1
|
Gao J, Zhang W, Yan X, Zhang X, Wang S, Yang G. Metallic CrP 2 monolayer: potential applications in energy storage and conversion. Phys Chem Chem Phys 2023; 25:24705-24711. [PMID: 37668165 DOI: 10.1039/d3cp02917d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Phosphorus-rich compounds have emerged as a promising class of energy storage and conversion materials due to their interesting structures and electrochemical properties. Herein, we propose that a metallic CrP2 monolayer, isomorphic to 1H-phase MoS2, is a good prospect as an anode for K-ion batteries and a catalyst for hydrogen evolution through first-principles calculations. The CrP2 monolayer demonstrates not only a desirable high K storage capacity (940 mA h g-1) but also a low K-ion diffusion barrier (0.10 eV) and average open circuit voltage (0.40 V). On the other hand, its Gibbs free energy (0.02 eV)/active site density is superior/comparable to that of commercial Pt, resulting from the contribution of the lone pair electrons of the P atom. Its high structural stability and intrinsic metallicity can ensure high safety and performance during the cyclic process. These interesting properties make the CrP2 monolayer a promising multifunctional material for energy storage and conversion devices.
Collapse
Affiliation(s)
- Jiayu Gao
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.
| | - Wenyuan Zhang
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.
| | - Xu Yan
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.
| | - Xiaohua Zhang
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.
| | - Sheng Wang
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.
| | - Guochun Yang
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
2
|
Lin J, Yuan Y, Wang M, Yang X, Yang G. Theoretical Studies on the Quantum Capacitance of Two-Dimensional Electrode Materials for Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1932. [PMID: 37446449 DOI: 10.3390/nano13131932] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023]
Abstract
In recent years, supercapacitors have been widely used in the fields of energy, transportation, and industry. Among them, electrical double-layer capacitors (EDLCs) have attracted attention because of their dramatically high power density. With the rapid development of computational methods, theoretical studies on the physical and chemical properties of electrode materials have provided important support for the preparation of EDLCs with higher performance. Besides the widely studied double-layer capacitance (CD), quantum capacitance (CQ), which has long been ignored, is another important factor to improve the total capacitance (CT) of an electrode. In this paper, we survey the recent theoretical progress on the CQ of two-dimensional (2D) electrode materials in EDLCs and classify the electrode materials mainly into graphene-like 2D main group elements and compounds, transition metal carbides/nitrides (MXenes), and transition metal dichalcogenides (TMDs). In addition, we summarize the influence of different modification routes (including doping, metal-adsorption, vacancy, and surface functionalization) on the CQ characteristics in the voltage range of ±0.6 V. Finally, we discuss the current difficulties in the theoretical study of supercapacitor electrode materials and provide our outlook on the future development of EDLCs in the field of energy storage.
Collapse
Affiliation(s)
- Jianyan Lin
- College of Physics, Changchun Normal University, Changchun 130032, China
| | - Yuan Yuan
- College of Physics, Changchun Normal University, Changchun 130032, China
| | - Min Wang
- College of Physics, Changchun Normal University, Changchun 130032, China
| | - Xinlin Yang
- College of Physics, Changchun Normal University, Changchun 130032, China
| | - Guangmin Yang
- College of Physics, Changchun Normal University, Changchun 130032, China
| |
Collapse
|
3
|
A Novel Two-Dimensional ZnSiP 2 Monolayer as an Anode Material for K-Ion Batteries and NO 2 Gas Sensing. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196726. [PMID: 36235262 PMCID: PMC9573561 DOI: 10.3390/molecules27196726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022]
Abstract
Using the crystal-structure search technique and first-principles calculation, we report a new two-dimensional semiconductor, ZnSiP2, which was found to be stable by phonon, molecular-dynamic, and elastic-moduli simulations. ZnSiP2 has an indirect band gap of 1.79 eV and exhibits an anisotropic character mechanically. Here, we investigated the ZnSiP2 monolayer as an anode material for K-ion batteries and gas sensing for the adsorption of CO, CO2, SO2, NO, NO2, and NH3 gas molecules. Our calculations show that the ZnSiP2 monolayer possesses a theoretical capacity of 517 mAh/g for K ions and an ultralow diffusion barrier of 0.12 eV. Importantly, the ZnSiP2 monolayer exhibits metallic behavior after the adsorption of the K-atom layer, which provides better conductivity in a period of the battery cycle. In addition, the results show that the ZnSiP2 monolayer is highly sensitive and selective to NO2 gas molecules.
Collapse
|
4
|
Kuai Y, Chen C, Abduryim E, Gao S, Chen W, Wu G, Wu L, Dong C, Zou W, Lu P. A two-dimensional metallic SnB monolayer as an anode material for non-lithium-ion batteries. Phys Chem Chem Phys 2022; 24:23737-23748. [PMID: 36156614 DOI: 10.1039/d2cp03942g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Na-, K- and Mg-ion batteries (NIBs, KIBs and MIBs) have drawn considerable interest due to their high abundance and excellent safety. However, the lack of high-performance anode materials is a major obstacle to its development. A metallic SnB planar monolayer is predicted by using the two-dimensional global minimum structure search method of swarm intelligence. Based on first-principles calculations, we proved that the metal SnB monolayer has high binding energy and excellent dynamical, thermal and mechanical stability. It is worth noting that the SnB monolayer has several stable adsorption sites for Na-, K- and Mg-ions, so it has a high theoretical capacity of 620.93, 517.44 and 620.93 mA h g-1, respectively. For Na-, K- and Mg-ion batteries, the low diffusion barriers of the SnB monolayer are 0.22, 0.07 and 0.68 eV, and the low average open circuit voltages are 0.42, 0.49 and 0.23 V, which ensure long service life and fast charging in practical applications. In addition, it is proved that the SnB monolayer maintains excellent conductivity and stability during the charge-discharge process. The results show that the SnB monolayer offers innovative advantages for the development of new two-dimensional planar structures that further advance the development of anode materials for metal ion batteries.
Collapse
Affiliation(s)
- Yue Kuai
- School of Science, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Changcheng Chen
- School of Science, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Elyas Abduryim
- School of Science, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Shuli Gao
- School of Science, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Wen Chen
- School of Science, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Ge Wu
- School of Science, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Liyuan Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chao Dong
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876, China.
| | - Weixia Zou
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876, China.
| | - Pengfei Lu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876, China.
| |
Collapse
|
5
|
Wen P, Wang H, Wang X, Wang H, Bai Y, Yang Z. Exploring the physicochemical role of Pd dopant in promoting Li-ion diffusion dynamics and storage performance of NbS 2 at the atomic scale. Phys Chem Chem Phys 2022; 24:14877-14885. [DOI: 10.1039/d2cp01340a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The two-dimensional layered niobium disulfide (NbS2), as a kind of anode material for Li-ion batteries, has received great attention because of its excellent electronic conductivity and structural stability.
Collapse
Affiliation(s)
- Piaopiao Wen
- Key Laboratory of Low Dimensional Materials & Application Technology of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Huangkai Wang
- Key Laboratory of Low Dimensional Materials & Application Technology of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Xianyou Wang
- National Base for International Science & Technology Cooperation, National-Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, School of Chemistry, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Haibo Wang
- NanChang JiaoTong Institute, Nanchang, 330100, Jiangxi, China
| | - Yansong Bai
- National Base for International Science & Technology Cooperation, National-Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, School of Chemistry, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Zhenhua Yang
- Key Laboratory of Low Dimensional Materials & Application Technology of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, Hunan, China
| |
Collapse
|
6
|
Two-Dimensional TeB Structures with Anisotropic Carrier Mobility and Tunable Bandgap. Molecules 2021; 26:molecules26216404. [PMID: 34770813 PMCID: PMC8588529 DOI: 10.3390/molecules26216404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 11/17/2022] Open
Abstract
Two-dimensional (2D) semiconductors with desirable bandgaps and high carrier mobility have great potential in electronic and optoelectronic applications. In this work, we proposed α-TeB and β-TeB monolayers using density functional theory (DFT) combined with the particle swarm-intelligent global structure search method. The high dynamical and thermal stabilities of two TeB structures indicate high feasibility for experimental synthesis. The electronic structure calculations show that the two structures are indirect bandgap semiconductors with bandgaps of 2.3 and 2.1 eV, respectively. The hole mobility of the β-TeB sheet is up to 6.90 × 102 cm2 V-1 s-1. By reconstructing the two structures, we identified two new horizontal and lateral heterostructures, and the lateral heterostructure presents a direct band gap, indicating more probable applications could be further explored for TeB sheets.
Collapse
|
7
|
Han F, Yu T, Qu X, Bergara A, Yang G. Semiconducting MnB 5monolayer as a potential photovoltaic material. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:175702. [PMID: 33530079 DOI: 10.1088/1361-648x/abe269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Exploring new two-dimensional (2D) materials is of great significance for both basic research and practical applications. Although boron can form various 3D and 2D allotropes due to its ease of forming multi-center bonds, the coexistence of honeycomb and kagome boron structures has never been observed in any 2D material yet. In this article we apply first-principle swarm structural searches to predict the existence of a stable MnB5structure, consisting of a sandwich of honeycomb and kagome borophenes. More interestingly, a MnB5nanosheet is a semiconductor with a band gap of 1.07 eV and a high optical absorption in a broad band, which satisfies the requirements of a very good photovoltaic material. Upon moderate strain, MnB5undergoes a conversion from an indirect to a direct band gap semiconductor. The power conversion efficiency of a heterostructure solar cell made of MnB5is up to 18%. The MnB5nanosheet shows a robust dynamical and thermal stability, stemming from the presence of intra- and interlayer multi-center σ and π bonds. These characteristics make MnB5a promising photovoltaic material.
Collapse
Affiliation(s)
- Fanjunjie Han
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Tong Yu
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Xin Qu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, People's Republic of China
| | - Aitor Bergara
- Departamento de Física de la Materia Condensada, Universidad del País Vasco-Euskal Herriko Unibertsitatea, UPV/EHU, 48080 Bilbao, Spain
- Donostia International Physics Center (DIPC), 20018 Donostia, Spain
- Centro de Física de Materiales CFM, Centro Mixto CSIC-UPV/EHU, 20018 Donostia, Spain
| | - Guochun Yang
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, People's Republic of China
| |
Collapse
|
8
|
Wang S, Wang Y, Zhou Q, Li X, Li Y, Liu Y, Sun Y, Wang T, Xu LC, Wang Y. Modelling high performance potassium-ion battery anode materials with two-dimensional vanadium carbide MXene: the role of surface O- and S-terminations. Phys Chem Chem Phys 2021; 23:3898-3904. [PMID: 33543205 DOI: 10.1039/d0cp04969g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to the low cost, high element abundance and intrinsic safety, potassium-ion batteries (KIBs) have attracted a surge of interest in recent years. Currently, the key challenge and obstacle to the development of KIBs is to find suitable anode materials with large capacity, high rate capability and small lattice changes during the charge/discharge process. MXenes with excellent energy storage properties are promising anode materials for KIBs and their energy performance largely depends on the surface termination. Here, two-dimensional O- and S-terminated V2C MXene anode materials are designed to model high performance potassium-ion batteries. Using first-principles calculations, the structural properties and potential battery performance in KIBs of V2CO2 and V2CS2 are systematically investigated. The inherent metallic nature, a small diffusion barrier, a low average open circuit voltage, and a high theoretical specific capacity (489.93 mA h g-1 of V2CO2 and 200.24 mA h g-1 of V2CS2) demonstrate that both of them are ideal anode materials for KIBs. Meanwhile, we also investigated the mechanism of the difference in energy performance between V2CO2 and V2CS2 at atomic and electronic levels, in other words, the energy performance difference introduced by surface O- and S-terminations.
Collapse
Affiliation(s)
- Shifeng Wang
- Department of Physics, Innovation Center of Materials for Energy and Environment Technologies (i-MEET), College of Science, Tibet University, Lhasa 850000, China. and Institute of Oxygen Supply, Center of Tibetan Studies (Everest Research Institute), Tibet University, Lhasa 850000, China and Key Laboratory of Cosmic Rays (Tibet University), Ministry of Education, Lhasa 850000, China
| | - Yatong Wang
- College of Physics and optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Qianyu Zhou
- Department of Physics, Innovation Center of Materials for Energy and Environment Technologies (i-MEET), College of Science, Tibet University, Lhasa 850000, China.
| | - Xin Li
- Department of Physics, Innovation Center of Materials for Energy and Environment Technologies (i-MEET), College of Science, Tibet University, Lhasa 850000, China.
| | - Yong Li
- Department of Physics, Innovation Center of Materials for Energy and Environment Technologies (i-MEET), College of Science, Tibet University, Lhasa 850000, China. and Institute of Oxygen Supply, Center of Tibetan Studies (Everest Research Institute), Tibet University, Lhasa 850000, China
| | - Yanfang Liu
- Department of Physics, Innovation Center of Materials for Energy and Environment Technologies (i-MEET), College of Science, Tibet University, Lhasa 850000, China.
| | - Yaxun Sun
- Department of Physics, Innovation Center of Materials for Energy and Environment Technologies (i-MEET), College of Science, Tibet University, Lhasa 850000, China.
| | - Tingting Wang
- Department of Physics, Innovation Center of Materials for Energy and Environment Technologies (i-MEET), College of Science, Tibet University, Lhasa 850000, China.
| | - Li-Chun Xu
- College of Physics and optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Yuanhao Wang
- SUSTech Engineering Innovation Center, School of Environmental Science and Engineering, Southern University of Science and Technology, Beijing 100000, China.
| |
Collapse
|