1
|
Thomas CI, Ryan MA, Scholl B, Guerrero-Given D, Fitzpatrick D, Kamasawa N. Targeting Functionally Characterized Synaptic Architecture Using Inherent Fiducials and 3D Correlative Microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 27:156-169. [PMID: 33303051 DOI: 10.1017/s1431927620024757] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Brain circuits are highly interconnected three-dimensional structures fabricated from components ranging vastly in size; from cell bodies to individual synapses. While neuronal activity can be visualized with advanced light microscopy (LM) techniques, the resolution of electron microscopy (EM) is critical for identifying synaptic connections between neurons. Here, we combine these two techniques, affording the advantage of each and allowing for measurements to be made of the same neural features across imaging platforms. We established an EM-label-free workflow utilizing inherent structural features to correlate in vivo two-photon LM and volumetric scanning EM (SEM) in the ferret visual cortex. By optimizing the volume SEM sample preparation protocol, imaging with the OnPoint detector, and utilizing the focal charge compensation device during serial block-face imaging, we achieved sufficient resolution and signal-to-noise ratio to analyze synaptic ultrastructure for hundreds of synapses within sample volumes. Our novel workflow provides a reliable method for quantitatively characterizing synaptic ultrastructure in functionally imaged neurons, providing new insights into neuronal circuit organization.
Collapse
Affiliation(s)
- Connon I Thomas
- Electron Microscopy Core Facility, Imaging Center, Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL33458, USA
| | - Melissa A Ryan
- Electron Microscopy Core Facility, Imaging Center, Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL33458, USA
| | - Benjamin Scholl
- Functional Architecture and Development of Cerebral Cortex, Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL33458, USA
| | - Debbie Guerrero-Given
- Electron Microscopy Core Facility, Imaging Center, Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL33458, USA
| | - David Fitzpatrick
- Functional Architecture and Development of Cerebral Cortex, Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL33458, USA
| | - Naomi Kamasawa
- Electron Microscopy Core Facility, Imaging Center, Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL33458, USA
| |
Collapse
|
2
|
OUP accepted manuscript. Microscopy (Oxf) 2021; 71:i72-i80. [DOI: 10.1093/jmicro/dfab048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/18/2021] [Accepted: 01/24/2022] [Indexed: 11/14/2022] Open
|
3
|
Cruz-Lopez D, Ramos D, Castilloveitia G, Schikorski T. Quintuple labeling in the electron microscope with genetically encoded enhanced horseradish peroxidase. PLoS One 2018; 13:e0200693. [PMID: 30011315 PMCID: PMC6047818 DOI: 10.1371/journal.pone.0200693] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 07/02/2018] [Indexed: 11/25/2022] Open
Abstract
Genetic encoded multilabeling is essential for modern cell biology. In fluorescence microscopy this need has been satisfied by the development of numerous color-variants of the green fluorescent protein. In electron microscopy, however, true genetic encoded multilabeling is currently not possible. Here, we introduce combinatorial cell organelle type-specific labeling as a strategy for multilabeling. First, we created a reliable and high sensitive label by evolving the catalytic activity of horseradish peroxidase (HRP). We then built fusion proteins that targeted our new enhanced HRP (eHRP) to three cell organelles whose labeling pattern did not overlap with each other. The labeling of the endoplasmic reticulum, synaptic vesicles and the plasma membrane consequently allowed for triple labeling in the EM. The combinatorial expression of the three organelle-specific constructs increased the number of clearly distinguishable labels to seven. This strategy of multilabeling for EM closes a significant gap in our tool set and has a broad application range in cell biology.
Collapse
Affiliation(s)
- Didiana Cruz-Lopez
- Department of Neuroscience, Universidad Central del Caribe, Bayamon, Puerto Rico, United States of America
| | - Dianne Ramos
- Department of Neuroscience, Universidad Central del Caribe, Bayamon, Puerto Rico, United States of America
| | - Gloria Castilloveitia
- Department of Neuroscience, Universidad Central del Caribe, Bayamon, Puerto Rico, United States of America
| | - Thomas Schikorski
- Department of Neuroscience, Universidad Central del Caribe, Bayamon, Puerto Rico, United States of America
| |
Collapse
|