a core-system hierarchy construction that verifies the extended dissipaton equation of motion (DEOM) formalism [R. X. Xu et al., J. Chem. Phys. 148, 114103 (2018)]. Developed are also the quadratic imaginary-time DEOM for equilibrium and the λ(t)-DEOM for nonequilibrium thermodynamics problems. Both the celebrated Jarzynski equality and Crooks relation are accurately reproduced, which, in turn, confirms the rigorousness of the extended DEOM theories. While the extended DEOM is more numerically efficient, the core-system hierarchy quantum master equation is favorable for "visualizing" the correlated solvation dynamics.
Collapse
Affiliation(s)
- Zi-Hao Chen
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yao Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Rui-Xue Xu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - YiJing Yan
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
7
|
Zuo L, Zhuang Q, Ye L, Yan Y, Zheng X. Unveiling the Decisive Factor for the Sharp Transition in the Scanning Tunneling Spectroscopy of a Single Nickelocene Molecule. J Phys Chem Lett 2022; 13:11262-11270. [PMID: 36448930 DOI: 10.1021/acs.jpclett.2c03168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Scanning tunneling microscopy (STM) has been utilized to realize the precise measurement and control of local spin states. Experiments have demonstrated that when a nickelocene (Nc) molecule is attached to the apex of an STM tip, the dI/dV spectra exhibit a sharp or a smooth transition when the tip is displaced toward the substrate. However, what leads to the two distinct types of transitions remains unclear, and more intriguingly, the physical origin of the abrupt change in the line shape of dI/dV spectra remains unclear. To clarify these intriguing issues, we perform first-principles-based simulations on the STM tip control process for the Cu tip/Nc/Cu(100) junction. In particular, we find that the suddenly enhanced hybridization between the d orbitals on the Ni ion and the metallic bands in the substrate leads to Kondo correlation overwhelming spin excitation, which is the main cause of the sharp transition in the dI/dV spectra observed experimentally.
Collapse
Affiliation(s)
- Lijun Zuo
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qingfeng Zhuang
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lyuzhou Ye
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - YiJing Yan
- Hefei National Research Center for Physical Sciences at the Microscale and iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiao Zheng
- Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
8
|
Ke Y, Kaspar C, Erpenbeck A, Peskin U, Thoss M. Nonequilibrium reaction rate theory: Formulation and implementation within the hierarchical equations of motion approach. J Chem Phys 2022; 157:034103. [DOI: 10.1063/5.0098545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The study of chemical reactions in environments under nonequilibrium conditions has been of interest recently in a variety of contexts, including current-induced reactions in molecular junctions and scanning tunneling microscopy experiments. In this work, we outline a fully quantum mechanical, numerically exact approach to describe chemical reaction rates in such nonequilibrium situations. The approach is based on an extension of the flux correlation function formalism to nonequilibrium conditions and uses a mixed real and imaginary time hierarchical equations of motion approach for the calculation of rate constants. As a specific example, we investigate current-induced intramolecular proton transfer reactions in a molecular junction for different applied bias voltages and molecule-lead coupling strengths.
Collapse
Affiliation(s)
- Yaling Ke
- Institute of Physics, Albert-Ludwigs-Universität Freiburg, Germany
| | | | | | - Uri Peskin
- Chemistry, Technion Israel Institute of Technology, Israel
| | - Michael Thoss
- University of Freiburg Institute of Physics, Germany
| |
Collapse
|
9
|
Chen ZH, Wang Y, Zheng X, Xu RX, Yan Y. Universal time-domain Prony fitting decomposition for optimized hierarchical quantum master equations. J Chem Phys 2022; 156:221102. [DOI: 10.1063/5.0095961] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this work, we propose the time-domain Prony fitting decomposition (t-PFD) as an accurate and effcient exponential series method, applicable to arbitrary bath correlation functions. The resulting numerical effciency of hierarchical equations of motion (HEOM) formalism is greatly optimized, especially in low temperature regimes that would be inaccessible with other methods. For demonstration, we calibrate the present t-PFD against the celebrated Padé spectrum decomposition (PSD) method, followed by converged HEOM evaluations on the single-impurity Anderson model system.
Collapse
Affiliation(s)
- Zi-Hao Chen
- University of Science and Technology of China, China
| | - Yao Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, China
| | - Xiao Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, China
| | - Rui-Xue Xu
- University of Science and Technology of China, China
| | - YiJing Yan
- Department of Chemical Physics, USTC, China
| |
Collapse
|
10
|
Ke Y, Borrelli R, Thoss M. Hierarchical equations of motion approach to hybrid fermionic and bosonic environments: Matrix product state formulation in twin space. J Chem Phys 2022; 156:194102. [DOI: 10.1063/5.0088947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We extend the twin-space formulation of the hierarchical equations of motion approach in combination with the matrix product state representation (introduced in J. Chem. Phys. 150, 234102, [2019]) to nonequilibrium scenarios where the open quantum system is coupled to a hybrid fermionic and bosonic environment. The key ideas used in the extension are a reformulation of the hierarchical equations of motion for the auxiliary density matrices into a time-dependent Schrödinger-like equation for an augmented multi-dimensional wave function as well as a tensor decomposition into a product of low-rank matrices. The new approach facilitates accurate simulations of non-equilibrium quantum dynamics in larger and more complex open quantum systems. The performance of the method is demonstrated for a model of a molecular junction exhibiting current-induced mode-selective vibrational excitation.
Collapse
Affiliation(s)
- Yaling Ke
- Institute of Physics, Albert-Ludwigs-Universität Freiburg, Germany
| | - Raffaele Borrelli
- Department of Agricoltural Science, Università degli Studi di Torino, Italy
| | - Michael Thoss
- University of Freiburg Institute of Physics, Germany
| |
Collapse
|
11
|
Li Z, Cheng Y, Zheng X, Wei J, Yan Y, Luo HG. Study the mixed valence problem in asymmetric Anderson model: Fano-Kondo resonance around Fermi level. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:255601. [PMID: 35378517 DOI: 10.1088/1361-648x/ac640a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
We numerically calculate the local density of states (LDOS) in asymmetric Anderson model in mixed valence regime using hierarchical equations of motion approach. Based on the idea that the asymmetric line shape of LDOS around Fermi level stems from the interference between the single particle resonance and the Kondo resonance, we perform a fitting. From the fitting results, we obtain the Kondo temperatures and the Fano factors with changing the single particle energy. The tendency of Kondo temperature agrees with the previous analytic expressions and the Fano factors are in an expected variation of Fano resonance. Our study shows that the Fano-Kondo resonance can reasonably explain the asymmetric line shape of the LDOS around the Fermi level.
Collapse
Affiliation(s)
- ZhenHua Li
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou 730000, People's Republic of China
- Beijing Computational Science Research Center, Beijing 100193, People's Republic of China
| | - YongXi Cheng
- Beijing Computational Science Research Center, Beijing 100193, People's Republic of China
- Department of Science, Taiyuan Institute of Technology, Taiyuan 030008, People's Republic of China
| | - Xiao Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale & Synergetic Innovation Center of Quantum Information and Quantum Physics & CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - JianHua Wei
- Department of Physics, Renmin University of China, Beijing 100872, People's Republic of China
| | - YiJing Yan
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Hong-Gang Luo
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou 730000, People's Republic of China
- Beijing Computational Science Research Center, Beijing 100193, People's Republic of China
| |
Collapse
|
12
|
Ren J, Li W, Jiang T, Wang Y, Shuai Z. Time‐dependent density matrix renormalization group method for quantum dynamics in complex systems. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jiajun Ren
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing People's Republic of China
| | - Weitang Li
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing People's Republic of China
| | - Tong Jiang
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing People's Republic of China
| | - Yuanheng Wang
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing People's Republic of China
| | - Zhigang Shuai
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing People's Republic of China
| |
Collapse
|
13
|
Zhuang Q, Wang X, Ye L, Yan Y, Zheng X. Origin of Asymmetric Splitting of Kondo Peak in Spin-Polarized Scanning Tunneling Spectroscopy: Insights from First-Principles-Based Simulations. J Phys Chem Lett 2022; 13:2094-2100. [PMID: 35225612 DOI: 10.1021/acs.jpclett.2c00228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The spin-polarized scanning tunneling microscope (SP-STM) has served as a versatile tool for probing and manipulating the spintronic properties of atomic and molecular devices with high precision. The interplay between the local spin state and its surrounding magnetic environment significantly affects the transport behavior of the device. Particularly, in the contact regime, the strong hybridization between the SP-STM tip and the magnetic atom or molecule could give rise to unconventional Kondo resonance signatures in the differential conductance (dI/dV) spectra. This poses challenges for the simulation of a realistic tip control process. By combining the density functional theory and the hierarchical equations of motion methods, we achieve first-principles-based simulation of the control of a Ni-tip/Co/Cu(100) junction in both the tunneling and contact regimes. The calculated dI/dV spectra reproduce faithfully the experimental data. A cotunneling mechanism is proposed to elucidate the physical origin of the observed unconventional Kondo signatures.
Collapse
Affiliation(s)
- Qingfeng Zhuang
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaoli Wang
- School of Chemistry and Chemical Engineering, Dezhou University, Dezhou, Shandong 253023, China
| | - Lyuzhou Ye
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - YiJing Yan
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiao Zheng
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
14
|
Li T, Yan Y, Shi Q. A low-temperature quantum Fokker-Planck equation that improvesthe numerical stability of the hierarchical equations of motion for the Brownian oscillator spectral density. J Chem Phys 2022; 156:064107. [DOI: 10.1063/5.0082108] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Tianchu Li
- Institute of Chemistry Chinese Academy of Sciences, China
| | | | - Qiang Shi
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, China
| |
Collapse
|
15
|
Computational Characterization of Nanosystems. CHINESE J CHEM PHYS 2022. [DOI: 10.1063/1674-0068/cjcp2111233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
16
|
Interpretation of Adiabatic and Diabatic Populations from Trajectories of Branching Corrected Surface Hopping. CHINESE J CHEM PHYS 2022. [DOI: 10.1063/1674-0068/cjcp2201023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
17
|
Mao H, Jin J, Wang S, Yan Y. Nonequilibrium Kondo regime current noise spectrum of quantum dot systems with the single impurity Anderson model. J Chem Phys 2021; 155:014104. [PMID: 34241380 DOI: 10.1063/5.0045346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigate the nonequilibrium current noise spectrum of single impurity Anderson model quantum dot systems on the basis of the accurate dissipation equation of motion evaluations. By comparing between the equilibrium and nonequilibrium cases and between the non-Kondo and Kondo regimes, we identify the current noise spectrum of the nonequilibrium Kondo features that actually appear in the entire region of ω ∈ [-eV, eV]. It is well known that the primary Kondo characteristics at ω = ±eV = ±(μL - μR) display asymmetrical upturns and remarkable peaks in S(ω) and dS(ω)/dω, respectively. These features are originated from the Rabi interference of the transport current dynamics, with the Kondo oscillation frequency of |eV|. Moreover, we also identify the minor but very distinguishable inflections, crossing over from ω = -eV to ω = +eV. This uncovered feature would be related to the interference between two Kondo resonance channels.
Collapse
Affiliation(s)
- Hong Mao
- Department of Physics, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jinshuang Jin
- Department of Physics, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Shikuan Wang
- Department of Physics, Hangzhou Dianzi University, Hangzhou 310018, China
| | - YiJing Yan
- Hefei National Laboratory for Physical Sciences at the Microscale & i ChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
18
|
Chen ZH, Wang Y, Xu RX, Yan Y. Correlated vibration-solvent effects on the non-Condon exciton spectroscopy. J Chem Phys 2021; 154:244105. [PMID: 34241336 DOI: 10.1063/5.0053169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Excitation energy transfer is crucially involved in a variety of systems. During the process, the non-Condon vibronic coupling and the surrounding solvent interaction may synergetically play important roles. In this work, we study the correlated vibration-solvent influences on the non-Condon exciton spectroscopy. Statistical analysis is elaborated for the overall vibration-plus-solvent environmental effects. Analytic solutions are derived for the linear absorption of monomer systems. General simulations are accurately carried out via the dissipaton-equation-of-motion approach. The resulted spectra in either the linear absorption or strong field regime clearly demonstrate the coherence enhancement due to the synergetic vibration-solvent correlation.
Collapse
Affiliation(s)
- Zi-Hao Chen
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yao Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and iChEM and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Rui-Xue Xu
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - YiJing Yan
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
19
|
Ke Y, Erpenbeck A, Peskin U, Thoss M. Unraveling current-induced dissociation mechanisms in single-molecule junctions. J Chem Phys 2021; 154:234702. [PMID: 34241274 DOI: 10.1063/5.0053828] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Understanding current-induced bond rupture in single-molecule junctions is both of fundamental interest and a prerequisite for the design of molecular junctions, which are stable at higher-bias voltages. In this work, we use a fully quantum mechanical method based on the hierarchical quantum master equation approach to analyze the dissociation mechanisms in molecular junctions. Considering a wide range of transport regimes, from off-resonant to resonant, non-adiabatic to adiabatic transport, and weak to strong vibronic coupling, our systematic study identifies three dissociation mechanisms. In the weak and intermediate vibronic coupling regime, the dominant dissociation mechanism is stepwise vibrational ladder climbing. For strong vibronic coupling, dissociation is induced via multi-quantum vibrational excitations triggered either by a single electronic transition at high bias voltages or by multiple electronic transitions at low biases. Furthermore, the influence of vibrational relaxation on the dissociation dynamics is analyzed and strategies for improving the stability of molecular junctions are discussed.
Collapse
Affiliation(s)
- Yaling Ke
- Institute of Physics, Albert-Ludwig University Freiburg, Hermann-Herder-Strasse 3, 79104 Freiburg, Germany
| | - André Erpenbeck
- School of Chemistry, The Raymond and Beverley Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Uri Peskin
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Michael Thoss
- Institute of Physics, Albert-Ludwig University Freiburg, Hermann-Herder-Strasse 3, 79104 Freiburg, Germany
| |
Collapse
|
20
|
Kaspar C, Thoss M. Efficient Steady-State Solver for the Hierarchical Equations of Motion Approach: Formulation and Application to Charge Transport through Nanosystems. J Phys Chem A 2021; 125:5190-5200. [PMID: 34102055 DOI: 10.1021/acs.jpca.1c02863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An iterative approach is introduced, which allows the efficient solution of the hierarchical equations of motion (HEOM) for the steady-state of open quantum systems. The approach combines the method of matrix equations with an efficient preconditioning technique to reduce the numerical effort of solving the HEOM. Illustrative applications to simulate nonequilibrium charge transport in single-molecule junctions demonstrate the performance of the method.
Collapse
Affiliation(s)
- C Kaspar
- Institute of Physics, University of Freiburg, Hermann-Herder-Straße 3, D-79104 Freiburg, Germany
| | - M Thoss
- Institute of Physics, University of Freiburg, Hermann-Herder-Straße 3, D-79104 Freiburg, Germany.,EUCOR Centre for Quantum Science and Quantum Computing, University of Freiburg, Hermann-Herder-Straße 3, D-79104 Freiburg, Germany
| |
Collapse
|
21
|
Tanimura Y. Numerically "exact" approach to open quantum dynamics: The hierarchical equations of motion (HEOM). J Chem Phys 2021; 153:020901. [PMID: 32668942 DOI: 10.1063/5.0011599] [Citation(s) in RCA: 163] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
An open quantum system refers to a system that is further coupled to a bath system consisting of surrounding radiation fields, atoms, molecules, or proteins. The bath system is typically modeled by an infinite number of harmonic oscillators. This system-bath model can describe the time-irreversible dynamics through which the system evolves toward a thermal equilibrium state at finite temperature. In nuclear magnetic resonance and atomic spectroscopy, dynamics can be studied easily by using simple quantum master equations under the assumption that the system-bath interaction is weak (perturbative approximation) and the bath fluctuations are very fast (Markovian approximation). However, such approximations cannot be applied in chemical physics and biochemical physics problems, where environmental materials are complex and strongly coupled with environments. The hierarchical equations of motion (HEOM) can describe the numerically "exact" dynamics of a reduced system under nonperturbative and non-Markovian system-bath interactions, which has been verified on the basis of exact analytical solutions (non-Markovian tests) with any desired numerical accuracy. The HEOM theory has been used to treat systems of practical interest, in particular, to account for various linear and nonlinear spectra in molecular and solid state materials, to evaluate charge and exciton transfer rates in biological systems, to simulate resonant tunneling and quantum ratchet processes in nanodevices, and to explore quantum entanglement states in quantum information theories. This article presents an overview of the HEOM theory, focusing on its theoretical background and applications, to help further the development of the study of open quantum dynamics.
Collapse
Affiliation(s)
- Yoshitaka Tanimura
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
22
|
Gong H, Wang Y, Zhang HD, Xu RX, Zheng X, Yan Y. Thermodynamic free-energy spectrum theory for open quantum systems. J Chem Phys 2020; 153:214115. [DOI: 10.1063/5.0028429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Hong Gong
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yao Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hou-Dao Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Rui-Xue Xu
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiao Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - YiJing Yan
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
23
|
Ullah A, Han L, Yan YA, Zheng X, Yan Y, Chernyak V. Stochastic equation of motion approach to fermionic dissipative dynamics. II. Numerical implementation. J Chem Phys 2020; 152:204106. [DOI: 10.1063/1.5142166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Arif Ullah
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lu Han
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yun-An Yan
- School of Physics and Optoelectronic Engineering, Ludong University, Shandong 264025, China
| | - Xiao Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - YiJing Yan
- Hefei National Laboratory for Physical Sciences at the Microscale and iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Vladimir Chernyak
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, USA
| |
Collapse
|
24
|
Han L, Ullah A, Yan YA, Zheng X, Yan Y, Chernyak V. Stochastic equation of motion approach to fermionic dissipative dynamics. I. Formalism. J Chem Phys 2020; 152:204105. [DOI: 10.1063/1.5142164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Lu Han
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Arif Ullah
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yun-An Yan
- School of Physics and Optoelectronic Engineering, Ludong University, Shandong 264025, China
| | - Xiao Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - YiJing Yan
- Hefei National Laboratory for Physical Sciences at the Microscale & iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Vladimir Chernyak
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, USA
| |
Collapse
|
25
|
Li X, Zhu L, Li B, Li J, Gao P, Yang L, Zhao A, Luo Y, Hou J, Zheng X, Wang B, Yang J. Molecular molds for regularizing Kondo states at atom/metal interfaces. Nat Commun 2020; 11:2566. [PMID: 32444665 PMCID: PMC7244723 DOI: 10.1038/s41467-020-16402-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/27/2020] [Indexed: 11/12/2022] Open
Abstract
Adsorption of magnetic transition metal atoms on a metal surface leads to the formation of Kondo states at the atom/metal interfaces. However, the significant influence of surrounding environment presents challenges for potential applications. In this work, we realize a novel strategy to regularize the Kondo states by moving a CoPc molecular mold on an Au(111) surface to capture the dispersed Co adatoms. The symmetric and ordered structures of the atom-mold complexes, as well as the strong dπ-π bonding between the Co adatoms and conjugated isoindole units, result in highly robust and uniform Kondo states at the Co/Au(111) interfaces. Even more remarkably, the CoPc further enables a fine tuning of Kondo states through the molecular-mold-mediated superexchange interactions between Co adatoms separated by more than 12 Å. Being highly precise, efficient and reproducible, the proposed molecular mold strategy may open a new horizon for the construction and control of nano-sized quantum devices.
Collapse
Affiliation(s)
- Xiangyang Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Liang Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Bin Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jingcheng Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Pengfei Gao
- Hefei National Laboratory for Physical Sciences at the Microscale, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Longqing Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Aidi Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yi Luo
- Hefei National Laboratory for Physical Sciences at the Microscale, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jianguo Hou
- Hefei National Laboratory for Physical Sciences at the Microscale, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiao Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Bing Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Jinlong Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
26
|
Wang Y, Wei J, Yan Y. Current-induced effective Dzyaloshinskii-Moriya interaction and its Kondo enhancement in double quantum dot. J Chem Phys 2020; 152:164113. [PMID: 32357796 DOI: 10.1063/1.5144624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We studied the nonequilibrium transport of serially coupled double quantum dots connected to ferromagnetic electrodes. We demonstrated that the nonadiabatic part of the spin gauge field resulted in a current-induced Dzyaloshinskii-Moriya (DM) interaction effect in a double quantum dot and numerically confirmed this observation through the hierarchical equations of motion approach. We report that the spin current and the effective DM interaction are enhanced in the Kondo regime. We demonstrate that this enhancement occurs because the Kondo resonance, which is supposed to be suppressed by the local ferromagnetic exchange, is enhanced by the inter-dot coupling. This additional Kondo resonance channel increases the spin current. In addition, the impact of the spin-spin interaction and the Kondo effect on tunnel magnetoresistance is discussed. Our results offer a new approach for controlling the non-collinear spin interaction in double quantum dot devices.
Collapse
Affiliation(s)
- YuanDong Wang
- Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials and Micro-Nano Devices, Renmin University of China, Beijing 100872, China
| | - JianHua Wei
- Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials and Micro-Nano Devices, Renmin University of China, Beijing 100872, China
| | - YiJing Yan
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
27
|
Cohen G, Galperin M. Green’s function methods for single molecule junctions. J Chem Phys 2020; 152:090901. [DOI: 10.1063/1.5145210] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Guy Cohen
- The Raymond and Beverley Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
- School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
| | - Michael Galperin
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
28
|
Zhang HD, Cui L, Gong H, Xu RX, Zheng X, Yan Y. Hierarchical equations of motion method based on Fano spectrum decomposition for low temperature environments. J Chem Phys 2020; 152:064107. [PMID: 32061227 DOI: 10.1063/1.5136093] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The hierarchical equations of motion (HEOM) method has become one of the most popular methods for the studies of the open quantum system. However, its applicability to systems at ultra-low temperatures is largely restrained by the enormous computational cost, which is caused by the numerous exponential functions required to accurately characterize the non-Markovian memory of the reservoir environment. To overcome this problem, a Fano spectrum decomposition (FSD) scheme has been proposed recently [Cui et al., J. Chem. Phys. 151, 024110 (2019)], which expands the reservoir correlation functions using polynomial-exponential functions and hence greatly reduces the size of the memory basis set. In this work, we explicitly establish the FSD-based HEOM formalisms for both bosonic and fermionic environments. The accuracy and efficiency of the FSD-based HEOM are exemplified by the calculated low-temperature dissipative dynamics of a spin-boson model and the dynamic and static properties of a single-orbital Anderson impurity model in the Kondo regime. The encouraging numerical results highlight the practicality and usefulness of the FSD-based HEOM method for general open systems at ultra-low temperatures.
Collapse
Affiliation(s)
- Hou-Dao Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lei Cui
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hong Gong
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Rui-Xue Xu
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiao Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - YiJing Yan
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
29
|
Wang Y, Li X, Yang J. Spin-flip excitations induced by dehydrogenation in a magnetic single-molecule junction. J Chem Phys 2019; 151:224704. [DOI: 10.1063/1.5129288] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Yu Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Xiaoguang Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Jinlong Yang
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
30
|
Cui L, Zhang HD, Zheng X, Xu RX, Yan Y. Highly efficient and accurate sum-over-poles expansion of Fermi and Bose functions at near zero temperatures: Fano spectrum decomposition scheme. J Chem Phys 2019; 151:024110. [DOI: 10.1063/1.5096945] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Lei Cui
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics and Synergetic Innovation Center of Quantum Information and Quantum Physics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hou-Dao Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics and Synergetic Innovation Center of Quantum Information and Quantum Physics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiao Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics and Synergetic Innovation Center of Quantum Information and Quantum Physics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Rui-Xue Xu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics and Synergetic Innovation Center of Quantum Information and Quantum Physics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui 230026, China
| | - YiJing Yan
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics and Synergetic Innovation Center of Quantum Information and Quantum Physics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
31
|
Kato A, Tanimura Y. Hierarchical Equations of Motion Approach to Quantum Thermodynamics. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/978-3-319-99046-0_24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
32
|
Rahman H, Kleinekathöfer U. Non-equilibrium Green’s function transport theory for molecular junctions with general molecule-lead coupling and temperatures. J Chem Phys 2018; 149:234108. [DOI: 10.1063/1.5054312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Hasan Rahman
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Ulrich Kleinekathöfer
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
33
|
|
34
|
Erpenbeck A, Hertlein C, Schinabeck C, Thoss M. Extending the hierarchical quantum master equation approach to low temperatures and realistic band structures. J Chem Phys 2018; 149:064106. [PMID: 30111120 DOI: 10.1063/1.5041716] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The hierarchical quantum master equation (HQME) approach is an accurate method to describe quantum transport in interacting nanosystems. It generalizes perturbative master equation approaches by including higher-order contributions as well as non-Markovian memory and allows for the systematic convergence to the numerically exact result. As the HQME method relies on a decomposition of the bath correlation function in terms of exponentials, however, its application to systems at low temperatures coupled to baths with complexer band structures has been a challenge. In this publication, we outline an extension of the HQME approach, which uses re-summation over poles and can be applied to calculate transient currents at a numerical cost that is independent of temperature and band structure of the baths. We demonstrate the performance of the extended HQME approach for noninteracting tight-binding model systems of increasing complexity as well as for the spinless Anderson-Holstein model.
Collapse
Affiliation(s)
- A Erpenbeck
- Institute for Theoretical Physics and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 7/B2, D-91058 Erlangen, Germany
| | - C Hertlein
- Institute for Theoretical Physics and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 7/B2, D-91058 Erlangen, Germany
| | - C Schinabeck
- Institute for Theoretical Physics and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 7/B2, D-91058 Erlangen, Germany
| | - M Thoss
- Institute for Theoretical Physics and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 7/B2, D-91058 Erlangen, Germany
| |
Collapse
|
35
|
Gong H, Ullah A, Ye L, Zheng X, Yan Y. Quantum entanglement of parallel-coupled double quantum dots: A theoretical study using the hierarchical equations of motion approach. CHINESE J CHEM PHYS 2018. [DOI: 10.1063/1674-0068/31/cjcp1806138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Hong Gong
- Hefei National Laboratory for Physical Sciences at the Microscale & Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Arif Ullah
- Hefei National Laboratory for Physical Sciences at the Microscale & Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - LvZhou Ye
- Hefei National Laboratory for Physical Sciences at the Microscale & Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xiao Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale & Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - YiJing Yan
- Hefei National Laboratory for Physical Sciences at the Microscale & iChEM, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
36
|
Han L, Zhang HD, Zheng X, Yan Y. On the exact truncation tier of fermionic hierarchical equations of motion. J Chem Phys 2018; 148:234108. [PMID: 29935503 DOI: 10.1063/1.5034776] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The hierarchical equations of motion (HEOM) theory is in principle exact for describing the dissipative dynamics of quantum systems linearly coupled to Gaussian environments. In practice, the hierarchy needs to be truncated at a finite tier. We demonstrate that, for general systems described by the fermionic HEOM, the (n+L̃)th-tier truncation with L̃=2NσNν yields the exact density operators up to the nth tier. Here, Nσ = 2 for fermionic systems and Nν is the system degrees of freedom. For noninteracting systems, L̃ is further reduced by half. Such an exact termination pattern originates from the Pauli exclusion principle for fermions, and it holds true regardless of the system-environment coupling strength, the number of coupling reservoirs, or the specific scheme employed to unravel the environment memory contents. The relatively small L̃ emphasizes the nonperturbative nature of the HEOM theory. We also propose a simplified HEOM approach to further reduce the memory cost for practical calculations.
Collapse
Affiliation(s)
- Lu Han
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hou-Dao Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiao Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - YiJing Yan
- Hefei National Laboratory for Physical Sciences at the Microscale and iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
37
|
Hsieh CY, Cao J. A unified stochastic formulation of dissipative quantum dynamics. I. Generalized hierarchical equations. J Chem Phys 2018; 148:014103. [PMID: 29306296 DOI: 10.1063/1.5018725] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We extend a standard stochastic theory to study open quantum systems coupled to a generic quantum environment. We exemplify the general framework by studying a two-level quantum system coupled bilinearly to the three fundamental classes of non-interacting particles: bosons, fermions, and spins. In this unified stochastic approach, the generalized stochastic Liouville equation (SLE) formally captures the exact quantum dissipations when noise variables with appropriate statistics for different bath models are applied. Anharmonic effects of a non-Gaussian bath are precisely encoded in the bath multi-time correlation functions that noise variables have to satisfy. Starting from the SLE, we devise a family of generalized hierarchical equations by averaging out the noise variables and expand bath multi-time correlation functions in a complete basis of orthonormal functions. The general hierarchical equations constitute systems of linear equations that provide numerically exact simulations of quantum dynamics. For bosonic bath models, our general hierarchical equation of motion reduces exactly to an extended version of hierarchical equation of motion which allows efficient simulation for arbitrary spectral densities and temperature regimes. Similar efficiency and flexibility can be achieved for the fermionic bath models within our formalism. The spin bath models can be simulated with two complementary approaches in the present formalism. (I) They can be viewed as an example of non-Gaussian bath models and be directly handled with the general hierarchical equation approach given their multi-time correlation functions. (II) Alternatively, each bath spin can be first mapped onto a pair of fermions and be treated as fermionic environments within the present formalism.
Collapse
Affiliation(s)
- Chang-Yu Hsieh
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Jianshu Cao
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
38
|
Kramer T, Noack M, Reinefeld A, Rodríguez M, Zelinskyy Y. Efficient calculation of open quantum system dynamics and time-resolved spectroscopy with distributed memory HEOM (DM-HEOM). J Comput Chem 2018; 39:1779-1794. [DOI: 10.1002/jcc.25354] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/20/2018] [Accepted: 04/22/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Tobias Kramer
- Zuse Institute Berlin (ZIB), Takustr. 7; 14195 Berlin Germany
- Department of Physics; Harvard University, 17 Oxford Street; Cambridge Massachusetts 02138
| | - Matthias Noack
- Zuse Institute Berlin (ZIB), Takustr. 7; 14195 Berlin Germany
| | | | - Mirta Rodríguez
- Zuse Institute Berlin (ZIB), Takustr. 7; 14195 Berlin Germany
| | | |
Collapse
|
39
|
Wang X, Yang L, Ye L, Zheng X, Yan Y. Precise Control of Local Spin States in an Adsorbed Magnetic Molecule with an STM Tip: Theoretical Insights from First-Principles-Based Simulation. J Phys Chem Lett 2018; 9:2418-2425. [PMID: 29685031 DOI: 10.1021/acs.jpclett.8b00808] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The precise tuning of local spin states in adsorbed organometallic molecules by a mechanically controlled scanning tunneling microscope (STM) tip has become a focus of recent experiments. However, the underlying mechanisms remain somewhat unclear. We investigate theoretically the STM tip control of local spin states in a single iron(II) porphyrin molecule adsorbed on the Pb(111) substrate. A combined density functional theory and hierarchical equations of motion approach is employed to simulate the tip tuning process in conjunction with the complete active space self-consistent field method for accurate computation of magnetic anisotropy. Our first-principles-based simulation accurately reproduces the tuning of magnetic anisotropy realized in experiment. Moreover, we elucidate the evolution of geometric and electronic structures of the composite junction and disclose the delicate competition between the Kondo resonance and local spin excitation. The understanding and insight provided by the first-principles-based simulation may help to realize more fascinating quantum state manipulations.
Collapse
Affiliation(s)
- Xiaoli Wang
- Hefei National Laboratory for Physical Sciences at the Microscale & Synergetic Innovation Center of Quantum Information and Quantum Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Longqing Yang
- Hefei National Laboratory for Physical Sciences at the Microscale & Synergetic Innovation Center of Quantum Information and Quantum Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - LvZhou Ye
- Hefei National Laboratory for Physical Sciences at the Microscale & Synergetic Innovation Center of Quantum Information and Quantum Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Xiao Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale & Synergetic Innovation Center of Quantum Information and Quantum Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Institute of Applied Physics , Guizhou Normal College , Guiyang , Guizhou 550018 , China
| | - YiJing Yan
- Hefei National Laboratory for Physical Sciences at the Microscale & iChEM , University of Science and Technology of China , Hefei , Anhui 230026 , China
| |
Collapse
|
40
|
Cheng Y, Li Z, Wei J, Nie Y, Yan Y. Transient dynamics of a quantum-dot: From Kondo regime to mixed valence and to empty orbital regimes. J Chem Phys 2018; 148:134111. [DOI: 10.1063/1.5013038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- YongXi Cheng
- Department of Science, Taiyuan Institute of Technology, Taiyuan 030008, China
| | - ZhenHua Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Beijing Computational Science Research Center, Beijing 100084, China
| | - JianHua Wei
- Department of Physics, Renmin University of China, Beijing 100872, China
| | - YiHang Nie
- Institute of Theoretical Physics, Shanxi University, Taiyuan 030006, China
| | - YiJing Yan
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
41
|
Affiliation(s)
- Hou-Dao Zhang
- Department of Chemical Physics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Rui-Xue Xu
- Department of Chemical Physics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiao Zheng
- Department of Chemical Physics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - YiJing Yan
- Department of Chemical Physics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
42
|
|
43
|
Wang Y, Li X, Zheng X, Yang J. Manipulation of spin and magnetic anisotropy in bilayer magnetic molecular junctions. Phys Chem Chem Phys 2018; 20:26396-26404. [DOI: 10.1039/c8cp05759a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Kondo effect and magnetic anisotropy in bilayer TMPc/TMPc/Pb(111) junctions can be actively tuned by changing the intermediate decoupling layer.
Collapse
Affiliation(s)
- Yu Wang
- Institute for Advanced Study
- Shenzhen University
- Shenzhen 518060
- China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province
| | - Xiaoguang Li
- Institute for Advanced Study
- Shenzhen University
- Shenzhen 518060
- China
| | - Xiao Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics
- University of Science and Technology of China
- Hefei 230026
- China
| | - Jinlong Yang
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics
- University of Science and Technology of China
- Hefei 230026
- China
| |
Collapse
|
44
|
Hou W, Wang Y, Wei J, Yan Y. Ferromagnetic Phase in Nonequilibrium Quantum Dots. Sci Rep 2017; 7:18072. [PMID: 29273713 PMCID: PMC5741769 DOI: 10.1038/s41598-017-18440-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/12/2017] [Indexed: 12/03/2022] Open
Abstract
By nonperturbatively solving the nonequilibrium Anderson two-impurity model with the hierarchical equations of motion approach, we report a robust ferromagnetic (FM) phase in series-coupled double quantum dots, which can suppress the antiferromagnetic (AFM) phase and dominate the phase diagram at finite bias and detuning energy in the strongly correlated limit. The FM exchange interaction origins from the passive parallel spin arrangement caused by the Pauli exclusion principle during the electrons transport. At very low temperature, the Kondo screening of the magnetic moment in the FM phase induces some nonequilibrium Kondo effects in magnetic susceptibility, spectral functions and current. In the weakly correlated limit, the AFM phase is found still stable, therefore, a magnetic-field-free internal control of spin states can be expected through the continuous FM–AFM phase transition.
Collapse
Affiliation(s)
- WenJie Hou
- Department of Physics, Renmin University of China, Beijing, 100872, China
| | - YuanDong Wang
- Department of Physics, Renmin University of China, Beijing, 100872, China
| | - JianHua Wei
- Department of Physics, Renmin University of China, Beijing, 100872, China.
| | - YiJing Yan
- Hefei National Laboratory for Physical Sciences at the Microscale and iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
45
|
Ye L, Zhang HD, Wang Y, Zheng X, Yan Y. Low-frequency logarithmic discretization of the reservoir spectrum for improving the efficiency of hierarchical equations of motion approach. J Chem Phys 2017; 147:074111. [DOI: 10.1063/1.4999027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- LvZhou Ye
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hou-Dao Zhang
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yao Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiao Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - YiJing Yan
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
46
|
Many-body Tunneling and Nonequilibrium Dynamics of Doublons in Strongly Correlated Quantum Dots. Sci Rep 2017; 7:2486. [PMID: 28559583 PMCID: PMC5449409 DOI: 10.1038/s41598-017-02728-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/13/2017] [Indexed: 12/03/2022] Open
Abstract
Quantum tunneling dominates coherent transport at low temperatures in many systems of great interest. In this work we report a many–body tunneling (MBT), by nonperturbatively solving the Anderson multi-impurity model, and identify it a fundamental tunneling process on top of the well–acknowledged sequential tunneling and cotunneling. We show that the MBT involves the dynamics of doublons in strongly correlated systems. Proportional to the numbers of dynamical doublons, the MBT can dominate the off–resonant transport in the strongly correlated regime. A T3/2–dependence of the MBT current on temperature is uncovered and can be identified as a fingerprint of the MBT in experiments. We also prove that the MBT can support the coherent long–range tunneling of doublons, which is well consistent with recent experiments on ultracold atoms. As a fundamental physical process, the MBT is expected to play important roles in general quantum systems.
Collapse
|
47
|
Li Z, Wei J, Zheng X, Yan Y, Luo HG. Corrected Kondo temperature beyond the conventional Kondo scaling limit. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:175601. [PMID: 28218894 DOI: 10.1088/1361-648x/aa6183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In the Kondo systems such as the magnetic impurity screened by the conduction electrons in a metal host, as well as the quantum dots connected by the leads, the low energy behaviors have universal dependence on the [Formula: see text] or [Formula: see text], where [Formula: see text] is the conventional Kondo temperature. However, it was shown that this scaling behavior is only valid at low-energy; this is called the Kondo scaling limit. Here we explore the extention of the scaling parameter range by introducing the corrected Kondo temperature T K, which may depend on the temperature and bias, as well as the other external parameters. We define the corrected Kondo temperature by scaling the local density of states near the Fermi level, obtained by accurate hierarchy of equations of motion approach at finite temperature and finite bias, and thus obtain a phenomenological expression of the corrected Kondo temperature. By using the corrected Kondo temperature as a characteristic energy scale, the conductance of the quantum dot can be well scaled in a wide parameter range, even two orders beyond the conventional scaling parameter range. Our work indicates that the Kondo scaling, although dominated by the conventional Kondo temperature in the low-energy of the Kondo system, could be extended to a higher energy regime, which is useful for analyzing the physics of the Kondo transport in non-equilibrium or high temperature cases.
Collapse
Affiliation(s)
- ZhenHua Li
- Beijing Computational Science Research Center, Beijing 100193, People's Republic of China. Department of Physics, Renmin University of China, Beijing 100872, People's Republic of China
| | | | | | | | | |
Collapse
|
48
|
Chen F, Ochoa MA, Galperin M. Nonequilibrium diagrammatic technique for Hubbard Green functions. J Chem Phys 2017. [DOI: 10.1063/1.4965825] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Feng Chen
- Department of Physics, University of California, San Diego, La Jolla, California 92093, USA
| | - Maicol A. Ochoa
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| | - Michael Galperin
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
49
|
Chen HT, Cohen G, Reichman DR. Inchworm Monte Carlo for exact non-adiabatic dynamics. II. Benchmarks and comparison with established methods. J Chem Phys 2017; 146:054106. [DOI: 10.1063/1.4974329] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Hsing-Ta Chen
- Department of Chemistry, Columbia University, New York, New York 10027, USA
- The Raymond and Beverly Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Guy Cohen
- The Raymond and Beverly Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
- School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - David R. Reichman
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| |
Collapse
|
50
|
Ding JJ, Wang Y, Zhang HD, Xu RX, Zheng X, Yan Y. Fokker-Planck quantum master equation for mixed quantum-semiclassical dynamics. J Chem Phys 2017; 146:024104. [PMID: 28088143 DOI: 10.1063/1.4973610] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We revisit Caldeira-Leggett's quantum master equation representing mixed quantum-classical theory, but with limited applications. Proposed is a Fokker-Planck quantum master equation theory, with a generic bi-exponential correlation function description on semiclassical Brownian oscillators' environments. The new theory has caustic terms that bridge between the quantum description on primary systems and the semiclassical or quasi-classical description on environments. Various parametrization schemes, both analytical and numerical, for the generic bi-exponential environment bath correlation functions are proposed and scrutinized. The Fokker-Planck quantum master equation theory is of the same numerical cost as the original Caldeira-Leggett's approach but acquires a significantly broadened validity and accuracy range, as illustrated against the exact dynamics on model systems in quantum Brownian oscillators' environments, at moderately low temperatures.
Collapse
Affiliation(s)
- Jin-Jin Ding
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China
| | - Yao Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics and iChEM and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hou-Dao Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics and iChEM and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Rui-Xue Xu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics and iChEM and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiao Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics and iChEM and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - YiJing Yan
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics and iChEM and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|