1
|
Khatymov RV, Muftakhov MV, Tuktarov RF, Shchukin PV, Khatymova LZ, Pancras E, Terentyev AG, Petrov NI. Resonant electron capture by polycyclic aromatic hydrocarbon molecules: Effects of aza-substitution. J Chem Phys 2024; 160:124310. [PMID: 38533882 DOI: 10.1063/5.0195316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024] Open
Abstract
Resonant electron capture by aza and diaza derivatives of phenanthrene (7,8-benzoquinoline and 1,10-phenanthroline) and anthracene (acridine and phenazine) at incident free electron energies (Ee) in the range of 0-15 eV was studied. All compounds except 7,8-benzoquinoline form long-lived molecular ions (M-) at thermal electron energies (Ee ∼ 0 eV). Acridine and phenazine also form such ions at epithermal electron energies up to Ee = 1.5-2.5 eV. The lifetimes (τa) of M- with respect to electron autodetachment are proportional to the extent of aza-substitution and increase on going from molecules with bent geometry of the fused rings (azaphenanthrenes) to linear isomers (azaanthracenes). These regularities are due to an increase in the adiabatic electron affinities (EAa) of the molecules. The EAa values of the molecules under study were comprehensively assessed based on a comparative analysis of the measured τa values using the Rice-Ramsperger-Kassel-Marcus theory, the electronic structure analysis using the molecular orbital approach, as well as the density functional calculations of the total energy differences between the molecules and anions. The only fragmentation channel of M- ions from the compounds studied is abstraction of hydrogen atoms. When studying [M-H]- ions, electron autodetachment processes were observed, the τa values were measured, and the appearance energies were determined. A comparative analysis of the gas-phase acidity of the molecules and the EAa values of the [M-H]· radicals revealed their proportionality to the EAa values of the parent molecules.
Collapse
Affiliation(s)
- Rustem V Khatymov
- Mendeleev University of Chemical Technology of Russia, Miusskaya Square, 9, 125047 Moscow, Russia
| | - Mars V Muftakhov
- Institute of Molecule and Crystal Physics, Ufa Federal Research Center, Russian Academy of Sciences, Prospekt Oktyabrya, 151, 450075 Ufa, Russia
| | - Renat F Tuktarov
- Institute of Molecule and Crystal Physics, Ufa Federal Research Center, Russian Academy of Sciences, Prospekt Oktyabrya, 151, 450075 Ufa, Russia
| | - Pavel V Shchukin
- Institute of Molecule and Crystal Physics, Ufa Federal Research Center, Russian Academy of Sciences, Prospekt Oktyabrya, 151, 450075 Ufa, Russia
| | - Lyaysan Z Khatymova
- Institute of Molecule and Crystal Physics, Ufa Federal Research Center, Russian Academy of Sciences, Prospekt Oktyabrya, 151, 450075 Ufa, Russia
| | - Eugene Pancras
- Ufa State Petroleum Technological University, ul. Kosmonavtov, 1, 450064 Ufa, Russia
| | - Andrey G Terentyev
- Mendeleev University of Chemical Technology of Russia, Miusskaya Square, 9, 125047 Moscow, Russia
| | - Nikolay I Petrov
- Mendeleev University of Chemical Technology of Russia, Miusskaya Square, 9, 125047 Moscow, Russia
| |
Collapse
|
2
|
Pennachio M, Zhou Z, Wei Z, Tsybizova A, Gershoni-Poranne R, Petrukhina MA. Interplay of Charge and Aromaticity Upon Chemical Reduction of p-Quinquephenyl with Alkali Metals. Organometallics 2023. [DOI: 10.1021/acs.organomet.2c00583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Matthew Pennachio
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Zheng Zhou
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
- School of Materials Science and Engineering, Tongji University, 4800 Cao’an Road, Shanghai 201804, China
| | - Zheng Wei
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Alexandra Tsybizova
- Laboratory for Organic Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, Zurich 8092, Switzerland
| | - Renana Gershoni-Poranne
- Schulich Faculty of Chemistry, Technion − Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Marina A. Petrukhina
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| |
Collapse
|
3
|
Zhou Z, Üngör Ö, Wei Z, Shatruk M, Tsybizova A, Gershoni-Poranne R, Petrukhina MA. Tuning Magnetic Interactions Between Triphenylene Radicals by Variation of Crystal Packing in Structures with Alkali Metal Counterions. Inorg Chem 2021; 60:14844-14853. [PMID: 34524808 DOI: 10.1021/acs.inorgchem.1c02139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The monoanion of triphenylene (C18H12, 1) was generated in THF using several alkali metals (Na, K, Rb, and Cs) as reducing agents and crystallized with the corresponding cations in the presence of 18-crown-6 ether. The UV-vis spectroscopy points to the metal-dependent coordination environment of the triphenylene monoanion-radicals, 1·-, in solution. The X-ray diffraction characterization confirmed the formation of a solvent-separated ion pair (SSIP) with sodium ions, [{Na+(18-crown-6)(THF)2}(1·-)] (2), and three contact-ion pair (CIP) complexes formed by larger alkali metal ions, [{K+(18-crown-6)}(1·-)] (3), [{Rb+(18-crown-6)}(1·-)] (4), and [{Cs+(18-crown-6)}(1·-)] (5). Structural analysis of the series reveals a notable geometry perturbation of the triphenylene framework in 2 caused by one-electron acquisition, which is further enhanced by direct metal binding in 3-5. This has been correlated with the aromaticity changes and charge redistribution upon one-electron reduction of 1, as revealed by the computational studies. The EPR spectroscopy and magnetic susceptibility measurements confirm antiferromagnetic interactions corresponding to an S = 1/2 system in the solid state. The magnetic behavior of 3-5 correlates with the arrangement of triphenylene radicals in the crystal structures. All three compounds exhibit antiferromagnetic (AFM) interactions between S = 1/2 radicals in the solid state, but the exchange coupling in 4 and 5 is notably stronger than that in 3, which leads to AFM ordering at 3.8 K in 4 and at 2.0 K in 5. The magnetic phase transitions in 4 and 5 can be interpreted as originating from interactions between the chains of the AFM-coupled S = 1/2 radicals.
Collapse
Affiliation(s)
- Zheng Zhou
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Ökten Üngör
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Zheng Wei
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Michael Shatruk
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | | | - Renana Gershoni-Poranne
- Laboratorium für Organische Chemie, ETH Zürich, CH-8093 Zürich, Switzerland.,Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 3200008, Israel
| | - Marina A Petrukhina
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| |
Collapse
|
4
|
Alkan M, Rogachev AY. Coupling of two curved polyaromatic radical-anions: stabilization of dimers by counterions. Phys Chem Chem Phys 2020; 22:6716-6726. [PMID: 32163075 DOI: 10.1039/c9cp06935f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, a comprehensive theoretical investigation of both kinetic and thermodynamic stabilities was performed for dimeric dianionic systems (C20H10)22- and (C28H14)22-, neutralized by two alkali metal cations. The influence of the counterions was of primary interest. The impact of the additional/spectator ligand(s) was elucidated by considering adducts with four molecules of diglyme or two molecules of 18-crown-6 ether. Importantly, both types of systems - in the form of contact-ion pair (CIP) and solvent-separated ion pair (SSIP) - were considered. The SSIP set was augmented by the adduct, in which the dimeric dianionic species were neutralized with purely organic cations N(CH3)4+ and P(CH3)4+. Detailed analysis of the bonding revealed that the presence of the counterions made these systems thermodynamically stable. This finding is in sharp contrast with results obtained for isolated (PAH)22- systems, which were previously found to be thermodynamically unstable, but kinetically persistent. The introduction of the alkali metal cations to the system significantly increases the ionic term (ΔEelstat), whereas the repulsive ΔEPauli one was found to be substantially reduced. Considering that the orbital component (ΔEorb) exhibited only a moderate decrease and the preparation energy (ΔEprep) showed no changes, the above-mentioned changes in ΔEelstat and ΔEPauli provided a clear explanation for the increase of the thermodynamic stability of the target species. Importantly, a clear correlation between the size of the alkali metal cation and stability of the target dimeric product was established. Thermodynamic stability of the system rises with a decrease in the size of M+ due to enlargement of the ΔEorb. Evaluated energy barriers (as spin-crossing points between singlet and triplet energy surfaces) were found to be equal to +15.85 kcal mol-1 and +18.5 kcal mol-1 for [(Cs+)2{(C20H10)22-}] and [(Cs+)2{(C28H14)22-}], respectively, which is substantially higher than those calculated for isolated (PAH)22- systems (+10.00 kcal mol-1 for (C20H10)22- and +12.35 kcal mol-1 for (C28H14)22-). Thus, this study identified the presence of counterions as the key factor, which have a dramatic influence on the thermodynamic and kinetic stabilities of the aimed dianionic dimeric systems, which are formed by two curved polyaromatic monoanion-radicals.
Collapse
Affiliation(s)
- Melisa Alkan
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616, USA.
| | | |
Collapse
|
5
|
Rogachev AY, Alkan M, Li J, Liu S, Spisak SN, Filatov AS, Petrukhina MA. Mono-reduced Corannulene: To Couple and Not to Couple in One Crystal. Chemistry 2019; 25:14140-14147. [PMID: 31390107 DOI: 10.1002/chem.201902992] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Indexed: 11/07/2022]
Abstract
One-electron reduction of corannulene, C20 H10 , with Li metal in diglyme resulted in crystallization of [{Li+ (diglyme)2 }4 (C20 H10 .- )2 (C20 H10 -C20 H10 )2- ] (1), as revealed by single-crystal X-ray diffraction. This hybrid product contains two corannulene monoanion-radicals along with a dianionic dimer, crystallized with four Li+ ions wrapped by diglyme molecules. The dimeric (C20 H10 -C20 H10 )2- anion provides the first crystallographically confirmed example of spontaneous radical dimerization for C20 H10 .- . The C-C bond length between the two C20 H10 .- bowls of 1.588(5) Å is consistent with the single σ-bond character of the linker. The trans-disposition of two bowls in the centrosymmetric (C20 H10 -C20 H10 )2- dimer is observed with the torsion angle around the central C-C bond of 180°. Comprehensive theoretical analysis of formation/decomposition processes of the dimeric dianion has been carried out in order to evaluate the nature of bonding and energetics of the C20 H10 .- coupling. It is found that such σ-bonded dimers are thermodynamically unstable due to large preparation energy and repulsive Pauli component of the bonding, but kinetically persistent due to a high energy barrier provided by the existing spin-crossing point.
Collapse
Affiliation(s)
- Andrey Yu Rogachev
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Melisa Alkan
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Jingbai Li
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Shuyang Liu
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Sarah N Spisak
- Department of Chemistry, University at Albany, State University of New York, Albany, NY, 12222, USA
| | - Alexander S Filatov
- Department of Chemistry, University at Albany, State University of New York, Albany, NY, 12222, USA
| | - Marina A Petrukhina
- Department of Chemistry, University at Albany, State University of New York, Albany, NY, 12222, USA
| |
Collapse
|
6
|
Spisak SN, Zabula AV, Alkan M, Filatov AS, Rogachev AY, Petrukhina MA. Site-Directed Dimerization of Bowl-Shaped Radical Anions to Form a σ-Bonded Dibenzocorannulene Dimer. Angew Chem Int Ed Engl 2018; 57:6171-6175. [PMID: 29504700 DOI: 10.1002/anie.201801537] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Indexed: 11/10/2022]
Abstract
Designed site-directed dimerization of the monoanion radicals of a π-bowl in the solid state is reported. Dibenzo[a,g]corannulene (C28 H14 ) was selected based on the asymmetry of the charge/spin localization in the C28 H14.- anion. Controlled one-electron reduction of C28 H14 with Cs metal in diglyme resulted in crystallization of a new dimer, [{Cs+ (diglyme)}2 (C28 H14 -C28 H14 )2- ] (1), as revealed by single crystal X-ray diffraction study performed in a broad range of temperatures. The C-C bond length between two C28 H14.- bowls (1.560(8) Å) measured at -143 °C does not significantly change upon heating of the crystal to +67 °C. The single σ-bond character of the C-C linker is confirmed by calculations. The trans-disposition of two bowls in 1 is observed with the torsion angles around the central C-C bond of 172.3(5)° and 173.5(5)°. A systematic theoretical evaluation of dimerization pathways of C28 H14.- radicals confirmed that the trans-isomer found in 1 is energetically favored.
Collapse
Affiliation(s)
- Sarah N Spisak
- Department of Chemistry, University at Albany, State University of New York, Albany, NY, 12222, USA
| | - Alexander V Zabula
- Department of Chemistry, University at Albany, State University of New York, Albany, NY, 12222, USA.,Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Melisa Alkan
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - Alexander S Filatov
- Department of Chemistry, University at Albany, State University of New York, Albany, NY, 12222, USA
| | - Andrey Yu Rogachev
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - Marina A Petrukhina
- Department of Chemistry, University at Albany, State University of New York, Albany, NY, 12222, USA
| |
Collapse
|
7
|
Spisak SN, Zabula AV, Alkan M, Filatov AS, Rogachev AY, Petrukhina MA. Site‐Directed Dimerization of Bowl‐Shaped Radical Anions to Form a σ‐Bonded Dibenzocorannulene Dimer. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801537] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Sarah N. Spisak
- Department of Chemistry University at Albany, State University of New York Albany NY 12222 USA
| | - Alexander V. Zabula
- Department of Chemistry University at Albany, State University of New York Albany NY 12222 USA
- Department of Chemistry University of Pennsylvania Philadelphia PA 19104 USA
| | - Melisa Alkan
- Department of Chemistry Illinois Institute of Technology Chicago IL 60616 USA
| | - Alexander S. Filatov
- Department of Chemistry University at Albany, State University of New York Albany NY 12222 USA
| | - Andrey Yu. Rogachev
- Department of Chemistry Illinois Institute of Technology Chicago IL 60616 USA
| | - Marina A. Petrukhina
- Department of Chemistry University at Albany, State University of New York Albany NY 12222 USA
| |
Collapse
|
8
|
Khatymov RV, Muftakhov MV, Shchukin PV. Negative ions, molecular electron affinity and orbital structure of cata-condensed polycyclic aromatic hydrocarbons. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:1729-1741. [PMID: 28753734 DOI: 10.1002/rcm.7945] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/13/2017] [Accepted: 07/21/2017] [Indexed: 06/07/2023]
Abstract
RATIONALE Polycyclic aromatic hydrocarbons are molecules of ecological, astrochemical significance that find practical applications in organic electronics, photonics and the chemical synthesis of novel materials. The utility of these molecules often implies the occurrence of their ionized forms. Studies in the gas phase of elementary processes of energy-controlled interaction of molecules with low-energy electrons shed light on the mechanisms of transient negative ion formation and evolution. METHODS Experiments with the individual compounds representing homologous and/or isomeric series of cata-condensed polyaromatic hydrocarbons were carried out by means of negative ion mass spectrometry in the resonant electron capture mode. Literature data obtained by complementary techniques and theoretical quantum chemical methods (ab initio and density functional theory (DFT)) were invoked to treat the experimental observations. RESULTS Most polycyclic aromatic hydrocarbon (PAH) molecules form long-lived molecular negative ions when exposed to free electrons of thermal or epi-thermal energy, and no fragmentation is observed up to ca 5 eV. The lifetimes of such ions with respect to the spontaneous loss of extra-electron vary from tens of microseconds for angular and branched PAH molecules to milliseconds for linear ones, and correlate with the adiabatic electron affinity (EA) of molecules. Detailed analysis of the electronic (orbital) structure of the molecules made it possible to rationalize the relatively low EAs of angular and branched PAH compared with those of linear ones. CONCLUSIONS The obtained results contribute to the field of electron-molecule interactions and may be of importance for the better comprehension of the functioning of organic electronics, for the synthesis of relevant novel materials, and the development of efficient analytical methods capable of discriminating structural isomers.
Collapse
Affiliation(s)
- Rustem V Khatymov
- Institute of Molecule and Crystal Physics, Ufa Research Center of Russian Academy of Sciences, IМСР URC RAS, Prospekt Oktyabrya 151, Ufa, 450075, Russia
| | - Mars V Muftakhov
- Institute of Molecule and Crystal Physics, Ufa Research Center of Russian Academy of Sciences, IМСР URC RAS, Prospekt Oktyabrya 151, Ufa, 450075, Russia
| | - Pavel V Shchukin
- Institute of Molecule and Crystal Physics, Ufa Research Center of Russian Academy of Sciences, IМСР URC RAS, Prospekt Oktyabrya 151, Ufa, 450075, Russia
| |
Collapse
|
9
|
Affiliation(s)
- Riccardo Zanasi
- Dipartimento di Chimica e Biologia “Adolfo Zambelli”; Università di Salerno; Via Giovanni Paolo II, 132, Fisciano Salerno 84084 Italy
| | - Paolo Della Porta
- Dipartimento di Chimica e Biologia “Adolfo Zambelli”; Università di Salerno; Via Giovanni Paolo II, 132, Fisciano Salerno 84084 Italy
| | - Guglielmo Monaco
- Dipartimento di Chimica e Biologia “Adolfo Zambelli”; Università di Salerno; Via Giovanni Paolo II, 132, Fisciano Salerno 84084 Italy
| |
Collapse
|
10
|
Electron affinity calculation for selected PAHs using DFT: Effect of cyclopenta ring fusion and aromaticity. COMPUT THEOR CHEM 2015. [DOI: 10.1016/j.comptc.2015.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Dubceac C, Filatov AS, Zabula AV, Rogachev AY, Petrukhina MA. Functionalized corannulene carbocations: a structural overview. Chemistry 2015. [PMID: 26224357 DOI: 10.1002/chem.201500697] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A detailed structural overview of a family of bowl-shaped polycyclic aromatic carbocations of the type [C20 H10 R](+) with different R functionalities tethered to the interior surface of corannulene (C20 H10 ) is provided. Changing the identity of the surface-bound groups through alkyl chains spanning from one to four carbon atoms and incorporating a different degree of halogenation has led to the fine tuning of the bowl structures and properties. The deformation of the corannulene core upon functionalization has been revealed based on X-ray crystallographic analysis and compared for the series of cations with R=CH3 , CH2 Cl, CHCl2 , CCl3 , CH2 CH3 , CH2 CH2 Cl, and CH2 CH2 Br. The resulting carbocations have been isolated with several metal-based counterions, varying in size and coordinating abilities ([AlCl4 ](-) , [AlBr4 ](-) , [(SnCl)(GaCl4 )2 ](-) , and [Al(OC(CF3 )3 )4 ](-) ). A variety of aggregation patterns in the solid state has been revealed based on different intermolecular interactions ranging from cation-anion to π-π stacking and to halogen⋅⋅⋅π interactions. For the [C20 H10 CH2 Cl](+) ion crystallized with several different counterions, the conformation of the R group attached to the central five-membered ring of corannulene moiety was found to depend on the solid-state environment defined by the identity of anions. Solution NMR and UV/Vis investigations have been used to complement the X-ray diffraction studies for this series of corannulene-based cations and to demonstrate their different association patterns with the solvent molecules.
Collapse
Affiliation(s)
- Cristina Dubceac
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222 (USA), Fax: (+1) 518-442-3462
| | - Alexander S Filatov
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222 (USA), Fax: (+1) 518-442-3462
| | - Alexander V Zabula
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, WI 53706 (USA)
| | - Andrey Yu Rogachev
- Department of Biological and Chemical Sciences, Illinois Institute of Technology, Chicago, IL 60616 (USA)
| | - Marina A Petrukhina
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222 (USA), Fax: (+1) 518-442-3462.
| |
Collapse
|
12
|
|
13
|
Filatov AS, Spisak SN, Zabula AV, McNeely J, Rogachev AY, Petrukhina MA. Self-assembly of tetrareduced corannulene with mixed Li-Rb clusters: dynamic transformations, unique structures and record 7Li NMR shifts. Chem Sci 2015; 6:1959-1966. [PMID: 28717455 PMCID: PMC5496504 DOI: 10.1039/c4sc03485f] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 12/16/2014] [Indexed: 11/21/2022] Open
Abstract
Self-assembly processes of the highly reduced bowl-shaped corannulene generated by the chemical reduction with a binary combination of alkali metals, namely Li-Rb, have been investigated by variable-temperature 1H and 7Li NMR spectroscopy. The formation of several unique mixed metal sandwich products based on tetrareduced corannulene, C20H104- (14-), has been revealed followed by investigation of their dynamic transformations in solutions. Analysis of NMR data allowed to propose the mechanism of stepwise alkali metal substitution as well as to identify experimental conditions for the isolation of intermediate and final supramolecular products. As a result, two new triple-decker aggregates with a mixed Li-Rb core, [{Rb(THF)2}2]//[Li3Rb2(C20H10)2{Li+(THF)}] (2) and [{Rb(diglyme)}2]//[Li3Rb3(C20H10)2(diglyme)2]·0.5THF (3·0.5THF), have been crystallized and structurally characterized. The Li3Rb2-product has an open coordination site at the sandwich periphery and thus is considered transient on the way to the Li3Rb3-sandwich having the maximized intercalated alkali metal content. Next, the formation of the LiRb5 self-assembly with 14- has been identified by 7Li NMR as the final step in a series of dynamic transformations in this system. This product was also isolated and crystallographically characterized to confirm the LiRb5 core. Notably, all sandwiches have their central cavities, located in between the hub-sites of two C20H104- decks, occupied by an internal Li+ ion which exhibits the record high negative shift (ranging from -21 to -25 ppm) in 7Li NMR spectra. The isolation of three novel aggregates having different Li-Rb core compositions allowed us to look into the origin of the unusual 7Li NMR shifts at the molecular level. The discussion of formation mechanisms, dynamic transformations as well as unique electronic structures of these remarkable mixed alkali metal organometallic self-assemblies is provided and supported by DFT calculations.
Collapse
Affiliation(s)
- Alexander S Filatov
- Department of Chemistry , University at Albany , State University of New York , Albany , NY 12222 , USA .
| | - Sarah N Spisak
- Department of Chemistry , University at Albany , State University of New York , Albany , NY 12222 , USA .
| | - Alexander V Zabula
- Department of Chemistry , University of Wisconsin , Madison , WI 53706 , USA
| | - James McNeely
- Department of Biological and Chemical Sciences , Illinois Institute of Technology , Chicago , IL 60616 , USA
| | - Andrey Yu Rogachev
- Department of Biological and Chemical Sciences , Illinois Institute of Technology , Chicago , IL 60616 , USA
| | - Marina A Petrukhina
- Department of Chemistry , University at Albany , State University of New York , Albany , NY 12222 , USA .
| |
Collapse
|
14
|
Zabula AV, Sevryugina YV, Spisak SN, Kobryn L, Sygula R, Sygula A, Petrukhina MA. An unsolvated buckycatcher and its first dianion. Chem Commun (Camb) 2014; 50:2657-9. [DOI: 10.1039/c3cc49451a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The X-ray crystallographic study of buckycatcher C60H28 revealed a unique solid-state packing of its neutral form and the significant geometry changes upon charging to the dianion.
Collapse
Affiliation(s)
- Alexander V. Zabula
- Department of Chemistry
- University at Albany
- State University of New York
- Albany, USA
- Department of Chemistry
| | | | - Sarah N. Spisak
- Department of Chemistry
- University at Albany
- State University of New York
- Albany, USA
| | - Lesya Kobryn
- Department of Chemistry
- Mississippi State University
- Mississippi State, USA
| | - Renata Sygula
- Department of Chemistry
- Mississippi State University
- Mississippi State, USA
| | - Andrzej Sygula
- Department of Chemistry
- Mississippi State University
- Mississippi State, USA
| | - Marina A. Petrukhina
- Department of Chemistry
- University at Albany
- State University of New York
- Albany, USA
| |
Collapse
|
15
|
Filatov AS, Zabula AV, Spisak SN, Rogachev AY, Petrukhina MA. Clamshell Opening in the Mixed-Metal Supramolecular Aggregates Formed by Fourfold Reduced Corannulene for Maximizing Intercalated Metal Content. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201308090] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Filatov AS, Zabula AV, Spisak SN, Rogachev AY, Petrukhina MA. Clamshell Opening in the Mixed-Metal Supramolecular Aggregates Formed by Fourfold Reduced Corannulene for Maximizing Intercalated Metal Content. Angew Chem Int Ed Engl 2013; 53:140-5. [DOI: 10.1002/anie.201308090] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Indexed: 11/10/2022]
|
17
|
Zabula AV, Filatov AS, Xia J, Jasti R, Petrukhina MA. Tightening of the Nanobelt upon Multielectron Reduction. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201301226] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Zabula AV, Filatov AS, Xia J, Jasti R, Petrukhina MA. Tightening of the nanobelt upon multielectron reduction. Angew Chem Int Ed Engl 2013; 52:5033-6. [PMID: 23564669 DOI: 10.1002/anie.201301226] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Alexander V Zabula
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA
| | | | | | | | | |
Collapse
|
19
|
Spisak SN, Sumner NJ, Zabula AV, Filatov AS, Rogachev AY, Petrukhina MA. Tuning Binding of Rubidium Ions to Planar and Curved Negatively Charged π Surfaces. Organometallics 2013. [DOI: 10.1021/om4001617] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sarah N. Spisak
- Department of Chemistry, University at Albany, State University of New York, Albany, New York
12222, United States
| | - Natalie J. Sumner
- Department of Chemistry, University at Albany, State University of New York, Albany, New York
12222, United States
| | - Alexander V. Zabula
- Department of Chemistry, University at Albany, State University of New York, Albany, New York
12222, United States
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706-1396, United States
| | - Alexander S. Filatov
- Department of Chemistry, University at Albany, State University of New York, Albany, New York
12222, United States
| | - Andrey Yu. Rogachev
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York
14853-1301, United States
| | - Marina A. Petrukhina
- Department of Chemistry, University at Albany, State University of New York, Albany, New York
12222, United States
| |
Collapse
|
20
|
Zabula AV, Petrukhina MA. Structural Perspective on Aggregation of Alkali Metal Ions with Charged Planar and Curved Carbon π-Surfaces. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2013. [DOI: 10.1016/b978-0-12-407692-1.00003-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
21
|
Eisenberg D, Quimby JM, Ho D, Lavi R, Benisvy L, Scott LT, Shenhar R. Special Electronic Structure and Extended Supramolecular Oligomerization of Anionic 1,4-Dicorannulenylbenzene. European J Org Chem 2012. [DOI: 10.1002/ejoc.201200714] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|