1
|
Zeng H, Kou Y, Sun X. How Sophisticated Are Neural Networks Needed to Predict Long-Term Nonadiabatic Dynamics? J Chem Theory Comput 2024; 20:9832-9848. [PMID: 39540684 PMCID: PMC11603613 DOI: 10.1021/acs.jctc.4c01223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Nonadiabatic dynamics is key for understanding solar energy conversion and photochemical processes in condensed phases. This often involves the non-Markovian dynamics of the reduced density matrix in open quantum systems, where knowledge of the system's prior states is necessary to predict its future behavior. In this study, we explore time-series machine learning methods for predicting long-time nonadiabatic dynamics based on short-time input data, comparing these methods with the physics-based transfer tensor method (TTM). To understand the impact of memory time on these approaches, we demonstrate that non-Markovian dynamics can be represented as a linear map within the Nakajima-Zwanzig generalized quantum master equation framework. We further propose a practical method to estimate the effective memory time, within a given tolerance, for reduced density matrix propagation. Our predictive models are applied to various physical systems, including spin-boson models, multistate harmonic (MSH) models with Ohmic spectral densities and for a realistic organic photovoltaic system composed of a carotenoid-porphyrin-fullerene triad dissolved in tetrahydrofuran. Results indicate that the simple linear-mapping fully connected neural network (FCN) outperforms the more complicated nonlinear-mapping networks including the gated recurrent unit (GRU) and the convolutional neural network/long short-term memory (CNN-LSTM) in systems with short memory times, such as spin-boson and MSH models. Conversely, the nonlinear CNN-LSTM and GRU models yield higher accuracy in the triad MSH systems characterized by long memory times. These findings offer valuable insights into the role of effective memory time in non-Markovian quantum dynamics, providing practical guidance for the application of time-series machine learning models to complex chemical systems.
Collapse
Affiliation(s)
- Hao Zeng
- Shanghai
Frontiers Science Center of Artificial Intelligence and Deep Learning, NYU Shanghai, 567 West Yangsi Road, Shanghai 200124, China
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
- Division
of Arts and Sciences, NYU Shanghai, 567 West Yangsi Road, Shanghai 200124, China
- NYU-ECNU
Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China
| | - Yitian Kou
- Shanghai
Frontiers Science Center of Artificial Intelligence and Deep Learning, NYU Shanghai, 567 West Yangsi Road, Shanghai 200124, China
- Division
of Arts and Sciences, NYU Shanghai, 567 West Yangsi Road, Shanghai 200124, China
- School
of Computer Science and Technology, East
China Normal University, Shanghai 200062, China
| | - Xiang Sun
- Shanghai
Frontiers Science Center of Artificial Intelligence and Deep Learning, NYU Shanghai, 567 West Yangsi Road, Shanghai 200124, China
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
- Division
of Arts and Sciences, NYU Shanghai, 567 West Yangsi Road, Shanghai 200124, China
- NYU-ECNU
Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China
- Department
of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
2
|
Picconi D. Dynamics of high-dimensional quantum systems coupled to a harmonic bath. General theory and implementation via multiconfigurational wave packets and truncated hierarchical equations for the mean-fields. J Chem Phys 2024; 161:164108. [PMID: 39450734 DOI: 10.1063/5.0233708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024] Open
Abstract
Modeling the dynamics of a quantum system coupled to a dissipative environment becomes particularly challenging when the system's dimensionality is too high to permit the computation of its eigenstates. This problem is addressed by introducing an eigenstate-free formalism, where the open quantum system is represented as a mixture of high-dimensional, time-dependent wave packets governed by coupled Schrödinger equations, while the environment is described by a multi-component quantum master equation. An efficient computational implementation of this formalism is presented, employing a variational mixed Gaussian/multiconfigurational time-dependent Hartree (G-MCTDH) ansatz for the wave packets and propagating the environment dynamics via hierarchical equations, truncated at the first or second level of the hierarchy. The effectiveness of the proposed methodology is demonstrated on a 61-dimensional model of phonon-driven vibrational relaxation of an adsorbate. G-MCTDH calculations on 4- and 10-dimensional reduced models, combined with truncated hierarchical equations for the mean fields, nearly quantitatively replicate the full-dimensional quantum dynamical results on vibrational relaxation while significantly reducing the computational time. This approach thus offers a promising quantum dynamical method for modeling complex system-bath interactions, where a large number of degrees of freedom must be explicitly considered.
Collapse
Affiliation(s)
- David Picconi
- Institute of Theoretical and Computational Chemistry, Heinrich-Heine-University Düsseldorf, Universitätstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
3
|
Le Dé B, Huppert S, Spezia R, Chin AW. Extending Non-Perturbative Simulation Techniques for Open-Quantum Systems to Excited-State Proton Transfer and Ultrafast Non-Adiabatic Dynamics. J Chem Theory Comput 2024; 20:8749-8766. [PMID: 39388593 DOI: 10.1021/acs.jctc.4c00666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Excited state proton transfer is an ubiquitous phenomenon in biology and chemistry, spanning from the ultrafast reactions of photobases and acids to light-driven, enzymatic catalysis and photosynthesis. However, the simulation of such dynamics involves multiple challenges, since high-dimensional, out-of-equilibrium vibronic states play a crucial role, while a fully quantum description of the proton's dissipative, real-space dynamics is also required. In this work, we extend the powerful matrix product state approach to open quantum systems (TEDOPA) to study these demanding dynamics, and also more general nonadiabatic processes that can appear in complex photochemistry subject to strong laser driving. As an illustration, we initially consider an open model of a four-level electronic system interacting with hundreds of intramolecular vibrations that drive ultrafast excited state proton transfer, as well as an explicit photonic environment that allows us to directly monitor the resulting dual fluorescence in this system. We then demonstrate how to include a continuous "reaction coordinate" of the proton transfer that allows numerically exact simulations that can be understood, visualized and interpreted in the familiar language of diabatic and adiabatic dynamics on potential surfaces, while also retaining an exact quantum treatment of dissipation and driving effects that could be used to study diverse problems in ultrafast photochemistry.
Collapse
Affiliation(s)
- Brieuc Le Dé
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 4 place Jussieu, 75005 Paris, France
| | - Simon Huppert
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 4 place Jussieu, 75005 Paris, France
| | - Riccardo Spezia
- Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, 4 place Jussieu, 75005 Paris, France
| | - Alex W Chin
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 4 place Jussieu, 75005 Paris, France
| |
Collapse
|
4
|
Takahashi H, Borrelli R. Effective modeling of open quantum systems by low-rank discretization of structured environments. J Chem Phys 2024; 161:151101. [PMID: 39422205 DOI: 10.1063/5.0232232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
The accurate description of the interaction of a quantum system with its environment is a challenging problem ubiquitous across all areas of physics and lies at the foundation of quantum mechanics theory. Here, we pioneer a new strategy to create discrete low-rank models of the system-environment interaction, by exploiting the frequency and time domain information encoded in the fluctuation-dissipation relation connecting the system-bath correlation function and the spectral density. We demonstrate the effectiveness of our methodology by combining it with tensor-network methodologies and simulating the quantum dynamics of complex excitonic systems in a highly structured bosonic environment. The new modeling framework sets the basis for a leap in the analysis of open quantum systems, providing controlled accuracy at significantly reduced computational costs, with benefits in all connected research areas.
Collapse
|
5
|
Lyu N, Khazaei P, Geva E, Batista VS. Simulating Cavity-Modified Electron Transfer Dynamics on NISQ Computers. J Phys Chem Lett 2024; 15:9535-9542. [PMID: 39264851 DOI: 10.1021/acs.jpclett.4c02220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
We present an algorithm based on the quantum-mechanically exact tensor-train thermo-field dynamics (TT-TFD) method for simulating cavity-modified electron transfer dynamics on noisy intermediate-scale quantum (NISQ) computers. The utility and accuracy of the proposed methodology is demonstrated on a model for the photoinduced intramolecular electron transfer reaction within the carotenoid-porphyrin-C60 molecular triad in tetrahydrofuran (THF) solution. The electron transfer rate is found to increase significantly with increasing coupling strength between the molecular system and the cavity. The rate process is also seen to shift from overdamped monotonic decay to under-damped oscillatory dynamics. The electron transfer rate is seen to be highly sensitive to the cavity frequency, with the emergence of a resonance cavity frequency for which the effect of coupling to the cavity is maximal. Finally, an implementation of the algorithm on the IBM Osaka quantum computer is used to demonstrate how TT-TFD-based electron transfer dynamics can be simulated accurately on NISQ computers.
Collapse
Affiliation(s)
- Ningyi Lyu
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Multiscale Research Institute of Complex Systems, Fudan University, Shanghai, 200433, China
| | - Pouya Khazaei
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Eitan Geva
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Yale Quantum Institute, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
6
|
Shen K, Sun K, Gelin MF, Zhao Y. Cavity-Tuned Exciton Dynamics in Transition Metal Dichalcogenides Monolayers. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4127. [PMID: 39203305 PMCID: PMC11356741 DOI: 10.3390/ma17164127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024]
Abstract
A fully quantum, numerically accurate methodology is presented for the simulation of the exciton dynamics and time-resolved fluorescence of cavity-tuned two-dimensional (2D) materials at finite temperatures. This approach was specifically applied to a monolayer WSe2 system. Our methodology enabled us to identify the dynamical and spectroscopic signatures of polaronic and polaritonic effects and to elucidate their characteristic timescales across a range of exciton-cavity couplings. The approach employed can be extended to simulation of various cavity-tuned 2D materials, specifically for exploring finite temperature nonlinear spectroscopic signals.
Collapse
Affiliation(s)
- Kaijun Shen
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Kewei Sun
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Maxim F. Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yang Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
7
|
Takahashi H, Borrelli R. Tensor-Train Format Hierarchical Equations of Motion Formalism: Charge Transfer in Organic Semiconductors via Dissipative Holstein Models. J Chem Theory Comput 2024. [PMID: 39152908 DOI: 10.1021/acs.jctc.4c00711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
Hierarchical Equations of Motion (HEOM) in the Tensor-Train (TT) representation is applied to study the charge-transfer dynamics in organic semiconductors (OSCs). The theoretical formulation as well as the basic computational aspects of HEOM-TT are discussed in detail. Charge transfer in OSCs is modeled using dissipative polaronic models that incorporate the effects of both high- and low-frequency molecular vibrations, and it is simulated in a fully quantum and nonperturbative manner, which has not been studied intensively. The capability of treating complex electron-vibrational systems is examined by analyzing and comparing the numerical behavior of the time-dependent variational approach and the time-Alternating Minimal Energy methods and by calculating the current autocorrelation function and diffusivity across various models. Our results indicate that the HEOM-TT framework offers a robust tool for the detailed analysis of complex polaronic systems, suggesting its potential for broader applications.
Collapse
|
8
|
Li W, Ren J, Yang H, Wang H, Shuai Z. Optimal tree tensor network operators for tensor network simulations: Applications to open quantum systems. J Chem Phys 2024; 161:054116. [PMID: 39105557 DOI: 10.1063/5.0218773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024] Open
Abstract
Tree tensor network states (TTNS) decompose the system wavefunction to the product of low-rank tensors based on the tree topology, serving as the foundation of the multi-layer multi-configuration time-dependent Hartree method. In this work, we present an algorithm that automatically constructs the optimal and exact tree tensor network operators (TTNO) for any sum-of-product symbolic quantum operator. The construction is based on the minimum vertex cover of a bipartite graph. With the optimal TTNO, we simulate open quantum systems, such as spin relaxation dynamics in the spin-boson model and charge transport in molecular junctions. In these simulations, the environment is treated as discrete modes and its wavefunction is evolved on equal footing with the system. We employ the Cole-Davidson spectral density to model the glassy phonon environment and incorporate temperature effects via thermo-field dynamics. Our results show that the computational cost scales linearly with the number of discretized modes, demonstrating the efficiency of our approach.
Collapse
Affiliation(s)
- Weitang Li
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, People's Republic of China
- Tencent Quantum Lab, Tencent, Shenzhen 518057, People's Republic of China
| | - Jiajun Ren
- MOE Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Hengrui Yang
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, 100084 Beijing, People's Republic of China
| | - Haobin Wang
- Department of Chemistry, University of Colorado Denver, Denver, Colorado 80217-3364, USA
| | - Zhigang Shuai
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, People's Republic of China
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, 100084 Beijing, People's Republic of China
| |
Collapse
|
9
|
Ke Y, Richardson JO. Quantum nature of reactivity modification in vibrational polariton chemistry. J Chem Phys 2024; 161:054104. [PMID: 39087532 DOI: 10.1063/5.0220908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/14/2024] [Indexed: 08/02/2024] Open
Abstract
In this work, we present a mixed quantum-classical open quantum system dynamics method for studying rate modifications of ground-state chemical reactions in an optical cavity under vibrational strong-coupling conditions. In this approach, the cavity radiation mode is treated classically with a mean-field nuclear force averaging over the remaining degrees of freedom, both within the system and the environment, which are handled quantum mechanically within the hierarchical equations of motion framework. Using this approach, we conduct a comparative analysis by juxtaposing the mixed quantum-classical results with fully quantum-mechanical simulations. After eliminating spurious peaks that can occur when not using the rigorous definition of the rate constant, we confirm the crucial role of the quantum nature of the cavity radiation mode in reproducing the resonant peak observed in the cavity frequency-dependent rate profile. In other words, it appears necessary to explicitly consider the quantized photonic states in studying reactivity modification in vibrational polariton chemistry (at least for the model systems studied in this work), as these phenomena stem from cavity-induced reaction pathways involving resonant energy exchanges between photons and molecular vibrational transitions.
Collapse
Affiliation(s)
- Yaling Ke
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Jeremy O Richardson
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
10
|
Liu S, Peng J, Bao P, Shi Q, Lan Z. Ultrafast Excited-State Energy Transfer in Phenylene Ethynylene Dendrimer: Quantum Dynamics with the Tensor Network Method. J Phys Chem A 2024. [PMID: 39047261 DOI: 10.1021/acs.jpca.4c00322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Photoinduced excited-state energy transfer (EET) processes play an important role in solar energy conversions. Owing to their excellent photoharvesting and exciton-transport properties, phenylene ethynylene (PE) dendrimers display great potential for improving the efficiency of solar cells. In this work, we investigated the intramolecular EET dynamics in a dendrimer composed of two linear PE units (2-ring and 3-ring) using a fully quantum description based on the tensor network method. We first constructed a diabatic model Hamiltonian based on the electronic structure calculations. Using this diabatic vibronic coupling model, we tried to obtain the main features of the EET dynamics in terms of the several diabatic models with different numbers of vibrational modes (from 4 modes to 129 modes) and to explore the corresponding vibronic coupling interactions. The results show that the EET in this PE dendrimer is ultrafast. Four modes of A' symmetry play dominant roles in the dynamics; the remaining 86 modes of A' symmetry can dampen the electronic coherence; and the modes of A″ symmetry do not exhibit significant influence on the EET process. Overall, the first-order intrastate vibronic coupling terms show the dominant role in the EET dynamics, while the second-order intrastate vibronic coupling terms cause damping of the electronic coherence and slow down the overall EET process. This work provides a microscopic understanding of the EET dynamics in PE dendrimers.
Collapse
Affiliation(s)
- Sisi Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Jiawei Peng
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Peng Bao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, Zhongguancun 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Shi
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, Zhongguancun 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenggang Lan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
11
|
Liu Z, Lyu N, Hu Z, Zeng H, Batista VS, Sun X. Benchmarking various nonadiabatic semiclassical mapping dynamics methods with tensor-train thermo-field dynamics. J Chem Phys 2024; 161:024102. [PMID: 38980091 DOI: 10.1063/5.0208708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024] Open
Abstract
Accurate quantum dynamics simulations of nonadiabatic processes are important for studies of electron transfer, energy transfer, and photochemical reactions in complex systems. In this comparative study, we benchmark various approximate nonadiabatic dynamics methods with mapping variables against numerically exact calculations based on the tensor-train (TT) representation of high-dimensional arrays, including TT-KSL for zero-temperature dynamics and TT-thermofield dynamics for finite-temperature dynamics. The approximate nonadiabatic dynamics methods investigated include mixed quantum-classical Ehrenfest mean-field and fewest-switches surface hopping, linearized semiclassical mapping dynamics, symmetrized quasiclassical dynamics, the spin-mapping method, and extended classical mapping models. Different model systems were evaluated, including the spin-boson model for nonadiabatic dynamics in the condensed phase, the linear vibronic coupling model for electronic transition through conical intersections, the photoisomerization model of retinal, and Tully's one-dimensional scattering models. Our calculations show that the optimal choice of approximate dynamical method is system-specific, and the accuracy is sensitively dependent on the zero-point-energy parameter and the initial sampling strategy for the mapping variables.
Collapse
Affiliation(s)
- Zengkui Liu
- Division of Arts and Sciences, NYU Shanghai, 567 West Yangsi Road, Shanghai 200124, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China
- Department of Chemistry, New York University, New York, New York 10003, USA
| | - Ningyi Lyu
- Division of Arts and Sciences, NYU Shanghai, 567 West Yangsi Road, Shanghai 200124, China
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, USA
| | - Zhubin Hu
- Division of Arts and Sciences, NYU Shanghai, 567 West Yangsi Road, Shanghai 200124, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Hao Zeng
- Division of Arts and Sciences, NYU Shanghai, 567 West Yangsi Road, Shanghai 200124, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Victor S Batista
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, USA
| | - Xiang Sun
- Division of Arts and Sciences, NYU Shanghai, 567 West Yangsi Road, Shanghai 200124, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China
- Department of Chemistry, New York University, New York, New York 10003, USA
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| |
Collapse
|
12
|
Le Dé B, Jaouadi A, Mangaud E, Chin AW, Desouter-Lecomte M. Managing temperature in open quantum systems strongly coupled with structured environments. J Chem Phys 2024; 160:244102. [PMID: 38913841 DOI: 10.1063/5.0214051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/06/2024] [Indexed: 06/26/2024] Open
Abstract
In non-perturbative non-Markovian open quantum systems, reaching either low temperatures with the hierarchical equations of motion (HEOM) or high temperatures with the Thermalized Time Evolving Density Operator with Orthogonal Polynomials Algorithm (T-TEDOPA) formalism in Hilbert space remains challenging. We compare different ways of modeling the environment. Sampling the Fourier transform of the bath correlation function, also called temperature dependent spectral density, proves to be very effective. T-TEDOPA [Tamascelli et al., Phys. Rev. Lett. 123, 090402 (2019)] uses a linear chain of oscillators with positive and negative frequencies, while HEOM is based on the complex poles of an optimized rational decomposition of the temperature dependent spectral density [Xu et al., Phys. Rev. Lett. 129, 230601 (2022)]. Resorting to the poles of the temperature independent spectral density and of the Bose function separately is an alternative when the problem due to the huge number of Bose poles at low temperatures is circumvented. Two examples illustrate the effectiveness of the HEOM and T-TEDOPA approaches: a benchmark pure dephasing case and a two-bath model simulating the dynamics of excited electronic states coupled through a conical intersection. We show the efficiency of T-TEDOPA to simulate dynamics at a finite temperature by using either continuous spectral densities or only all the intramolecular oscillators of a linear vibronic model calibrated from ab initio data of a phenylene ethynylene dimer.
Collapse
Affiliation(s)
- Brieuc Le Dé
- Institut des Nanosciences de Paris, Sorbonne Université, CNRS, F-75005 Paris, France
| | - Amine Jaouadi
- LyRIDS, ECE Paris, Graduate School of Engineering, Paris F-75015, France
| | - Etienne Mangaud
- MSME, Université Gustave Eiffel, UPEC, CNRS, F-77454 Marne-La-Vallée, France
| | - Alex W Chin
- Institut des Nanosciences de Paris, Sorbonne Université, CNRS, F-75005 Paris, France
| | | |
Collapse
|
13
|
Ke Y, Richardson JO. Insights into the mechanisms of optical cavity-modified ground-state chemical reactions. J Chem Phys 2024; 160:224704. [PMID: 38856061 DOI: 10.1063/5.0200410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024] Open
Abstract
In this work, we systematically investigate the mechanisms underlying the rate modification of ground-state chemical reactions in an optical cavity under vibrational strong-coupling conditions. We employ a symmetric double-well description of the molecular potential energy surface and a numerically exact open quantum system approach-the hierarchical equations of motion in twin space with a matrix product state solver. Our results predict the existence of multiple peaks in the photon frequency-dependent rate profile for a strongly anharmonic molecular system with multiple vibrational transition energies. The emergence of a new peak in the rate profile is attributed to the opening of an intramolecular reaction pathway, energetically fueled by the cavity photon bath through a resonant cavity mode. The peak intensity is determined jointly by kinetic factors. Going beyond the single-molecule limit, we examine the effects of the collective coupling of two molecules to the cavity. We find that when two identical molecules are simultaneously coupled to the same resonant cavity mode, the reaction rate is further increased. This additional increase is associated with the activation of a cavity-induced intermolecular reaction channel. Furthermore, the rate modification due to these cavity-promoted reaction pathways remains unaffected, regardless of whether the molecular dipole moments are aligned in the same or opposite direction as the light polarization.
Collapse
Affiliation(s)
- Yaling Ke
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Jeremy O Richardson
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
14
|
Hino K, Kurashige Y. Encoding a Many-Body Potential Energy Surface into a Grid-Based Matrix Product Operator. J Chem Theory Comput 2024; 20:3839-3849. [PMID: 38647101 DOI: 10.1021/acs.jctc.4c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
An efficient algorithm for compressing a given many-body potential energy surface (PES) of molecular systems into a grid-based matrix product operator (MPO) is proposed. The PES is once represented by a full-dimensional or truncated many-body expansion form, which is obtained by ab initio calculations at each grid mesh point, and then all terms in the expansion are compressed and merged into a single MPO while maintaining the bond dimension of the MPO as small as possible. It was shown that the ab initio PES of the H2CO was compressed by more than 2 orders of magnitude in the size of the site operators without loss of accuracy. By the use of grid basis, the tensor rank of the site operators of the MPO is reduced from four to three due to the diagonal nature of the position-dependent operators on grid basis, which significantly reduces the computational cost of the tensor contractions required in the real and imaginary time evolution of the matrix product state (MPS) wave functions with the grid-based MPO (Grid-MPO) Hamiltonian. Similar to other grid-based methods, Grid-MPO is easily applicable to any kinds of potentials of molecular systems, such as analytical empirical model potentials expressed by position operators and ab initio potentials, if the values at the grid points are available. Using the Grid-MPO combined with the MPS, we calculated the time correlation function of the Eigen cation H 3 O + ( H 2 O ) 3 to predict the infrared spectrum and compared with the experimental and the previous theoretical studies. The actual scaling with the size of systems was examined for the multidimensional Henon-Heiles Hamiltonian. It was shown that the method is considerably accelerated by the graphic processing unit (GPU) because the sizes of site operators were kept small and all tensors were able to be stored on the VRAM of a GPU.
Collapse
Affiliation(s)
- Kentaro Hino
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yuki Kurashige
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
- FOREST, JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
- CREST, JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
15
|
Takahashi H, Borrelli R, Gelin MF, Chen L. Finite temperature dynamics in a polarized sub-Ohmic heat bath: A hierarchical equations of motion-tensor train study. J Chem Phys 2024; 160:164106. [PMID: 38656440 DOI: 10.1063/5.0202312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
The dynamics of the sub-Ohmic spin-boson model under polarized initial conditions at finite temperatures is investigated by employing both analytical tools and the numerically accurate hierarchical equations of motion-tensor train method. By analyzing the features of nonequilibrium dynamics, we discovered a bifurcation phenomenon, which separates two regimes of the dynamics. It is found that before the bifurcation time, increasing temperature slows down the population dynamics, while the opposite effect occurs after the bifurcation time. The dynamics is highly sensitive to both initial preparation of the bath and thermal effects.
Collapse
Affiliation(s)
| | | | - Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | | |
Collapse
|
16
|
Hou E, Sun K, Gelin MF, Zhao Y. Finite temperature dynamics of the Holstein-Tavis-Cummings model. J Chem Phys 2024; 160:084116. [PMID: 38421073 DOI: 10.1063/5.0193471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
By employing the numerically accurate multiple Davydov Ansatz (mDA) formalism in combination with the thermo-field dynamics (TFD) representation of quantum mechanics, we systematically explore the influence of three parameters-temperature, photonic-mode detuning, and qubit-phonon coupling-on population dynamics and absorption spectra of the Holstein-Tavis-Cummings (HTC) model. It is found that elevated qubit-phonon couplings and/or temperatures have a similar impact on all dynamic observables: they suppress the amplitudes of Rabi oscillations in photonic populations as well as broaden the peaks and decrease their intensities in the absorption spectra. Our results unequivocally demonstrate that the HTC dynamics is very sensitive to the concerted variation of the three aforementioned parameters, and this finding can be used for fine-tuning polaritonic transport. The developed mDA-TFD methodology can be efficiently applied for modeling, predicting, optimizing, and comprehensively understanding dynamic and spectroscopic responses of actual molecular systems in microcavities.
Collapse
Affiliation(s)
- Erqin Hou
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Kewei Sun
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Yang Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
17
|
Zhang ZT, Vaníček JJL. Finite-temperature vibronic spectra from the split-operator coherence thermofield dynamics. J Chem Phys 2024; 160:084103. [PMID: 38385512 DOI: 10.1063/5.0187823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/22/2023] [Indexed: 02/23/2024] Open
Abstract
We present a numerically exact approach for evaluating vibrationally resolved electronic spectra at finite temperatures using the coherence thermofield dynamics. In this method, which avoids implementing an algorithm for solving the von Neumann equation for coherence, the thermal vibrational ensemble is first mapped to a pure-state wavepacket in an augmented space, and this wavepacket is then propagated by solving the standard, zero-temperature Schrödinger equation with the split-operator Fourier method. We show that the finite-temperature spectra obtained with the coherence thermofield dynamics in a Morse potential agree exactly with those computed by Boltzmann-averaging the spectra of individual vibrational levels. Because the split-operator thermofield dynamics on a full tensor-product grid is restricted to low-dimensional systems, we briefly discuss how the accessible dimensionality can be increased by various techniques developed for the zero-temperature split-operator Fourier method.
Collapse
Affiliation(s)
- Zhan Tong Zhang
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jiří J L Vaníček
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
18
|
Shen K, Gelin MF, Sun K, Zhao Y. Dynamics of a Magnetic Polaron in an Antiferromagnet. MATERIALS (BASEL, SWITZERLAND) 2024; 17:469. [PMID: 38255636 PMCID: PMC10820380 DOI: 10.3390/ma17020469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/07/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
The t-J model remains an indispensable construct in high-temperature superconductivity research, bridging the gap between charge dynamics and spin interactions within antiferromagnetic matrices. This study employs the multiple Davydov Ansatz method with thermo-field dynamics to dissect the zero-temperature and finite-temperature behaviors. We uncover the nuanced dependence of hole and spin deviation dynamics on the spin-spin coupling parameter J, revealing a thermally-activated landscape where hole mobilities and spin deviations exhibit a distinct temperature-dependent relationship. This numerically accurate thermal perspective augments our understanding of charge and spin dynamics in an antiferromagnet.
Collapse
Affiliation(s)
- Kaijun Shen
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Maxim F. Gelin
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Kewei Sun
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yang Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
19
|
Shen K, Sun K, Gelin MF, Zhao Y. Finite-Temperature Hole-Magnon Dynamics in an Antiferromagnet. J Phys Chem Lett 2024; 15:447-453. [PMID: 38189682 DOI: 10.1021/acs.jpclett.3c03298] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Employing the numerically accurate multiple Davydov Ansatz in combination with the thermo-field dynamics approach, we delve into the interplay of the finite-temperature dynamics of holes and magnons in an antiferromagnet, which allows for scrutinizing previous predictions from the self-consistent Born approximation while offering, for the first time, accurate finite-temperature computation of detailed magnon dynamics as a response and a facilitator to the hole motion. The study also uncovers a pronounced temperature dependence of the magnon and hole populations, pointing to the feasibility of potential thermal manipulation and control of hole dynamics. Our methodology can be applied not only to the calculation of steady-state angular-resolved photoemission spectra but also to the simulation of femtosecond terahertz pump-probe and other nonlinear signals for the characterization of antiferromagnetic materials.
Collapse
Affiliation(s)
- Kaijun Shen
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Kewei Sun
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Maxim F Gelin
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yang Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
20
|
Van Haeften A, Ash C, Worth G. Propagating multi-dimensional density operators using the multi-layer-ρ multi-configurational time-dependent Hartree method. J Chem Phys 2023; 159:194114. [PMID: 37982483 DOI: 10.1063/5.0172956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/19/2023] [Indexed: 11/21/2023] Open
Abstract
Solving the Liouville-von-Neumann equation using a density operator provides a more complete picture of dynamical quantum phenomena than by using a wavepacket and solving the Schrödinger equation. As density operators are not restricted to the description of pure states, they can treat both thermalized and open systems. In practice, however, they are rarely used to study molecular systems as the computational resources required are even more prohibitive than those needed for wavepacket dynamics. In this paper, we demonstrate the potential utility of a scheme based on the powerful multi-layer multi-configurational time-dependent Hartree algorithm for propagating multi-dimensional density operators. Studies of two systems using this method are presented at a range of temperatures and including up to 13 degrees of freedom. The first case is single proton transfer in salicylaldimine, while the second is double proton transfer in porphycene. A comparison is also made with the approach of using stochastic wavepackets.
Collapse
Affiliation(s)
- Alice Van Haeften
- Department of Chemistry, University College London, London WC1H 0AJ, UK
| | - Ceridwen Ash
- Department of Chemistry, University College London, London WC1H 0AJ, UK
| | - Graham Worth
- Department of Chemistry, University College London, London WC1H 0AJ, UK
| |
Collapse
|
21
|
Lyu N, Miano A, Tsioutsios I, Cortiñas RG, Jung K, Wang Y, Hu Z, Geva E, Kais S, Batista VS. Mapping Molecular Hamiltonians into Hamiltonians of Modular cQED Processors. J Chem Theory Comput 2023; 19:6564-6576. [PMID: 37733472 DOI: 10.1021/acs.jctc.3c00620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
We introduce a general method based on the operators of the Dyson-Masleev transformation to map the Hamiltonian of an arbitrary model system into the Hamiltonian of a circuit Quantum Electrodynamics (cQED) processor. Furthermore, we introduce a modular approach to programming a cQED processor with components corresponding to the mapping Hamiltonian. The method is illustrated as applied to quantum dynamics simulations of the Fenna-Matthews-Olson (FMO) complex and the spin-boson model of charge transfer. Beyond applications to molecular Hamiltonians, the mapping provides a general approach to implement any unitary operator in terms of a sequence of unitary transformations corresponding to powers of creation and annihilation operators of a single bosonic mode in a cQED processor.
Collapse
Affiliation(s)
- Ningyi Lyu
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Alessandro Miano
- Department of Applied Physics, Yale University, New Haven, Connecticut 06520, United States
- Department of Physics, Yale University, New Haven, Connecticut 06520, United States
- Yale Quantum Institute, Yale University, New Haven, Connecticut 06511, United States
| | - Ioannis Tsioutsios
- Department of Applied Physics, Yale University, New Haven, Connecticut 06520, United States
- Department of Physics, Yale University, New Haven, Connecticut 06520, United States
- Yale Quantum Institute, Yale University, New Haven, Connecticut 06511, United States
| | - Rodrigo G Cortiñas
- Department of Applied Physics, Yale University, New Haven, Connecticut 06520, United States
- Department of Physics, Yale University, New Haven, Connecticut 06520, United States
- Yale Quantum Institute, Yale University, New Haven, Connecticut 06511, United States
| | - Kenneth Jung
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Yuchen Wang
- Department of Chemistry, Department of Physics and Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zixuan Hu
- Department of Chemistry, Department of Physics and Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, United States
| | - Eitan Geva
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sabre Kais
- Department of Chemistry, Department of Physics and Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, United States
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Yale Quantum Institute, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
22
|
Gelin MF, Borrelli R. Thermo-Field Dynamics Approach to Photo-induced Electronic Transitions Driven by Incoherent Thermal Radiation. J Chem Theory Comput 2023; 19:6402-6413. [PMID: 37656914 DOI: 10.1021/acs.jctc.3c00590] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
The effects of thermal light-matter interaction on the dynamics of photo-induced electronic transitions in molecules are investigated using a novel first principles approach based on the thermo-field dynamics description of both the molecular vibrational modes and of the radiation field. The developed approach permits numerically accurate simulations of quantum dynamics of electronic/excitonic systems coupled to nuclear and photonic baths kept at different temperatures. The baths can be described by arbitrary spectral densities and can have any system-bath coupling strengths. In agreement with the results obtained previously by less rigorous methods, we show that the excitation process obtained by the continuous interaction with the suddenly turned-on thermal radiation field creates a mixed ensemble having a nonnegligible component consisting of a superposition of vibronic eigenstates which can sustain coherent oscillations for relatively long times. The results become especially relevant for the dynamics of electronic transitions upon sunlight excitation. Analytical results based on time-dependent perturbation theory support the numerical simulations and provide a simple interpretation of the time evolution of quantum observables.
Collapse
Affiliation(s)
- Maxim F Gelin
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Raffaele Borrelli
- DISAFA, University of Torino, Largo Paolo Braccini 2, Grugliasco I-10095, Italy
| |
Collapse
|
23
|
Wang Y, Ren J, Shuai Z. Minimizing non-radiative decay in molecular aggregates through control of excitonic coupling. Nat Commun 2023; 14:5056. [PMID: 37598183 PMCID: PMC10439946 DOI: 10.1038/s41467-023-40716-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 08/03/2023] [Indexed: 08/21/2023] Open
Abstract
The widely known "Energy Gap Law" (EGL) predicts a monotonically exponential increase in the non-radiative decay rate (knr) as the energy gap narrows, which hinders the development of near-infrared (NIR) emissive molecular materials. Recently, several experiments proposed that the exciton delocalization in molecular aggregates could counteract EGL to facilitate NIR emission. In this work, the nearly exact time-dependent density matrix renormalization group (TD-DMRG) method is developed to evaluate the non-radiative decay rate for exciton-phonon coupled molecular aggregates. Systematical numerical simulations show, by increasing the excitonic coupling, knr will first decrease, then reach a minimum, and finally start to increase to follow EGL, which is an overall result of two opposite effects of a smaller energy gap and a smaller effective electron-phonon coupling. This anomalous non-monotonic behavior is found robust in a number of models, including dimer, one-dimensional chain, and two-dimensional square lattice. The optimal excitonic coupling strength that gives the minimum knr is about half of the monomer reorganization energy and is also influenced by system size, dimensionality, and temperature.
Collapse
Affiliation(s)
- Yuanheng Wang
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, 100084, Beijing, People's Republic of China
| | - Jiajun Ren
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, 100875, Beijing, People's Republic of China.
| | - Zhigang Shuai
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, 100084, Beijing, People's Republic of China.
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, People's Republic of China.
| |
Collapse
|
24
|
Lyu N, Mulvihill E, Soley MB, Geva E, Batista VS. Tensor-Train Thermo-Field Memory Kernels for Generalized Quantum Master Equations. J Chem Theory Comput 2023; 19:1111-1129. [PMID: 36719350 DOI: 10.1021/acs.jctc.2c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The generalized quantum master equation (GQME) approach provides a rigorous framework for deriving the exact equation of motion for any subset of electronic reduced density matrix elements (e.g., the diagonal elements). In the context of electronic dynamics, the memory kernel and inhomogeneous term of the GQME introduce the implicit coupling to nuclear motion and dynamics of electronic density matrix elements that are projected out (e.g., the off-diagonal elements), allowing for efficient quantum dynamics simulations. Here, we focus on benchmark quantum simulations of electronic dynamics in a spin-boson model system described by various types of GQMEs. Exact memory kernels and inhomogeneous terms are obtained from short-time quantum-mechanically exact tensor-train thermo-field dynamics (TT-TFD) simulations and are compared with those obtained from an approximate linearized semiclassical method, allowing for assessment of the accuracy of these approximate memory kernels and inhomogeneous terms. Moreover, we have analyzed the computational cost of the full and reduced-dimensionality GQMEs. The scaling of the computational cost is dependent on several factors, sometimes with opposite scaling trends. The TT-TFD memory kernels can provide insights on the main sources of inaccuracies of GQME approaches when combined with approximate input methods and pave the road for the development of quantum circuits that implement GQMEs on digital quantum computers.
Collapse
Affiliation(s)
- Ningyi Lyu
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Ellen Mulvihill
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Micheline B Soley
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.,Yale Quantum Institute, Yale University, New Haven, Connecticut 06511, United States.,Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Eitan Geva
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.,Yale Quantum Institute, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
25
|
Zhao Y. The hierarchy of Davydov's Ansätze: From guesswork to numerically "exact" many-body wave functions. J Chem Phys 2023; 158:080901. [PMID: 36859105 DOI: 10.1063/5.0140002] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
This Perspective presents an overview of the development of the hierarchy of Davydov's Ansätze and a few of their applications in many-body problems in computational chemical physics. Davydov's solitons originated in the investigation of vibrational energy transport in proteins in the 1970s. Momentum-space projection of these solitary waves turned up to be accurate variational ground-state wave functions for the extended Holstein molecular crystal model, lending unambiguous evidence to the absence of formal quantum phase transitions in Holstein systems. The multiple Davydov Ansätze have been proposed, with increasing Ansatz multiplicity, as incremental improvements of their single-Ansatz parents. For a given Hamiltonian, the time-dependent variational formalism is utilized to extract accurate dynamic and spectroscopic properties using Davydov's Ansätze as its trial states. A quantity proven to disappear for large multiplicities, the Ansatz relative deviation is introduced to quantify how closely the Schrödinger equation is obeyed. Three finite-temperature extensions to the time-dependent variation scheme are elaborated, i.e., the Monte Carlo importance sampling, the method of thermofield dynamics, and the method of displaced number states. To demonstrate the versatility of the methodology, this Perspective provides applications of Davydov's Ansätze to the generalized Holstein Hamiltonian, variants of the spin-boson model, and systems of cavity-assisted singlet fission, where accurate dynamic and spectroscopic properties of the many-body systems are given by the Davydov trial states.
Collapse
Affiliation(s)
- Yang Zhao
- Division of Materials Science, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
26
|
Sun K, Shen K, Gelin MF, Zhao Y. Exciton Dynamics and Time-Resolved Fluorescence in Nanocavity-Integrated Monolayers of Transition-Metal Dichalcogenides. J Phys Chem Lett 2023; 14:221-229. [PMID: 36583951 DOI: 10.1021/acs.jpclett.2c03511] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We have developed an ab initio-based, fully quantum, numerically accurate methodology for the simulation of the exciton dynamics and time- and frequency-resolved fluorescence spectra of the cavity-controlled two-dimensional materials at finite temperatures and applied this methodology to the single-layer WSe2 system. Specifically, the multiple Davydov D2 Ansatz has been employed in combination with the method of thermofield dynamics for the finite-temperature extension of accurate time-dependent variation. This allowed us to establish dynamical and spectroscopic signatures of the polaronic and polaritonic effects as well as uncover their characteristic time scales in the relevant range of temperatures. Our study reveals the pivotal role of multidimensional conical intersections in controlling the many-body dynamics of highly intertwined excitonic, phononic, and photonic modes.
Collapse
Affiliation(s)
- Kewei Sun
- School of Science, Hangzhou Dianzi University, Hangzhou310018, China
| | - Kaijun Shen
- School of Materials Science and Engineering, Nanyang Technological University, Singapore639798, Singapore
| | - Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou310018, China
| | - Yang Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore639798, Singapore
| |
Collapse
|
27
|
Xu Y, Liu C, Ma H. Hierarchical Mapping for Efficient Simulation of Strong System-Environment Interactions. J Chem Theory Comput 2023; 19:426-435. [PMID: 36626721 DOI: 10.1021/acs.jctc.2c00851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Quantum dynamics (QD) simulation is a powerful tool for interpreting ultrafast spectroscopy experiments and unraveling their microscopic mechanism in out-of-equilibrium excited state behaviors in various chemical, biological, and material systems. Although state-of-the-art numerical QD approaches such as the time-dependent density matrix renormalization group (TD-DMRG) already greatly extended the solvable system size of general linearly coupled exciton-phonon models with up to a few hundred phonon modes, the accurate simulation of larger system sizes or strong system-environment interactions is still computationally highly challenging. Based on quantum information theory (QIT), in this work, we realize that only a small number of effective phonon modes couple to the excitonic system directly regardless of a large or even infinite number of modes in the condensed phase environment. On top of the identified small number of direct effective modes, we propose a hierarchical mapping (HM) approach through performing block Lanczos transformations on the remaining indirect modes, which transforms the Hamiltonian matrix to a nearly block-tridiagonal form and eliminates the long-range interactions. Numerical tests on model spin-boson systems and realistic singlet fission models in a rubrene crystal environment with up to 7000 modes and strong system-environment interactions indicate HM can reduce the system size by 1-2 orders of magnitude and accelerate the calculation by ∼80% without losing accuracy.
Collapse
Affiliation(s)
- Yihe Xu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chungen Liu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Haibo Ma
- Qingdao Institute for Theoretical and Computational Sciences, Qingdao Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| |
Collapse
|
28
|
Gelin MF, Chen L, Domcke W. Equation-of-Motion Methods for the Calculation of Femtosecond Time-Resolved 4-Wave-Mixing and N-Wave-Mixing Signals. Chem Rev 2022; 122:17339-17396. [PMID: 36278801 DOI: 10.1021/acs.chemrev.2c00329] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Femtosecond nonlinear spectroscopy is the main tool for the time-resolved detection of photophysical and photochemical processes. Since most systems of chemical interest are rather complex, theoretical support is indispensable for the extraction of the intrinsic system dynamics from the detected spectroscopic responses. There exist two alternative theoretical formalisms for the calculation of spectroscopic signals, the nonlinear response-function (NRF) approach and the spectroscopic equation-of-motion (EOM) approach. In the NRF formalism, the system-field interaction is assumed to be sufficiently weak and is treated in lowest-order perturbation theory for each laser pulse interacting with the sample. The conceptual alternative to the NRF method is the extraction of the spectroscopic signals from the solutions of quantum mechanical, semiclassical, or quasiclassical EOMs which govern the time evolution of the material system interacting with the radiation field of the laser pulses. The NRF formalism and its applications to a broad range of material systems and spectroscopic signals have been comprehensively reviewed in the literature. This article provides a detailed review of the suite of EOM methods, including applications to 4-wave-mixing and N-wave-mixing signals detected with weak or strong fields. Under certain circumstances, the spectroscopic EOM methods may be more efficient than the NRF method for the computation of various nonlinear spectroscopic signals.
Collapse
Affiliation(s)
- Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Lipeng Chen
- Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Strasse 38, D-01187 Dresden, Germany
| | - Wolfgang Domcke
- Department of Chemistry, Technical University of Munich, D-85747 Garching,Germany
| |
Collapse
|
29
|
Benavides-Riveros CL, Chen L, Schilling C, Mantilla S, Pittalis S. Excitations of Quantum Many-Body Systems via Purified Ensembles: A Unitary-Coupled-Cluster-Based Approach. PHYSICAL REVIEW LETTERS 2022; 129:066401. [PMID: 36018631 DOI: 10.1103/physrevlett.129.066401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
State-average calculations based on a mixture of states are increasingly being exploited across chemistry and physics as versatile procedures for addressing excitations of quantum many-body systems. If not too many states should need to be addressed, calculations performed on individual states are also a common option. Here we show how the two approaches can be merged into one method, dealing with a generalized yet single pure state. Implications in electronic structure calculations are discussed and for quantum computations are pointed out.
Collapse
Affiliation(s)
- Carlos L Benavides-Riveros
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
- INO-CNR BEC Center, I-38123 Trento, Italy
| | - Lipeng Chen
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
| | - Christian Schilling
- Faculty of Physics, Arnold Sommerfeld Centre for Theoretical Physics (ASC), Ludwig-Maximilians-Universität München, Theresienstrasse 37, 80333 München, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstrasse 4, 80799 München, Germany
| | - Sebastián Mantilla
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
| | | |
Collapse
|
30
|
Cainelli M, Borrelli R, Tanimura Y. Effect of mixed Frenkel and charge transfer states in time-gated fluorescence spectra of perylene bisimides H-aggregates: Hierarchical equations of motion approach. J Chem Phys 2022; 157:084103. [DOI: 10.1063/5.0102000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We theoretically investigated the effect of mixed Frenkel (F) and charge transfer (CT) states on the spectral properties of perylene bisimide (PBI) derivatives, focusing on the role of strong electron-phonon interactions. The model consists of a four-level system described by the Holstein Hamiltonian coupled to independent local heat-baths on each site, described by Brownian spectral distribution functions. We employ the reduced hierarchical equations of motion (HEOM) approach to calculate the time evolution of the system and compare it to the pure F exciton cases. We compute the absorption and time-gated fluorescence (TGF) spectra for different exciton transfer integrals and F-CT band gap conditions. The coherence length of excitons ($N_{coh}$) is evaluated employing two different definitions. We observe the presence of an excited hot state peak whose intensity is associated with the delocalization of the excited species and ultrafast dynamics that are solely dependent on the frequency of the local bath. The results indicate that the inclusion of CT states promotes localization of the excitons which is manifested in a decrease in the intensity of the hot state peak and the 0--1 peak, and an increase in the intensity of the 0--0 emission peak in TGF spectrum, leading to a decrease of $N_{coh}$.
Collapse
Affiliation(s)
| | - Raffaele Borrelli
- Department of Agricoltural Science, Università degli Studi di Torino, Italy
| | | |
Collapse
|
31
|
Sun K, Gelin MF, Zhao Y. Accurate Simulation of Spectroscopic Signatures of Cavity-Assisted, Conical-Intersection-Controlled Singlet Fission Processes. J Phys Chem Lett 2022; 13:4280-4288. [PMID: 35522971 DOI: 10.1021/acs.jpclett.2c00989] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A numerically accurate, fully quantum methodology has been developed for the simulation of the dynamics and nonlinear spectroscopic signals of cavity-assisted, conical-intersection-controlled singlet fission systems. The methodology is capable of handling several molecular systems strongly coupled to the photonic mode of the cavity and treats the intrinsic conical intersection and cavity-induced polaritonic conical intersections in a numerically exact manner. Contributions of higher-lying molecular electronic states are accounted for comprehensively. The intriguing process of cavity-modified fission dynamics, including all of its electronic, vibrational, and photonic degrees of freedom, together with its two-dimensional spectroscopic manifestation, is simulated for two rubrene dimers strongly coupled to the cavity mode.
Collapse
Affiliation(s)
- Kewei Sun
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798
| | - Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yang Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798
| |
Collapse
|
32
|
Ke Y, Borrelli R, Thoss M. Hierarchical equations of motion approach to hybrid fermionic and bosonic environments: Matrix product state formulation in twin space. J Chem Phys 2022; 156:194102. [DOI: 10.1063/5.0088947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We extend the twin-space formulation of the hierarchical equations of motion approach in combination with the matrix product state representation (introduced in J. Chem. Phys. 150, 234102, [2019]) to nonequilibrium scenarios where the open quantum system is coupled to a hybrid fermionic and bosonic environment. The key ideas used in the extension are a reformulation of the hierarchical equations of motion for the auxiliary density matrices into a time-dependent Schrödinger-like equation for an augmented multi-dimensional wave function as well as a tensor decomposition into a product of low-rank matrices. The new approach facilitates accurate simulations of non-equilibrium quantum dynamics in larger and more complex open quantum systems. The performance of the method is demonstrated for a model of a molecular junction exhibiting current-induced mode-selective vibrational excitation.
Collapse
Affiliation(s)
- Yaling Ke
- Institute of Physics, Albert-Ludwigs-Universität Freiburg, Germany
| | - Raffaele Borrelli
- Department of Agricoltural Science, Università degli Studi di Torino, Italy
| | - Michael Thoss
- University of Freiburg Institute of Physics, Germany
| |
Collapse
|
33
|
Li W, Ren J, Yang H, Shuai Z. On the fly swapping algorithm for ordering of degrees of freedom in density matrix renormalization group. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:254003. [PMID: 35378514 DOI: 10.1088/1361-648x/ac640e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Density matrix renormalization group (DMRG) and its time-dependent variants have found widespread applications in quantum chemistry, includingab initioelectronic structure of complex bio-molecules, spectroscopy for molecular aggregates, and charge transport in bulk organic semiconductors. The underlying wavefunction ansatz for DMRG, matrix product state (MPS), requires mapping degrees of freedom (DOF) into a one-dimensional topology. DOF ordering becomes a crucial factor for DMRG accuracy. In this work, we propose swapping neighboring DOFs during the DMRG sweeps for DOF ordering, which we term 'on the fly swapping' (OFS) algorithm. We show that OFS is universal for both static and time-dependent DMRG with minimum computational overhead. Examples are given for one dimensional antiferromagnetic Heisenberg model,ab initioelectronic structure of N2molecule, and the S1/S2internal conversion dynamics of pyrazine molecule. It is found that OFS can indeed improve accuracy by finding better DOF ordering in all cases.
Collapse
Affiliation(s)
- Weitang Li
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, People's Republic of China
| | - Jiajun Ren
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, People's Republic of China
| | - Hengrui Yang
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, People's Republic of China
| | - Zhigang Shuai
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, People's Republic of China
| |
Collapse
|
34
|
Polley K, Loring RF. Two-dimensional vibronic spectroscopy with semiclassical thermofield dynamics. J Chem Phys 2022; 156:124108. [DOI: 10.1063/5.0083868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Thermofield dynamics is an exactly correct formulation of quantum mechanics at finite temperature in which a wavefunction is governed by an effective temperature-dependent quantum Hamiltonian. The optimized mean trajectory (OMT) approximation allows the calculation of spectroscopic response functions from trajectories produced by the classical limit of a mapping Hamiltonian that includes physical nuclear degrees of freedom and other effective degrees of freedom representing discrete vibronic states. Here, we develop a thermofield OMT (TF-OMT) approach in which the OMT procedure is applied to a temperature-dependent classical Hamiltonian determined from the thermofield-transformed quantum mapping Hamiltonian. Initial conditions for bath nuclear degrees of freedom are sampled from a zero-temperature distribution. Calculations of two-dimensional electronic spectra and two-dimensional vibrational–electronic spectra are performed for models that include excitonically coupled electronic states. The TF-OMT calculations agree very closely with the corresponding OMT results, which, in turn, represent well benchmark calculations with the hierarchical equations of motion method.
Collapse
Affiliation(s)
- Kritanjan Polley
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, USA
| | - Roger F. Loring
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
35
|
Ren J, Li W, Jiang T, Wang Y, Shuai Z. Time‐dependent density matrix renormalization group method for quantum dynamics in complex systems. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jiajun Ren
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing People's Republic of China
| | - Weitang Li
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing People's Republic of China
| | - Tong Jiang
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing People's Republic of China
| | - Yuanheng Wang
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing People's Republic of China
| | - Zhigang Shuai
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing People's Republic of China
| |
Collapse
|
36
|
Zeng J, Yao Y. Variational Squeezed Davydov Ansatz for Realistic Chemical Systems with Nonlinear Vibronic Coupling. J Chem Theory Comput 2022; 18:1255-1263. [PMID: 35100509 DOI: 10.1021/acs.jctc.1c00859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chemical systems normally possess strong nonlinear vibronic couplings at both zero and finite temperature. For the lowest-order quadratic couplings, here, we introduce a squeezing operator into a variational coherent-state-based method, Davydov ansatz, to simulate the quantum dynamics and the respective spectroscopy. Two molecular systems, pyrazine and the 2-pyridone dimer, are taken as calculated model systems, both of which involve nontrivial quadratic vibronic couplings in high- and low-frequency regions, respectively. Upon a comparison with the benchmarks, the method manifests its advantage for nonlinear couplings. The squeezed bases are also proven to be applicable for the finite temperature by adapting with the thermofield dynamics.
Collapse
Affiliation(s)
- Jiarui Zeng
- Department of Physics, South China University of Technology, Guangzhou 510640, China
| | - Yao Yao
- Department of Physics, South China University of Technology, Guangzhou 510640, China.,State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
37
|
Sun K, Dou C, Gelin MF, Zhao Y. Dynamics of disordered Tavis-Cummings and Holstein-Tavis-Cummings models. J Chem Phys 2022; 156:024102. [PMID: 35032972 DOI: 10.1063/5.0076485] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
By employing the time-dependent variational principle and the versatile multi-D2 Davydov trial states, in combination with the Green's function method, we study the dynamics of the Tavis-Cummings model and the Holstein-Tavis-Cummings model in the presence of diagonal disorder and cavity-qubit coupling disorder. For the Tavis-Cummings model, time evolution of the photon population, the optical absorption spectra, and the hetero-entanglement between the qubits and the cavity mode are calculated by using the Green's function method to corroborate numerically exact results of Davydov's Ansätze. For the Holstein-Tavis-Cummings model, only the latter is utilized to simulate effects of disorder on the photon population dynamics and the absorption spectra. We have demonstrated that the complementary employment of analytical and numerical methods permits uncovering a fairly comprehensive picture of a variety of complex behaviors in disordered multidimensional polaritonic cavity quantum electrodynamics systems.
Collapse
Affiliation(s)
- Kewei Sun
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Cunzhi Dou
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yang Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
38
|
Zhao Y, Sun K, Chen L, Gelin M. The hierarchy of Davydov's Ansätze and its applications. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1589] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yang Zhao
- Division of Materials Science Nanyang Technological University Singapore Singapore
| | - Kewei Sun
- Division of Materials Science Nanyang Technological University Singapore Singapore
- School of Science, Hanghzhou Dianzi University Hangzhou China
| | - Lipeng Chen
- Max Planck Institute for the Physics of Complex Systems Dresden Germany
| | - Maxim Gelin
- School of Science, Hanghzhou Dianzi University Hangzhou China
| |
Collapse
|
39
|
Mardazad S, Xu Y, Yang X, Grundner M, Schollwöck U, Ma H, Paeckel S. Quantum dynamics simulation of intramolecular singlet fission in covalently linked tetracene dimer. J Chem Phys 2021; 155:194101. [PMID: 34800955 DOI: 10.1063/5.0068292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this work, we study singlet fission in tetracene para-dimers, covalently linked by a phenyl group. In contrast to most previous studies, we account for the full quantum dynamics of the combined excitonic and vibrational system. For our simulations, we choose a numerically unbiased representation of the molecule's wave function, enabling us to compare with experiments, exhibiting good agreement. Having access to the full wave function allows us to study in detail the post-quench dynamics of the excitons. Here, one of our main findings is the identification of a time scale t0 ≈ 35 fs dominated by coherent dynamics. It is within this time scale that the larger fraction of the singlet fission yield is generated. We also report on a reduced number of phononic modes that play a crucial role in the energy transfer between excitonic and vibrational systems. Notably, the oscillation frequency of these modes coincides with the observed electronic coherence time t0. We extend our investigations by also studying the dependency of the dynamics on the excitonic energy levels that, for instance, can be experimentally tuned by means of the solvent polarity. Here, our findings indicate that the singlet fission yield can be doubled, while the electronic coherence time t0 is mainly unaffected.
Collapse
Affiliation(s)
- Sam Mardazad
- Department of Physics, Arnold Sommerfeld Center of Theoretical Physics, University of Munich, Theresienstrasse 37, 80333 Munich, Germany
| | - Yihe Xu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xuexiao Yang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Martin Grundner
- Department of Physics, Arnold Sommerfeld Center of Theoretical Physics, University of Munich, Theresienstrasse 37, 80333 Munich, Germany
| | - Ulrich Schollwöck
- Department of Physics, Arnold Sommerfeld Center of Theoretical Physics, University of Munich, Theresienstrasse 37, 80333 Munich, Germany
| | - Haibo Ma
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Sebastian Paeckel
- Department of Physics, Arnold Sommerfeld Center of Theoretical Physics, University of Munich, Theresienstrasse 37, 80333 Munich, Germany
| |
Collapse
|
40
|
Gelin MF, Velardo A, Borrelli R. Efficient quantum dynamics simulations of complex molecular systems: A unified treatment of dynamic and static disorder. J Chem Phys 2021; 155:134102. [PMID: 34624969 DOI: 10.1063/5.0065896] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We present a unified and highly numerically efficient formalism for the simulation of quantum dynamics of complex molecular systems, which takes into account both temperature effects and static disorder. The methodology is based on the thermo-field dynamics formalism, and Gaussian static disorder is included into simulations via auxiliary bosonic operators. This approach, combined with the tensor-train/matrix-product state representation of the thermalized stochastic wave function, is applied to study the effect of dynamic and static disorders in charge-transfer processes in model organic semiconductor chains employing the Su-Schrieffer-Heeger (Holstein-Peierls) model Hamiltonian.
Collapse
Affiliation(s)
- Maxim F Gelin
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| | | | | |
Collapse
|
41
|
Fischer EW, Saalfrank P. A thermofield-based multilayer multiconfigurational time-dependent Hartree approach to non-adiabatic quantum dynamics at finite temperature. J Chem Phys 2021; 155:134109. [PMID: 34624972 DOI: 10.1063/5.0064013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We introduce a thermofield-based formulation of the multilayer multiconfigurational time-dependent Hartree (MCTDH) method to study finite temperature effects on non-adiabatic quantum dynamics from a non-stochastic, wave function perspective. Our approach is based on the formal equivalence of bosonic many-body theory at zero temperature with a doubled number of degrees of freedom and the thermal quasi-particle representation of bosonic thermofield dynamics (TFD). This equivalence allows for a transfer of bosonic many-body MCTDH as introduced by Wang and Thoss to the finite temperature framework of thermal quasi-particle TFD. As an application, we study temperature effects on the ultrafast internal conversion dynamics in pyrazine. We show that finite temperature effects can be efficiently accounted for in the construction of multilayer expansions of thermofield states in the framework presented herein. Furthermore, we find our results to agree well with existing studies on the pyrazine model based on the ρMCTDH method.
Collapse
Affiliation(s)
- Eric W Fischer
- Theoretische Chemie, Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam-Golm, Germany
| | - Peter Saalfrank
- Theoretische Chemie, Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam-Golm, Germany
| |
Collapse
|