1
|
Mercurio S, Gattoni G, Scarì G, Ascagni M, Barzaghi B, Elphick MR, Croce JC, Schubert M, Benito-Gutiérrez E, Pennati R. A feather star is born: embryonic development and nervous system organization in the crinoid Antedon mediterranea. Open Biol 2024; 14:240115. [PMID: 39165121 PMCID: PMC11336682 DOI: 10.1098/rsob.240115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 08/22/2024] Open
Abstract
Crinoids belong to the Echinodermata, marine invertebrates with a highly derived adult pentaradial body plan. As the sister group to all other extant echinoderms, crinoids occupy a key phylogenetic position to explore the evolutionary history of the whole phylum. However, their development remains understudied compared with that of other echinoderms. Therefore, the aim here was to establish the Mediterranean feather star (Antedon mediterranea) as an experimental system for developmental biology. We first set up a method for culturing embryos in vitro and defined a standardized staging system for this species. We then optimized protocols to characterize the morphological and molecular development of the main structures of the feather star body plan. Focusing on the nervous system, we showed that the larval apical organ includes serotonergic, GABAergic and glutamatergic neurons, which develop within a conserved anterior molecular signature. We described the composition of the early post-metamorphic nervous system and revealed that it has an anterior signature. These results further our knowledge on crinoid development and provide new techniques to investigate feather star embryogenesis. This will pave the way for the inclusion of crinoids in comparative studies addressing the origin of the echinoderm body plan and the evolutionary diversification of deuterostomes.
Collapse
Affiliation(s)
- Silvia Mercurio
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | - Giacomo Gattoni
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Giorgio Scarì
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Miriam Ascagni
- Unitech NOLIMITS, Università degli Studi di Milano, Milan, Italy
| | - Benedetta Barzaghi
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | - Maurice R. Elphick
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Jenifer C. Croce
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, CNRS, Villefranche-sur-Mer, France
| | - Michael Schubert
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, CNRS, Villefranche-sur-Mer, France
| | - Elia Benito-Gutiérrez
- Department of Zoology, University of Cambridge, Cambridge, UK
- Department of Neuroscience, Genentech, South San Francisco, CA, USA
| | - Roberta Pennati
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
2
|
Mathematical Modeling of Tissue Folding and Asymmetric Tissue Flow during Epithelial Morphogenesis. Symmetry (Basel) 2019. [DOI: 10.3390/sym11010113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Recent studies have revealed that intrinsic, individual cell behavior can provide the driving force for deforming a two-dimensional cell sheet to a three-dimensional tissue without the need for external regulatory elements. However, whether intrinsic, individual cell behavior could actually generate the force to induce tissue deformation was unclear, because there was no experimental method with which to verify it in vivo. In such cases, mathematical modeling can be effective for verifying whether a locally generated force can propagate through an entire tissue and induce deformation. Moreover, the mathematical model sometimes provides potential mechanistic insight beyond the information obtained from biological experimental results. Here, we present two examples of modeling tissue morphogenesis driven by cell deformation or cell interaction. In the first example, a mathematical study on tissue-autonomous folding based on a two-dimensional vertex model revealed that active modulations of cell mechanics along the basal–lateral surface, in addition to the apical side, can induce tissue-fold formation. In the second example, by applying a two-dimensional vertex model in an apical plane, a novel mechanism of tissue flow caused by asymmetric cell interactions was discovered, which explained the mechanics behind the collective cellular movement observed during epithelial morphogenesis.
Collapse
|
3
|
Shindo A, Audrey A, Takagishi M, Takahashi M, Wallingford JB, Kinoshita M. Septin-dependent remodeling of cortical microtubule drives cell reshaping during epithelial wound healing. J Cell Sci 2018; 131:jcs212647. [PMID: 29777035 PMCID: PMC6031381 DOI: 10.1242/jcs.212647] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 05/10/2018] [Indexed: 12/31/2022] Open
Abstract
Wounds in embryos heal rapidly through contraction of the wound edges. Despite well-recognized significance of the actomyosin purse string for wound closure, roles for other cytoskeletal components are largely unknown. Here, we report that the septin cytoskeleton cooperates with actomyosin and microtubules to coordinate circumferential contraction of the wound margin and concentric elongation of wound-proximal cells in Xenopus laevis embryos. Microtubules reoriented radially, forming bundles along lateral cell cortices in elongating wound-proximal cells. Depletion of septin 7 (Sept7) slowed wound closure by attenuating the wound edge contraction and cell elongation. ROCK/Rho-kinase inhibitor-mediated suppression of actomyosin contractility enhanced the Sept7 phenotype, whereas the Sept7 depletion did not affect the accumulation of actomyosin at the wound edge. The cortical microtubule bundles were reduced in wound-proximal cells in Sept7 knockdown (Sept7-KD) embryos, but forced bundling of microtubules mediated by the microtubule-stabilizing protein Map7 did not rescue the Sept7-KD phenotype. Nocodazole-mediated microtubule depolymerization enhanced the Sept7-KD phenotype, suggesting that Sept7 is required for microtubule reorganization during cell elongation. Our findings indicate that septins are required for the rapid wound closure by facilitating cortical microtubule reorganization and the concentric elongation of surrounding cells.
Collapse
Affiliation(s)
- Asako Shindo
- Division of Biological Sciences, Department of Molecular Biology, Nagoya University Graduate School of Science, Nagoya 464-8602, Japan
- Department of Molecular Biosciences, University of Texas at Austin, Austin 78712, USA
| | - Anastasia Audrey
- Division of Biological Sciences, Department of Molecular Biology, Nagoya University Graduate School of Science, Nagoya 464-8602, Japan
| | - Maki Takagishi
- Department of Tumor Pathology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Masahide Takahashi
- Department of Tumor Pathology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - John B Wallingford
- Department of Molecular Biosciences, University of Texas at Austin, Austin 78712, USA
| | - Makoto Kinoshita
- Division of Biological Sciences, Department of Molecular Biology, Nagoya University Graduate School of Science, Nagoya 464-8602, Japan
| |
Collapse
|
4
|
Thümecke S, Beermann A, Klingler M, Schröder R. The flipflop orphan genes are required for limb bud eversion in the Tribolium embryo. Front Zool 2017; 14:48. [PMID: 29075305 PMCID: PMC5649079 DOI: 10.1186/s12983-017-0234-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/03/2017] [Indexed: 12/20/2022] Open
Abstract
Background Unlike Drosophila but similar to other arthropod and vertebrate embryos, the flour beetle Tribolium castaneum develops everted limb buds during embryogenesis. However, the molecular processes directing the evagination of epithelia are only poorly understood. Results Here we show that the newly discovered genes Tc-flipflop1 and Tc-flipflop2 are involved in regulating the directional budding of appendages. RNAi-knockdown of Tc-flipflop results in a variety of phenotypic traits. Most prominently, embryonic limb buds frequently grow inwards rather than out, leading to the development of inverted appendages inside the larval body. Moreover, affected embryos display dorsal closure defects. The Tc-flipflop genes are evolutionarily non-conserved, and their molecular function is not evident. We further found that Tc-RhoGEF2, a highly-conserved gene known to be involved in actomyosin-dependent cell movement and cell shape changes, shows a Tc-flipflop-like RNAi-phenotype. Conclusions The similarity of the inverted appendage phenotype in both the flipflop- and the RhoGEF2 RNAi gene knockdown led us to conclude that the Tc-flipflop orphan genes act in a Rho-dependent pathway that is essential for the early morphogenesis of polarised epithelial movements. Our work describes one of the few examples of an orphan gene playing a crucial role in an important developmental process. Electronic supplementary material The online version of this article (10.1186/s12983-017-0234-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Susanne Thümecke
- Institut für Biowissenschaften, Universität Rostock, Albert-Einsteinstr 3, D-18059 Rostock, Germany
| | - Anke Beermann
- Universität Tübingen, Auf der Morgenstelle 15, D-72076 Tübingen, Germany
| | - Martin Klingler
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Biologie Abt. Entwicklungsbiologie, Staudtstr. 5, D-91058 Erlangen, Germany
| | - Reinhard Schröder
- Universität Tübingen, Auf der Morgenstelle 15, D-72076 Tübingen, Germany
| |
Collapse
|
5
|
Abstract
Neural tube closure is an important morphogenetic event that involves dramatic reshaping of both neural and non-neural tissues. Rho GTPases are key cytoskeletal regulators involved in cell motility and in several developmental processes, and are thus expected to play pivotal roles in neurulation. Here, we discuss 2 recent studies that shed light on the roles of distinct Rho GTPases in different tissues during neurulation. RhoA plays an essential role in regulating actomyosin dynamics in the neural epithelium of the elevating neural folds, while Rac1 is required for the formation of cell protrusions in the non-neural surface ectoderm during neural fold fusion.
Collapse
Affiliation(s)
- Ana Rolo
- a Newlife Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health , London , UK
| | - Sarah Escuin
- a Newlife Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health , London , UK
| | - Nicholas D E Greene
- a Newlife Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health , London , UK
| | - Andrew J Copp
- a Newlife Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health , London , UK
| |
Collapse
|
6
|
Vitorino M, Silva AC, Inácio JM, Ramalho JS, Gur M, Fainsod A, Steinbeisser H, Belo JA. Xenopus Pkdcc1 and Pkdcc2 Are Two New Tyrosine Kinases Involved in the Regulation of JNK Dependent Wnt/PCP Signaling Pathway. PLoS One 2015; 10:e0135504. [PMID: 26270962 PMCID: PMC4536202 DOI: 10.1371/journal.pone.0135504] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 07/22/2015] [Indexed: 12/28/2022] Open
Abstract
Protein Kinase Domain Containing, Cytoplasmic (PKDCC) is a protein kinase which has been implicated in longitudinal bone growth through regulation of chondrocytes formation. Nevertheless, the mechanism by which this occurs remains unknown. Here, we identified two new members of the PKDCC family, Pkdcc1 and Pkdcc2 from Xenopus laevis. Interestingly, our knockdown experiments revealed that these two proteins are both involved on blastopore and neural tube closure during gastrula and neurula stages, respectively. In vertebrates, tissue polarity and cell movement observed during gastrulation and neural tube closure are controlled by Wnt/Planar Cell Polarity (PCP) molecular pathway. Our results showed that Pkdcc1 and Pkdcc2 promote the recruitment of Dvl to the plasma membrane. But surprisingly, they revealed different roles in the induction of a luciferase reporter under the control of Atf2 promoter. While Pkdcc1 induces Atf2 expression, Pkdcc2 does not, and furthermore inhibits its normal induction by Wnt11 and Wnt5a. Altogether our data show, for the first time, that members of the PKDCC family are involved in the regulation of JNK dependent Wnt/PCP signaling pathway.
Collapse
Affiliation(s)
- Marta Vitorino
- Regenerative Medicine Program, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Faro, Portugal
- Center for Biomedical Research (CBMR), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Ana Cristina Silva
- Center for Biomedical Research (CBMR), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - José Manuel Inácio
- Regenerative Medicine Program, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Faro, Portugal
- Center for Biomedical Research (CBMR), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
- CEDOC, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - José Silva Ramalho
- CEDOC, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Michal Gur
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University, P.O. Box 12272, Jerusalem, 91120, Israel
| | - Abraham Fainsod
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University, P.O. Box 12272, Jerusalem, 91120, Israel
| | | | - José António Belo
- Regenerative Medicine Program, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Faro, Portugal
- Center for Biomedical Research (CBMR), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
- CEDOC, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
7
|
Martin AC, Goldstein B. Apical constriction: themes and variations on a cellular mechanism driving morphogenesis. Development 2014; 141:1987-98. [PMID: 24803648 DOI: 10.1242/dev.102228] [Citation(s) in RCA: 319] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Apical constriction is a cell shape change that promotes tissue remodeling in a variety of homeostatic and developmental contexts, including gastrulation in many organisms and neural tube formation in vertebrates. In recent years, progress has been made towards understanding how the distinct cell biological processes that together drive apical constriction are coordinated. These processes include the contraction of actin-myosin networks, which generates force, and the attachment of actin networks to cell-cell junctions, which allows forces to be transmitted between cells. Different cell types regulate contractility and adhesion in unique ways, resulting in apical constriction with varying dynamics and subcellular organizations, as well as a variety of resulting tissue shape changes. Understanding both the common themes and the variations in apical constriction mechanisms promises to provide insight into the mechanics that underlie tissue morphogenesis.
Collapse
Affiliation(s)
- Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | |
Collapse
|