1
|
Grau-Bové X, Subirana L, Meister L, Soubigou A, Neto A, Elek A, Naranjo S, Fornas O, Gomez-Skarmeta JL, Tena JJ, Irimia M, Bertrand S, Sebé-Pedrós A, Escriva H. An amphioxus neurula stage cell atlas supports a complex scenario for the emergence of vertebrate head mesoderm. Nat Commun 2024; 15:4550. [PMID: 38811547 PMCID: PMC11136973 DOI: 10.1038/s41467-024-48774-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 05/13/2024] [Indexed: 05/31/2024] Open
Abstract
The emergence of new structures can often be linked to the evolution of novel cell types that follows the rewiring of developmental gene regulatory subnetworks. Vertebrates are characterized by a complex body plan compared to the other chordate clades and the question remains of whether and how the emergence of vertebrate morphological innovations can be related to the appearance of new embryonic cell populations. We previously proposed, by studying mesoderm development in the cephalochordate amphioxus, a scenario for the evolution of the vertebrate head mesoderm. To further test this scenario at the cell population level, we used scRNA-seq to construct a cell atlas of the amphioxus neurula, stage at which the main mesodermal compartments are specified. Our data allowed us to validate the presence of a prechordal-plate like territory in amphioxus. Additionally, the transcriptomic profile of somite cell populations supports the homology between specific territories of amphioxus somites and vertebrate cranial/pharyngeal and lateral plate mesoderm. Finally, our work provides evidence that the appearance of the specific mesodermal structures of the vertebrate head was associated to both segregation of pre-existing cell populations, and co-option of new genes for the control of myogenesis.
Collapse
Affiliation(s)
- Xavier Grau-Bové
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Lucie Subirana
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650, Banyuls-sur-Mer, France
| | - Lydvina Meister
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650, Banyuls-sur-Mer, France
| | - Anaël Soubigou
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650, Banyuls-sur-Mer, France
| | - Ana Neto
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
| | - Anamaria Elek
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Silvia Naranjo
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
| | - Oscar Fornas
- Flow Cytometry Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jose Luis Gomez-Skarmeta
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
| | - Juan J Tena
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Stéphanie Bertrand
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650, Banyuls-sur-Mer, France.
- Institut universitaire de France (IUF), Paris, France.
| | - Arnau Sebé-Pedrós
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- ICREA, Barcelona, Spain.
| | - Hector Escriva
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650, Banyuls-sur-Mer, France.
| |
Collapse
|
2
|
Arimoto A, Nishitsuji K, Hisata K, Satoh N, Tagawa K. Transcriptomic evidence for Brachyury expression in the caudal tip region of adult Ptychodera flava (Hemichordata). Dev Growth Differ 2023; 65:470-480. [PMID: 37483093 DOI: 10.1111/dgd.12882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/27/2023] [Accepted: 07/19/2023] [Indexed: 07/25/2023]
Abstract
Most metazoans have a single copy of the T-box transcription factor gene Brachyury. This gene is expressed in cells of the blastopore of late blastulae and the archenteron invagination region of gastrulae. It appears to be crucial for gastrulation and mesoderm differentiation of embryos. Although this expression pattern is shared by most deuterostomes, Brachyury expression has not been reported in adult stages. Here we show that Brachyury of an indirect developer, the hemichordate acorn worm Ptychodera flava, is expressed not only in embryonic cells, but also in cells of the caudal tip (anus) region of adults. This spatially restricted expression, shown by whole-mount in situ hybridization, was confirmed by Iso-Seq RNA sequencing and single-cell RNA-seq (scRNA-seq) analysis. Iso-Seq analysis showed that gene expression occurs only in the caudal region of adults, but not in anterior regions, including the stomochord. scRNA-seq analysis showed a cluster that contained Brachyury-expressing cells comprising epidermis- and mesoderm-related cells, but which is unlikely to be associated with the nervous system or muscle. Although further investigation is required to examine the roles of Brachyury in adults, this study provides important clues for extending studies on Brachyury expression involved in development of the most posterior region of deuterostomes.
Collapse
Affiliation(s)
- Asuka Arimoto
- Marine Biological Laboratory, Blue Innovation Division, Seto Inland Sea Carbon-neutral Research Center, Hiroshima University, Hiroshima, Japan
| | - Koki Nishitsuji
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Kanako Hisata
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Kuni Tagawa
- Marine Biological Laboratory, Blue Innovation Division, Seto Inland Sea Carbon-neutral Research Center, Hiroshima University, Hiroshima, Japan
- Faculty of Science and Technology, Maulana Malik Ibrahim State Islamic University of Malang, Kota Malang, Indonesia
| |
Collapse
|
3
|
Schmidt-Ott U, Yoon Y. Evolution and loss of ß-catenin and TCF-dependent axis specification in insects. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100877. [PMID: 35104659 PMCID: PMC9133022 DOI: 10.1016/j.cois.2022.100877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Mechanisms and evolution of primary axis specification in insects are discussed in the context of the roles of ß-catenin and TCF in polarizing metazoan embryos. Three hypotheses are presented. First, insects with sequential segmentation and posterior growth use cell-autonomous mechanisms for establishing embryo polarity via the nuclear ratio of ß-catenin and TCF. Second, TCF homologs establish competence for anterior specification. Third, the evolution of simultaneous segmentation mechanisms, also known as long-germ development, resulted in primary axis specification mechanisms that are independent of ß-catenin but reliant on TCF, a condition that preceded the frequent replacement of anterior determinants in long germ insects.
Collapse
Affiliation(s)
- Urs Schmidt-Ott
- University of Chicago, Dept. of Organismal Biology and Anatomy, 1027 East 57th Street, Chicago, IL 60637, USA.
| | - Yoseop Yoon
- University of California, Irvine, Dept. of Microbiology and Molecular Genetics, School of Medicine, 811 Health Sciences Rd., Med Sci B262, CA 92617, USA
| |
Collapse
|
4
|
Carvalho JE, Lahaye F, Yong LW, Croce JC, Escrivá H, Yu JK, Schubert M. An Updated Staging System for Cephalochordate Development: One Table Suits Them All. Front Cell Dev Biol 2021; 9:668006. [PMID: 34095136 PMCID: PMC8174843 DOI: 10.3389/fcell.2021.668006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/31/2021] [Indexed: 12/17/2022] Open
Abstract
Chordates are divided into three subphyla: Vertebrata, Tunicata, and Cephalochordata. Phylogenetically, the Cephalochordata, more commonly known as lancelets or amphioxus, constitute the sister group of Vertebrata and Tunicata. Lancelets are small, benthic, marine filter feeders, and their roughly three dozen described species are divided into three genera: Branchiostoma, Epigonichthys, and Asymmetron. Due to their phylogenetic position and their stereotypical chordate morphology and genome architecture, lancelets are key models for understanding the evolutionary history of chordates. Lancelets have thus been studied by generations of scientists, with the first descriptions of adult anatomy and developmental morphology dating back to the 19th century. Today, several different lancelet species are used as laboratory models, predominantly for developmental, molecular and genomic studies. Surprisingly, however, a universal staging system and an unambiguous nomenclature for developing lancelets have not yet been adopted by the scientific community. In this work, we characterized the development of the European lancelet (Branchiostoma lanceolatum) using confocal microscopy and compiled a streamlined developmental staging system, from fertilization through larval life, including an unambiguous stage nomenclature. By tracing growth curves of the European lancelet reared at different temperatures, we were able to show that our staging system permitted an easy conversion of any developmental time into a specific stage name. Furthermore, comparisons of embryos and larvae from the European lancelet (B. lanceolatum), the Florida lancelet (Branchiostoma floridae), two Asian lancelets (Branchiostoma belcheri and Branchiostoma japonicum), and the Bahamas lancelet (Asymmetron lucayanum) demonstrated that our staging system could readily be applied to other lancelet species. Although the detailed staging description was carried out on developing B. lanceolatum, the comparisons with other lancelet species thus strongly suggested that both staging and nomenclature are applicable to all extant lancelets. We conclude that this description of embryonic and larval development will be of great use for the scientific community and that it should be adopted as the new standard for defining and naming developing lancelets. More generally, we anticipate that this work will facilitate future studies comparing representatives from different chordate lineages.
Collapse
Affiliation(s)
- João E. Carvalho
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Institut de la Mer de Villefranche, Sorbonne Université, CNRS, Villefranche-sur-Mer, France
| | - François Lahaye
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Institut de la Mer de Villefranche, Sorbonne Université, CNRS, Villefranche-sur-Mer, France
| | - Luok Wen Yong
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Jenifer C. Croce
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Institut de la Mer de Villefranche, Sorbonne Université, CNRS, Villefranche-sur-Mer, France
| | - Hector Escrivá
- Biologie Intégrative des Organismes Marins, Observatoire Océanologique, Sorbonne Université, CNRS, Banyuls-sur-Mer, France
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan
| | - Michael Schubert
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Institut de la Mer de Villefranche, Sorbonne Université, CNRS, Villefranche-sur-Mer, France
| |
Collapse
|
5
|
Lin CY, Lu MYJ, Yue JX, Li KL, Le Pétillon Y, Yong LW, Chen YH, Tsai FY, Lyu YF, Chen CY, Hwang SPL, Su YH, Yu JK. Molecular asymmetry in the cephalochordate embryo revealed by single-blastomere transcriptome profiling. PLoS Genet 2021; 16:e1009294. [PMID: 33382716 PMCID: PMC7806126 DOI: 10.1371/journal.pgen.1009294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 01/13/2021] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Studies in various animals have shown that asymmetrically localized maternal transcripts play important roles in axial patterning and cell fate specification in early embryos. However, comprehensive analyses of the maternal transcriptomes with spatial information are scarce and limited to a handful of model organisms. In cephalochordates (amphioxus), an early branching chordate group, maternal transcripts of germline determinants form a compact granule that is inherited by a single blastomere during cleavage stages. Further blastomere separation experiments suggest that other transcripts associated with the granule are likely responsible for organizing the posterior structure in amphioxus; however, the identities of these determinants remain unknown. In this study, we used high-throughput RNA sequencing of separated blastomeres to examine asymmetrically localized transcripts in two-cell and eight-cell stage embryos of the amphioxus Branchiostoma floridae. We identified 111 and 391 differentially enriched transcripts at the 2-cell stage and the 8-cell stage, respectively, and used in situ hybridization to validate the spatial distribution patterns for a subset of these transcripts. The identified transcripts could be categorized into two major groups: (1) vegetal tier/germ granule-enriched and (2) animal tier/anterior-enriched transcripts. Using zebrafish as a surrogate model system, we showed that overexpression of one animal tier/anterior-localized amphioxus transcript, zfp665, causes a dorsalization/anteriorization phenotype in zebrafish embryos by downregulating the expression of the ventral gene, eve1, suggesting a potential function of zfp665 in early axial patterning. Our results provide a global transcriptomic blueprint for early-stage amphioxus embryos. This dataset represents a rich platform to guide future characterization of molecular players in early amphioxus development and to elucidate conservation and divergence of developmental programs during chordate evolution.
Collapse
Affiliation(s)
- Che-Yi Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Mei-Yeh Jade Lu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Jia-Xing Yue
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Kun-Lung Li
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yann Le Pétillon
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Luok Wen Yong
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Hua Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Fu-Yu Tsai
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yu-Feng Lyu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Cheng-Yi Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Sheng-Ping L. Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Hsien Su
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- * E-mail: (Y-HS); (J-KY)
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan
- * E-mail: (Y-HS); (J-KY)
| |
Collapse
|
6
|
Larouche‐Bilodeau C, Guilbeault‐Mayers X, Cameron CB. Filter feeding, deviations from bilateral symmetry, developmental noise, and heterochrony of hemichordate and cephalochordate gills. Ecol Evol 2020; 10:13544-13554. [PMID: 33304558 PMCID: PMC7713955 DOI: 10.1002/ece3.6962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 12/02/2022] Open
Abstract
We measured gill slit fluctuating asymmetry (FA), a measure of developmental noise, in adults of three invertebrate deuterostomes with different feeding modes: the cephalochordate Branchiostoma floridae (an obligate filter feeder), the enteropneusts Protoglossus graveolens (a facultative filter feeder/deposit feeder) and Saccoglossus bromophenolosus (a deposit feeder). FA was substantially and significantly low in B. floridae and P. graveolens and high in S. bromophenolosus. Our results suggest that the gills of species that have experienced a relaxation of the filter feeding trait exhibit elevated FA. We found that the timing of development of the secondary collagenous gill bars, compared to the primary gill bars, was highly variable in P. graveolens but not the other two species, demonstrating an independence of gill FA from gill bar heterochrony. We also discovered the occasional ectopic expression of a second set of paired gills posterior to the first set of gills in the enteropneusts and that these were more common in S. bromophenolosus. Moreover, our finding that gill slits in enteropneusts exhibit bilateral symmetry suggests that the left-sidedness of larval cephalochordate gills, and the directional asymmetry of Cambrian stylophoran echinoderm fossil gills, evolved independently from a bilaterally symmetrical ancestor.
Collapse
|
7
|
Anderson MJ, Magidson V, Kageyama R, Lewandoski M. Fgf4 maintains Hes7 levels critical for normal somite segmentation clock function. eLife 2020; 9:55608. [PMID: 33210601 PMCID: PMC7717904 DOI: 10.7554/elife.55608] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022] Open
Abstract
During vertebrate development, the presomitic mesoderm (PSM) periodically segments into somites, which will form the segmented vertebral column and associated muscle, connective tissue, and dermis. The periodicity of somitogenesis is regulated by a segmentation clock of oscillating Notch activity. Here, we examined mouse mutants lacking only Fgf4 or Fgf8, which we previously demonstrated act redundantly to prevent PSM differentiation. Fgf8 is not required for somitogenesis, but Fgf4 mutants display a range of vertebral defects. We analyzed Fgf4 mutants by quantifying mRNAs fluorescently labeled by hybridization chain reaction within Imaris-based volumetric tissue subsets. These data indicate that FGF4 maintains Hes7 levels and normal oscillatory patterns. To support our hypothesis that FGF4 regulates somitogenesis through Hes7, we demonstrate genetic synergy between Hes7 and Fgf4, but not with Fgf8. Our data indicate that Fgf4 is potentially important in a spectrum of human Segmentation Defects of the Vertebrae caused by defective Notch oscillations.
Collapse
Affiliation(s)
- Matthew J Anderson
- Genetics of Vertebrate Development Section, Cancer and Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, United States
| | - Valentin Magidson
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research, Frederick, United States
| | - Ryoichiro Kageyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Mark Lewandoski
- Genetics of Vertebrate Development Section, Cancer and Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, United States
| |
Collapse
|
8
|
Kozmikova I, Kozmik Z. Wnt/β-catenin signaling is an evolutionarily conserved determinant of chordate dorsal organizer. eLife 2020; 9:56817. [PMID: 32452768 PMCID: PMC7292647 DOI: 10.7554/elife.56817] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022] Open
Abstract
Deciphering the mechanisms of axis formation in amphioxus is a key step to understanding the evolution of chordate body plan. The current view is that Nodal signaling is the only factor promoting the dorsal axis specification in the amphioxus, whereas Wnt/β-catenin signaling plays no role in this process. Here, we re-examined the role of Wnt/βcatenin signaling in the dorsal/ventral patterning of amphioxus embryo. We demonstrated that the spatial activity of Wnt/β-catenin signaling is located in presumptive dorsal cells from cleavage to gastrula stage, and provided functional evidence that Wnt/β-catenin signaling is necessary for the specification of dorsal cell fate in a stage-dependent manner. Microinjection of Wnt8 and Wnt11 mRNA induced ectopic dorsal axis in neurulae and larvae. Finally, we demonstrated that Nodal and Wnt/β-catenin signaling cooperate to promote the dorsal-specific gene expression in amphioxus gastrula. Our study reveals high evolutionary conservation of dorsal organizer formation in the chordate lineage.
Collapse
Affiliation(s)
- Iryna Kozmikova
- Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Zbynek Kozmik
- Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
9
|
Subbotin VM. A hypothesis on paradoxical privileged portal vein metastasis of hepatocellular carcinoma. Can organ evolution shed light on patterns of human pathology, and vice versa? Med Hypotheses 2019; 126:109-128. [PMID: 31010487 DOI: 10.1016/j.mehy.2019.03.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/25/2019] [Accepted: 03/21/2019] [Indexed: 02/06/2023]
Abstract
Unlike other carcinomas, hepatocellular carcinoma (HCC) metastasizes to distant organs relatively rarely. In contrast, it routinely metastasizes to liver vasculature/liver, affecting portal veins 3-10 times more often than hepatic veins. This portal metastatic predominance is traditionally rationalized within the model of a reverse portal flow, due to accompanying liver cirrhosis. However, this intuitive model is not coherent with facts: 1) reverse portal flow occurs in fewer than 10% of cirrhotic patients, while portal metastasis occurs in 30-100% of HCC cases, and 2) portal vein prevalence of HCC metastasis is also characteristic of HCC in non-cirrhotic livers. Therefore, we must assume that the route for HCC metastatic dissemination is the same as for other carcinomas: systemic dissemination via the draining vessel, i.e., via the hepatic vein. In this light, portal prevalence versus hepatic vein of HCC metastasis appears as a puzzling pattern, particularly in cases when portal HCC metastases have appeared as the sole manifestation of HCC. Considering that other GI carcinomas (colorectal, pancreatic, gastric and small bowel) invariably disseminate via portal vein, but very rarely form portal metastasis, portal prevalence of HCC metastasis appears as a paradox. However, nature does not contradict itself; it is rather our wrong assumptions that create paradoxes. The 'portal paradox' becomes a logical event within the hypothesis that the formation of the unique portal venous system preceded the appearance of liver in evolution of chordates. The analysis suggests that the appearance of the portal venous system, supplying hormones and growth factors of pancreatic family, which includes insulin, glucagon, somatostatin, and pancreatic polypeptide (HGFPF) to midgut diverticulum in the early evolution of chordates (in an Amphioxus-like ancestral animal), promoted differentiation of enterocytes into hepatocytes and their further evolution to the liver of vertebrates. These promotional-dependent interactions are conserved in the vertebrate lineage. I hypothesize that selective homing and proliferation of malignant hepatocytes (i.e., HCC cells) in the portal vein environment are due to a uniquely high concentration of HGFPF in portal blood. HGFPF are also necessary for liver function and renewal and are significantly extracted by hepatocytes from passing blood, creating a concentration gradient of HGFPF between the portal blood and hepatic vein outflow, making post-liver vasculature and remote organs less favorable spaces for HCC growth. It also suggested that the portal vein environment (i.e., HGFPF) promotes the differentiation of more aggressive HCC clones from already-seeded portal metastases, explaining the worse outcome of HCC with the portal metastatic pattern. The analysis also offers new hypothesis on the phylogenetic origin of the hepatic diverticulum of cephalochordates, with certain implications for the modeling of the chordate phylogeny.
Collapse
Affiliation(s)
- Vladimir M Subbotin
- Arrowhead Parmaceuticals, Madison, WI 53719, USA; University of Wisconsin, Madison, WI 53705, USA; University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
10
|
Onai T. Canonical Wnt/β-catenin and Notch signaling regulate animal/vegetal axial patterning in the cephalochordate amphioxus. Evol Dev 2018; 21:31-43. [PMID: 30288919 DOI: 10.1111/ede.12273] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In bilaterians, animal/vegetal axial (A/V) patterning is a fundamental early developmental event for establishment of animal/vegetal polarity and following specification of the germ layers (ectoderm, mesoderm, endoderm), of which the evolutionary origin is enigmatic. Understanding A/V axial patterning in a basal animal from each phylum would help to reconstruct the ancestral state of germ layer specification in bilaterians and thus, the evolution of mesoderm, the third intermediate cell layer. Herein, data show that the canonical Wnt/β-catenin (cWnt) and Notch signaling pathways control mesoderm specification from the early endomesoderm in the basal chordate amphioxus. Amphioxus belongs to the deuterostome, one of the main superphyla in Bilateria. In the present study, genes (tcf, dsh, axin, gsk3β) encoding cWnt components were expressed in the endomesoderm during the gastrula stages. Excess cWnt signaling by BIO, a GSK3 inhibitor, expanded the expression domains of outer endomesodermal genes that include future mesodermal ones and suppressed inner endomesodermal and ectodermal genes. Interfering Notch signaling by DAPT, a γ-secretase inhibitor, resulted in decreased expression of ectodermal and endomesodermal markers. These results suggest that cWnt and Notch have important roles in mesoderm specification in amphioxus embryos. The evolution of the mesoderm is also discussed.
Collapse
Affiliation(s)
- Takayuki Onai
- Department of Anatomy, University of Fukui, School of Medical Sciences, Fukui, Japan.,Life Science Innovation Center, University of Fukui, Fukui, Japan
| |
Collapse
|
11
|
Ning X, Feng L, Li X, Wang S, Zhang M, Wang S, Zhang L, Hu X, Bao Z. The scallop IGF2 mRNA-binding protein gene PyIMP and association of a synonymous mutation with growth traits. Genes Genet Syst 2018; 93:91-100. [PMID: 29998907 DOI: 10.1266/ggs.17-00028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Insulin-like growth factor 2 mRNA-binding proteins (IMPs) function in localization, stability and translational control of their target RNAs. In this study, we identified an IMP gene (PyIMP) from Yesso scallop, Patinopecten yessoensis. The complete DNA sequence of PyIMP was 22,875 bp, consisting of seventeen exons and sixteen introns. The full-length cDNA sequence was 3,293 bp, with an open reading frame of 1,776 bp, encoding 592 amino acids. PyIMP exhibited characters typical of IMPs, namely two RNA recognition motifs and four hnRNP K homology domains. Real-time quantitative reverse transcription PCR analysis indicated that PyIMP was universally expressed, with higher expression levels in the gonad of adult scallops, and in gastrulae and trochophore larvae at developmental stages. A synonymous mutation SNP, c.852A>G, which showed significant associations with growth traits of Yesso scallop, was identified in this gene. Scallops with the AA genotype at this locus had significantly higher trait values than those with the GG genotype for shell length, shell height, body weight, soft tissue weight and striated muscle weight (P < 0.05). Meanwhile, the expression of PyIMP in AA type scallops was significantly higher than that in the GG type, implying a positive effect of PyIMP on scallop growth. PyIMP represents the first mRNA-binding protein gene characterized in mollusks, and SNP c.852A>G will be useful for a better understanding of the role of mRNA-binding proteins in bivalves and for scallop breeding.
Collapse
Affiliation(s)
- Xianhui Ning
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China
| | - Liying Feng
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China
| | - Xue Li
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China
| | - Shuyue Wang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China
| | - Mengran Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China
| | - Shi Wang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology
| | - Lingling Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology
| | - Xiaoli Hu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology
| | - Zhenmin Bao
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology
| |
Collapse
|
12
|
Onai T. The evolutionary origin of chordate segmentation: revisiting the enterocoel theory. Theory Biosci 2018; 137:1-16. [PMID: 29488055 DOI: 10.1007/s12064-018-0260-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/10/2018] [Indexed: 11/28/2022]
Abstract
One of the definitive characteristics of chordates (cephalochordates, vertebrates) is the somites, which are a series of paraxial mesodermal blocks exhibiting segmentation. The presence of somites in the basal chordate amphioxus and in vertebrates, but not in tunicates (the sister group of vertebrates), suggests that the tunicates lost the somites secondarily. Somites are patterned from anterior to posterior during embryogenesis. How such a segmental pattern evolved from deuterostome ancestors is mysterious. The classic enterocoel theory claims that chordate mesoderm evolved from the ancestral deuterostome mesoderm that organizes the trimeric body parts seen in extant hemichordates. Recent progress in molecular embryology has been tremendous, which has enabled us to test this classic theory. In this review, the history of the study on the evolution of the chordate mesoderm is summarized. This is followed by a review of the current understanding of genetic mapping on anterior/posterior (A/P) mesodermal patterning between chordates (cephalochordates, vertebrates) and a direct developing hemichordate (Saccoglossus kowalevskii). Finally, a possible scenario about the evolution of the chordate mesoderm from deuterostome ancestors is discussed.
Collapse
Affiliation(s)
- Takayuki Onai
- Department of Anatomy, School of Medical Sciences, University of Fukui, 23-3, Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan. .,Life Science Innovation Center, University of Fukui, 23-3, Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan.
| |
Collapse
|
13
|
Lu Y, Chen M, Reding K, Pick L. Establishment of molecular genetic approaches to study gene expression and function in an invasive hemipteran, Halyomorpha halys. EvoDevo 2017; 8:15. [PMID: 29075432 PMCID: PMC5648497 DOI: 10.1186/s13227-017-0078-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/04/2017] [Indexed: 01/08/2023] Open
Abstract
Hemiptera is a large clade of insects understudied in terms of developmental biology. Halyomorpha halys, the Brown Marmorated Stink Bug (BMSB, referred to throughout as H. halys), is an invasive hemipteran pest of the mid-Atlantic region of the USA that has rapidly spread to other regions in recent years, devastating a wide range of crops using a piercing and sucking mechanism. Its phylogenetic position, polyphagous habits, and rapid spread in the USA suggested that H. halys would be an ideal system to broaden our knowledge of developmental mechanisms in insects. We and others previously generated transcriptome sequences from different life stages of this insect. Here, we describe tools to examine gene expression patterns in whole-mount H. halys embryos and to test the response of H. halys to RNA interference (RNAi). We show that spatial and temporal patterns of gene expression in H. halys can be effectively monitored by both immunostaining and in situ hybridization. We also show that delivery of dsRNA to adult females knocks down gene function in offspring, using the homeotic gene Sex combs reduced (Scr). Knockdown of Hh-Scr resulted in dramatic malformations of the mouthparts, demonstrating for the first time that RNAi is effective in this species. Our results suggest that, despite difficulties with long-term laboratory culture of H. halys, this species shows promise as a developmental system.
Collapse
Affiliation(s)
- Yong Lu
- Department of Entomology, University of Maryland, College Park, MD 20742 USA.,Present Address: Department of Anesthesiology, Stony Brook Medicine, 101 Nicolls Rd, Stony Brook, NY 11794 USA
| | - Mengyao Chen
- Department of Entomology, University of Maryland, College Park, MD 20742 USA
| | - Katie Reding
- Department of Entomology, University of Maryland, College Park, MD 20742 USA
| | - Leslie Pick
- Department of Entomology, University of Maryland, College Park, MD 20742 USA
| |
Collapse
|
14
|
Houston DW. Vertebrate Axial Patterning: From Egg to Asymmetry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:209-306. [PMID: 27975274 PMCID: PMC6550305 DOI: 10.1007/978-3-319-46095-6_6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The emergence of the bilateral embryonic body axis from a symmetrical egg has been a long-standing question in developmental biology. Historical and modern experiments point to an initial symmetry-breaking event leading to localized Wnt and Nodal growth factor signaling and subsequent induction and formation of a self-regulating dorsal "organizer." This organizer forms at the site of notochord cell internalization and expresses primarily Bone Morphogenetic Protein (BMP) growth factor antagonists that establish a spatiotemporal gradient of BMP signaling across the embryo, directing initial cell differentiation and morphogenesis. Although the basics of this model have been known for some time, many of the molecular and cellular details have only recently been elucidated and the extent that these events remain conserved throughout vertebrate evolution remains unclear. This chapter summarizes historical perspectives as well as recent molecular and genetic advances regarding: (1) the mechanisms that regulate symmetry-breaking in the vertebrate egg and early embryo, (2) the pathways that are activated by these events, in particular the Wnt pathway, and the role of these pathways in the formation and function of the organizer, and (3) how these pathways also mediate anteroposterior patterning and axial morphogenesis. Emphasis is placed on comparative aspects of the egg-to-embryo transition across vertebrates and their evolution. The future prospects for work regarding self-organization and gene regulatory networks in the context of early axis formation are also discussed.
Collapse
Affiliation(s)
- Douglas W Houston
- Department of Biology, The University of Iowa, 257 BB, Iowa City, IA, 52242, USA.
| |
Collapse
|
15
|
Maternal MEMI Promotes Female Meiosis II in Response to Fertilization in Caenorhabditis elegans. Genetics 2016; 204:1461-1477. [PMID: 27729423 DOI: 10.1534/genetics.116.192997] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/30/2016] [Indexed: 12/18/2022] Open
Abstract
In most animals, female meiosis completes only after fertilization. Sperm entry has been implicated in providing a signal for the initiation of the final meiotic processes; however, a maternal component required for this process has not been previously identified. We report the characterization of a novel family of three highly similar paralogs (memi-1, memi-2, memi-3) that encode oocyte-specific proteins. A hyper-morphic mutation memi-1(sb41) results in failure to exit female meiosis II properly; however, loss of all three paralogs results in a "skipped meiosis II" phenotype. Mutations that prevent fertilization, such as fer-1(hc1), also cause a skipped meiosis II phenotype, suggesting that the MEMI proteins represent a maternal component of a postfertilization signal that specifies the meiosis II program. MEMI proteins are degraded before mitosis and sensitive to ZYG-11, a substrate-specific adapter for cullin-based ubiquitin ligase activity, and the memi-1(sb41) mutation results in inappropriate persistence of the MEMI-1 protein into mitosis. Using an RNAi screen for suppressors of memi-1(sb41), we identified a sperm-specific PP1 phosphatase, GSP-3/4, as a putative sperm component of the MEMI pathway. We also found that MEMI and GSP-3/4 proteins can physically interact via co-immunoprecipitation. These results suggest that sperm-specific PP1 and maternal MEMI proteins act in the same pathway after fertilization to facilitate proper meiosis II and the transition into embryonic mitosis.
Collapse
|
16
|
Acemel RD, Tena JJ, Irastorza-Azcarate I, Marlétaz F, Gómez-Marín C, de la Calle-Mustienes E, Bertrand S, Diaz SG, Aldea D, Aury JM, Mangenot S, Holland PWH, Devos DP, Maeso I, Escrivá H, Gómez-Skarmeta JL. A single three-dimensional chromatin compartment in amphioxus indicates a stepwise evolution of vertebrate Hox bimodal regulation. Nat Genet 2016; 48:336-41. [PMID: 26829752 DOI: 10.1038/ng.3497] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/30/2015] [Indexed: 12/19/2022]
Abstract
The HoxA and HoxD gene clusters of jawed vertebrates are organized into bipartite three-dimensional chromatin structures that separate long-range regulatory inputs coming from the anterior and posterior Hox-neighboring regions. This architecture is instrumental in allowing vertebrate Hox genes to pattern disparate parts of the body, including limbs. Almost nothing is known about how these three-dimensional topologies originated. Here we perform extensive 4C-seq profiling of the Hox cluster in embryos of amphioxus, an invertebrate chordate. We find that, in contrast to the architecture in vertebrates, the amphioxus Hox cluster is organized into a single chromatin interaction domain that includes long-range contacts mostly from the anterior side, bringing distant cis-regulatory elements into contact with Hox genes. We infer that the vertebrate Hox bipartite regulatory system is an evolutionary novelty generated by combining ancient long-range regulatory contacts from DNA in the anterior Hox neighborhood with new regulatory inputs from the posterior side.
Collapse
Affiliation(s)
- Rafael D Acemel
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, Seville, Spain
| | - Juan J Tena
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, Seville, Spain
| | - Ibai Irastorza-Azcarate
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, Seville, Spain
| | | | - Carlos Gómez-Marín
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, Seville, Spain
| | - Elisa de la Calle-Mustienes
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, Seville, Spain
| | - Stéphanie Bertrand
- Université Pierre et Marie Curie Université Paris 6, CNRS, UMR 7232, Biologie Integrative des Organismes Marins (BIOM), Observatoire Océanologique de Banyuls-sur-Mer, Banyuls-sur-Mer, France
| | - Sergio G Diaz
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, Seville, Spain
| | - Daniel Aldea
- Université Pierre et Marie Curie Université Paris 6, CNRS, UMR 7232, Biologie Integrative des Organismes Marins (BIOM), Observatoire Océanologique de Banyuls-sur-Mer, Banyuls-sur-Mer, France
| | - Jean-Marc Aury
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, Evry, France
| | - Sophie Mangenot
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, Evry, France
| | | | - Damien P Devos
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, Seville, Spain
| | - Ignacio Maeso
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, Seville, Spain
| | - Hector Escrivá
- Université Pierre et Marie Curie Université Paris 6, CNRS, UMR 7232, Biologie Integrative des Organismes Marins (BIOM), Observatoire Océanologique de Banyuls-sur-Mer, Banyuls-sur-Mer, France
| | - José Luis Gómez-Skarmeta
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
17
|
Yuan S, Ruan J, Huang S, Chen S, Xu A. Amphioxus as a model for investigating evolution of the vertebrate immune system. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 48:297-305. [PMID: 24877655 DOI: 10.1016/j.dci.2014.05.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 05/09/2014] [Accepted: 05/12/2014] [Indexed: 06/03/2023]
Abstract
As the most basal chordate, the cephalochordate amphioxus has unique features that make it a valuable model for understanding the phylogeny of immunity. Vertebrate adaptive immunity (VAI) mediated by lymphocytes bearing variable receptors has been well-studied in mammals but not observed in invertebrates. However, the identification of lymphocyte-like cells in the gill along with genes related with lymphoid proliferation and differentiation indicates the presence of some basic components of VAI in amphioxus. Without VAI, amphioxus utilizes about 10% of its gene repertoires, and an ongoing domain reshuffling mechanism among these genes, for innate immunity, suggesting extraordinary innate complexity and diversity not observed in other species. Innate diversity may not be comparable to the somatic diversity of the VAI, but there is no doubt of the success of this immune system, since amphioxus has existed for over 500 million years. Studies of amphioxus immunity may provide information on the reduction of innate immune complexity and the conflict between microbiota and host shaped the evolution of adaptive immune systems (AIS) during chordate evolution.
Collapse
Affiliation(s)
- Shaochun Yuan
- State Key Laboratory of Biocontrol, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Jie Ruan
- State Key Laboratory of Biocontrol, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Shengfeng Huang
- State Key Laboratory of Biocontrol, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Shangwu Chen
- State Key Laboratory of Biocontrol, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Anlong Xu
- State Key Laboratory of Biocontrol, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China; Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China.
| |
Collapse
|
18
|
Onai T, Aramaki T, Inomata H, Hirai T, Kuratani S. On the origin of vertebrate somites. ZOOLOGICAL LETTERS 2015; 1:33. [PMID: 26613046 PMCID: PMC4660845 DOI: 10.1186/s40851-015-0033-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 10/01/2015] [Indexed: 05/16/2023]
Abstract
INTRODUCTION Somites, blocks of mesoderm tissue located on either side of the neural tube in the developing vertebrate embryo, are derived from mesenchymal cells in the presomitic mesoderm (PSM) and are a defining characteristic of vertebrates. In vertebrates, the somite segmental boundary is determined by Notch signalling and the antagonistic relationship of the downstream targets of Notch, Lfng, and Delta1 in the anterior PSM. The presence of somites in the basal chordate amphioxus (Branchiostoma floridae) indicates that the last common ancestor of chordates also had somites. However, it remains unclear how the genetic mechanisms underlying somitogenesis in vertebrates evolved from those in ancestral chordates. RESULTS We demonstrate that during the gastrula stages of amphioxus embryos, BfFringe expression in the endoderm of the archenteron is detected ventrally to the ventral limit of BfDelta expression in the presumptive rostral somites along the dorsal/ventral (D/V) body axis. Suppression of Notch signalling by DAPT (a γ-secretase inhibitor that indirectly inhibits Notch) treatment from the late blastula stage reduced late gastrula stage expression of BfFringe in the endodermal archenteron and somite markers BfDelta and BfHairy-b in the mesodermal archenteron. Later in development, somites in the DAPT-treated embryo did not separate completely from the dorsal roof of the archenteron. In addition, clear segmental boundaries between somites were not detected in DAPT-treated amphioxus embryos at the larva stage. Similarly, in vertebrates, DAPT treatment from the late blastula stage in Xenopus (Xenopus laevis) embryos resulted in disruption of somite XlDelta-2 expression at the late gastrula stage. At the tail bud stage, the segmental expression of XlMyoD in myotomes was diminished. CONCLUSIONS We propose that Notch signalling and the Fringe/Delta cassette for dorso-ventral boundary formation in the archenteron that separates somites from the gut in an amphioxus-like ancestral chordate were co-opted for anteroposterior segmental boundary formation in the vertebrate anterior PSM during evolution.
Collapse
Affiliation(s)
- Takayuki Onai
- />Kuratani Evolutionary Morphology Laboratory, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku Kobe, 650-0047 Japan
| | - Toshihiro Aramaki
- />Pattern Formation Group, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Hidehiko Inomata
- />Laboratory for Axial Pattern Dynamics, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku Kobe, 650-0047 Japan
| | - Tamami Hirai
- />Kuratani Evolutionary Morphology Laboratory, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku Kobe, 650-0047 Japan
| | - Shigeru Kuratani
- />Kuratani Evolutionary Morphology Laboratory, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku Kobe, 650-0047 Japan
| |
Collapse
|
19
|
Onai T, Aramaki T, Inomata H, Hirai T, Kuratani S. Ancestral mesodermal reorganization and evolution of the vertebrate head. ZOOLOGICAL LETTERS 2015; 1:29. [PMID: 26605074 PMCID: PMC4657371 DOI: 10.1186/s40851-015-0030-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/22/2015] [Indexed: 05/20/2023]
Abstract
INTRODUCTION The vertebrate head is characterized by unsegmented head mesoderm the evolutionary origin of which remains enigmatic. The head mesoderm is derived from the rostral part of the dorsal mesoderm, which is regionalized anteroposteriorly during gastrulation. The basal chordate amphioxus resembles vertebrates due to the presence of somites, but it lacks unsegmented head mesoderm. Gastrulation in amphioxus occurs by simple invagination with little mesodermal involution, whereas in vertebrates gastrulation is organized by massive cell movements, such as involution, convergence and extension, and cell migration. RESULTS To identify key developmental events in the evolution of the vertebrate head mesoderm, we compared anterior/posterior (A/P) patterning mechanisms of the dorsal mesoderm in amphioxus and vertebrates. The dorsal mesodermal genes gsc, bra, and delta are expressed in similar patterns in early embryos of both animals, but later in development, these expression domains become anteroposteriorly segregated only in vertebrates. Suppression of mesodermal involution in vertebrate embryos by inhibition of convergence and extension recapitulates amphioxus-like dorsal mesoderm formation. CONCLUSIONS Reorganization of ancient mesoderm was likely involved in the evolution of the vertebrate head.
Collapse
Affiliation(s)
- Takayuki Onai
- />Kuratani Evolutionary Morphology Laboratory, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047 Japan
| | - Toshihiro Aramaki
- />Pattern Formation Group, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Hidehiko Inomata
- />Laboratory for Axial Pattern Dynamics, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047 Japan
| | - Tamami Hirai
- />Kuratani Evolutionary Morphology Laboratory, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047 Japan
| | - Shigeru Kuratani
- />Kuratani Evolutionary Morphology Laboratory, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047 Japan
| |
Collapse
|