1
|
Park JS, Na HJ, Kim YJ. The anti-aging effect of vitamin D and vitamin D receptor in Drosophila midgut. Aging (Albany NY) 2024; 16:2005-2025. [PMID: 38329439 PMCID: PMC10911382 DOI: 10.18632/aging.205518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 01/04/2024] [Indexed: 02/09/2024]
Abstract
Adult stem cells are pivotal for maintaining tissue homeostasis, and their functional decline is linked to aging and its associated diseases, influenced by the niche cells' environment. Age- and cancer-related reduction of vitamin D and its receptor levels are well documented in human clinical studies. However, the mechanisms through which the vitamin D/vitamin D receptor pathway contributes to anti-aging and extends life expectancy are not well understood. In this study, we aimed to determine the protective role of the vitamin D/vitamin D receptor pathway in differentiated enterocytes (ECs) during intestinal stem cell (ISC) aging. By utilizing a well- established Drosophila midgut model for stem cell aging biology, we revealed that vitamin D receptor knockdown in ECs induced ISC proliferation, EC death, ISC aging, and enteroendocrine cell differentiation. Additionally, age- and oxidative stress-induced increases in ISC proliferation and centrosome amplification were reduced by vitamin D treatment. Our findings suggest a direct evidence of the anti-aging role of the vitamin D/vitamin D receptor pathway and provides insights into the molecular mechanisms underlying healthy aging in Drosophila.
Collapse
Affiliation(s)
- Joung-Sun Park
- Institute of Nanobio Convergence, Pusan National University, Busan 46241, Republic of Korea
- Department of Molecular Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Hyun-Jin Na
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Yung-Jin Kim
- Department of Molecular Biology, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
2
|
Eslahi M, Nematbakhsh N, Dastmalchi N, Teimourian S, Safaralizadeh R. Signaling Pathways in Drosophila gonadal Stem Cells. Curr Stem Cell Res Ther 2024; 19:154-165. [PMID: 36788694 DOI: 10.2174/1574888x18666230213144531] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/07/2022] [Accepted: 12/22/2022] [Indexed: 02/16/2023]
Abstract
The stem cells' ability to divide asymmetrically to produce differentiating and self-renewing daughter cells is crucial to maintain tissue homeostasis and development. Stem cell maintenance and differentiation rely on their regulatory microenvironment termed 'niches'. The mechanisms of the signal transduction pathways initiated from the niche, regulation of stem cell maintenance and differentiation were quite challenging to study. The knowledge gained from the study of Drosophila melanogaster testis and ovary helped develop our understanding of stem cell/niche interactions and signal pathways related to the regulatory mechanisms in maintaining homeostasis of adult tissue. In this review, we discuss the role of signaling pathways in Drosophila gonadal stem cell regeneration, competition, differentiation, dedifferentiation, proliferation, and fate determination. Furthermore, we present the current knowledge on how these signaling pathways are implicated in cancer, and how they contribute as potential candidates for effective cancer treatment.
Collapse
Affiliation(s)
- Maede Eslahi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Negin Nematbakhsh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Narges Dastmalchi
- Department of Biology, University College of Nabi Akram, Tabriz, Iran
| | - Shahram Teimourian
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
3
|
Galasso A, Xu DC, Hill C, Iakovleva D, Stefana MI, Baena‐Lopez LA. Non-apoptotic caspase activation ensures the homeostasis of ovarian somatic stem cells. EMBO Rep 2023; 24:e51716. [PMID: 37039000 PMCID: PMC10240206 DOI: 10.15252/embr.202051716] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/22/2023] [Accepted: 03/14/2023] [Indexed: 04/12/2023] Open
Abstract
Current evidence has associated caspase activation with the regulation of basic cellular functions without causing apoptosis. Malfunction of non-apoptotic caspase activities may contribute to specific neurological disorders, metabolic diseases, autoimmune conditions and cancers. However, our understanding of non-apoptotic caspase functions remains limited. Here, we show that non-apoptotic caspase activation prevents the intracellular accumulation of the Patched receptor in autophagosomes and the subsequent Patched-dependent induction of autophagy in Drosophila follicular stem cells. These events ultimately sustain Hedgehog signalling and the physiological properties of ovarian somatic stem cells and their progeny under moderate thermal stress. Importantly, our key findings are partially conserved in ovarian somatic cells of human origin. These observations attribute to caspases a pro-survival role under certain cellular conditions.
Collapse
Affiliation(s)
- Alessia Galasso
- Faculty of Medicine CentreImperial College London, South Kensington CampusLondonUK
| | - Derek Cui Xu
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Claire Hill
- School of Medicine, Dentistry and Biomedical SciencesQueen's University Belfast MedicineBelfastUK
| | - Daria Iakovleva
- Center for Regenerative MedicineUniversity of EdinburghEdinburghUK
| | | | | |
Collapse
|
4
|
Abstract
In this chapter, we highlight examples of the diverse array of developmental, cellular, and biochemical insights that can be gained by using Drosophila melanogaster oogenesis as a model tissue. We begin with an overview of ovary development and adult oogenesis. Then we summarize how the adult Drosophila ovary continues to advance our understanding of stem cells, cell cycle, cell migration, cytoplasmic streaming, nurse cell dumping, and cell death. We also review emerging areas of study, including the roles of lipid droplets, ribosomes, and nuclear actin in egg development. Finally, we conclude by discussing the growing conservation of processes and signaling pathways that regulate oogenesis and female reproduction from flies to humans.
Collapse
|
5
|
Kumar Ghosh S, Chatterjee T, Mitra S, Chakravarty A, Chakravarty S, Kumar Basak A. Benzaldehyde-induced developmental genotoxicity triggers both neural and non-neuronal cells including the cells of immunity in Drosophila melanogaster. Biol Futur 2022; 73:245-257. [DOI: 10.1007/s42977-022-00116-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 04/05/2022] [Indexed: 11/30/2022]
|
6
|
Martin ET, Sarkar K, McCarthy A, Rangan P. Oo-site: A dashboard to visualize gene expression during Drosophila oogenesis suggests meiotic entry is regulated post-transcriptionally. Biol Open 2022; 11:bio059286. [PMID: 35579517 PMCID: PMC9148541 DOI: 10.1242/bio.059286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/19/2022] [Indexed: 11/20/2022] Open
Abstract
Determining how stem cell differentiation is controlled has important implications for understanding the etiology of degenerative disease and designing regenerative therapies. In vivo analyses of stem cell model systems have revealed regulatory paradigms for stem cell self-renewal and differentiation. The germarium of the female Drosophila gonad, which houses both germline and somatic stem cells, is one such model system. Bulk mRNA sequencing (RNA-seq), single-cell RNA-seq (scRNA-seq), and bulk translation efficiency (polysome-seq) of mRNAs are available for stem cells and their differentiating progeny within the Drosophila germarium. However, visualizing those data is hampered by the lack of a tool to spatially map gene expression and translational data in the germarium. Here, we have developed Oo-site (https://www.ranganlab.com/Oo-site), a tool for visualizing bulk RNA-seq, scRNA-seq, and translational efficiency data during different stages of germline differentiation, which makes these data accessible to non-bioinformaticians. Using this tool, we recapitulated previously reported expression patterns of developmentally regulated genes and discovered that meiotic genes, such as those that regulate the synaptonemal complex, are regulated at the level of translation.
Collapse
Affiliation(s)
- Elliot T. Martin
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12202, USA
| | - Kahini Sarkar
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12202, USA
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Alicia McCarthy
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12202, USA
| | - Prashanth Rangan
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12202, USA
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
7
|
Hinnant TD, Merkle JA, Ables ET. Coordinating Proliferation, Polarity, and Cell Fate in the Drosophila Female Germline. Front Cell Dev Biol 2020; 8:19. [PMID: 32117961 PMCID: PMC7010594 DOI: 10.3389/fcell.2020.00019] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/10/2020] [Indexed: 01/05/2023] Open
Abstract
Gametes are highly specialized cell types produced by a complex differentiation process. Production of viable oocytes requires a series of precise and coordinated molecular events. Early in their development, germ cells are an interconnected group of mitotically dividing cells. Key regulatory events lead to the specification of mature oocytes and initiate a switch to the meiotic cell cycle program. Though the chromosomal events of meiosis have been extensively studied, it is unclear how other aspects of oocyte specification are temporally coordinated. The fruit fly, Drosophila melanogaster, has long been at the forefront as a model system for genetics and cell biology research. The adult Drosophila ovary continuously produces germ cells throughout the organism’s lifetime, and many of the cellular processes that occur to establish oocyte fate are conserved with mammalian gamete development. Here, we review recent discoveries from Drosophila that advance our understanding of how early germ cells balance mitotic exit with meiotic initiation. We discuss cell cycle control and establishment of cell polarity as major themes in oocyte specification. We also highlight a germline-specific organelle, the fusome, as integral to the coordination of cell division, cell polarity, and cell fate in ovarian germ cells. Finally, we discuss how the molecular controls of the cell cycle might be integrated with cell polarity and cell fate to maintain oocyte production.
Collapse
Affiliation(s)
- Taylor D Hinnant
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Julie A Merkle
- Department of Biology, University of Evansville, Evansville, IN, United States
| | - Elizabeth T Ables
- Department of Biology, East Carolina University, Greenville, NC, United States
| |
Collapse
|
8
|
Fadiga J, Nystul TG. The follicle epithelium in the Drosophila ovary is maintained by a small number of stem cells. eLife 2019; 8:e49050. [PMID: 31850843 PMCID: PMC6946398 DOI: 10.7554/elife.49050] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
The follicle stem cells (FSCs) in the Drosophila ovary are an important experimental model for the study of epithelial stem cell biology. Although decades of research support the conclusion that there are two FSCs per ovariole, a recent study used a novel clonal marking system to conclude that there are 15-16 FSCs per ovariole. We performed clonal analysis using both this novel clonal marking system and standard clonal marking systems, and identified several problems that may have contributed to the overestimate of FSC number. In addition, we developed new methods for accurately measuring clone size, and found that FSC clones produce, on average, half of the follicle cells in each ovariole. Our findings provide strong independent support for the conclusion that there are typically two active FSCs per ovariole, though they are consistent with up to four FSCs per germarium.
Collapse
Affiliation(s)
- Jocelyne Fadiga
- Department of AnatomyUniversity of California, San FranciscoSan FranciscoUnited States
- Department of OB/GYN-RS, Center for Reproductive SciencesUniversity of California, San FranciscoSan FranciscoUnited States
| | - Todd G Nystul
- Department of AnatomyUniversity of California, San FranciscoSan FranciscoUnited States
- Department of OB/GYN-RS, Center for Reproductive SciencesUniversity of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
9
|
Capel B. WOMEN IN REPRODUCTIVE SCIENCE: To be or not to be a testis. Reproduction 2019; 158:F101-F111. [PMID: 31265995 PMCID: PMC9945370 DOI: 10.1530/rep-19-0151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/25/2019] [Indexed: 11/08/2022]
Abstract
Work that established the testis as the driver of male development, and the Y chromosome as the bearer of the male-determining gene, established a working model, and set the stage for the molecular age of mammalian sex determination. The discovery and characterization of Sry/SRY at the top of the hierarchy in mammals launched the field in two major directions. The first was to identify the downstream transcription factors and other molecular players that drive the bifurcation of Sertoli and granulosa cell differentiation. The second major direction was to understand organogenesis of the early bipotential gonad, and how divergence of its two distinct morphogenetic pathways (testis and ovary) is regulated at the cellular level. This review will summarize the early discoveries soon after Sry was identified and focus on my study of the gonad as a model of organogenesis.
Collapse
Affiliation(s)
- Blanche Capel
- 1Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
10
|
Patel PH, Pénalva C, Kardorff M, Roca M, Pavlović B, Thiel A, Teleman AA, Edgar BA. Damage sensing by a Nox-Ask1-MKK3-p38 signaling pathway mediates regeneration in the adult Drosophila midgut. Nat Commun 2019; 10:4365. [PMID: 31554796 PMCID: PMC6761285 DOI: 10.1038/s41467-019-12336-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 08/28/2019] [Indexed: 12/17/2022] Open
Abstract
Epithelia are exposed to diverse types of stress and damage from pathogens and the environment, and respond by regenerating. Yet, the proximal mechanisms that sense epithelial damage remain poorly understood. Here we report that p38 signaling is activated in adult Drosophila midgut enterocytes in response to diverse stresses including pathogenic bacterial infection and chemical and mechanical insult. Two upstream kinases, Ask1 and Licorne (MKK3), are required for p38 activation following infection, oxidative stress, detergent exposure and wounding. Ask1-p38 signaling in enterocytes is required upon infection to promote full intestinal stem cell (ISC) activation and regeneration, partly through Upd3/Jak-Stat signaling. Furthermore, reactive oxygen species (ROS) produced by the NADPH oxidase Nox in enterocytes, are required for p38 activation in enterocytes following infection or wounding, and for ISC activation upon infection or detergent exposure. We propose that Nox-ROS-Ask1-MKK3-p38 signaling in enterocytes integrates multiple different stresses to induce regeneration.
Collapse
Affiliation(s)
- Parthive H Patel
- Elizabeth Blackwell Institute for Health Research, University of Bristol, Bristol, BS8 1UH, UK.
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK.
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA.
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
- Center for Molecular Biology, University of Heidelberg (ZMBH), 69120, Heidelberg, Germany.
| | - Clothilde Pénalva
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Michael Kardorff
- Center for Molecular Biology, University of Heidelberg (ZMBH), 69120, Heidelberg, Germany
| | - Marianne Roca
- Center for Molecular Biology, University of Heidelberg (ZMBH), 69120, Heidelberg, Germany
| | - Bojana Pavlović
- Center for Molecular Biology, University of Heidelberg (ZMBH), 69120, Heidelberg, Germany
| | - Anja Thiel
- Center for Molecular Biology, University of Heidelberg (ZMBH), 69120, Heidelberg, Germany
| | | | - Bruce A Edgar
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
11
|
Basak AK, Chatterjee T, Chakravarty A, Ghosh SK. Silver nanoparticle-induced developmental inhibition of Drosophila melanogaster accompanies disruption of genetic material of larval neural stem cells and non-neuronal cells. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:497. [PMID: 31312907 DOI: 10.1007/s10661-019-7630-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/02/2019] [Indexed: 06/10/2023]
Abstract
A few studies had determined the effects of silver nanoparticles on the development of Drosophila melanogaster. However, none had addressed its genotoxic effects on specific larval cells of the fly in details. This study was conducted to determine the effects of silver nanoparticle on the development of D. melanogaster with simultaneous evaluation of its genotoxic potential on specific larval cell types that play important roles in immunological defenses as well as growth and development. Five male and five female flies were maintained in standard Drosophila melanogaster culture medium containing varying concentrations of silver nanoparticles, i.e., 25, 50, 100, 200, and 300 mg/l with control culture medium containing no nanoparticle. Total time needed for stage-specific development, population yield, and genotoxic effects on third instar larval polytene chromosomes, hemocytes, and neuroblasts was determined. Body pigmentation of pupae and young adults was examined visually. In comparison with control, silver nanoparticles dose dependently inhibited the metamororphosis and population yields of pupae and young adults of Drosophila melanogaster. Every concentration of the nanoparticles inhibited pupa to adult conversion, with huge reduction under the influence of nanoparticle concentration of 100 mg/ml and above. Developmental inhibition was accompanied by dose-dependent and significant structural aberrations of larval polytene chromosomes and deformities of hemocytes and neuroblasts. Pupae and young adults also exhibited gradual discoloration of body with the increase in exposure to nanoparticle concentration.
Collapse
Affiliation(s)
- Ashim Kumar Basak
- Department of Molecular Biology, Institute of Genetic Engineering, 30, Thakurhat Road, Kolkata, West Bengal, 700128, India
| | - Tridip Chatterjee
- Department of Molecular Biology, Institute of Genetic Engineering, 30, Thakurhat Road, Kolkata, West Bengal, 700128, India
| | - Amit Chakravarty
- Institute of Genetic Engineering; Institute of Genetic Medicine and Genomic Sciences, 30, Thakurhat Road, Kolkata, West Bengal, 700128, India
| | - Swapan Kumar Ghosh
- Molecular Mycopathology Lab, Cancer Research Unit, PG Department of Botany, Ramakrishna Mission Vivekananda Centenary College (Autonomous), Rahara, Kolkata, 700118, India.
| |
Collapse
|
12
|
Kim-Yip RP, Nystul TG. Wingless promotes EGFR signaling in follicle stem cells to maintain self-renewal. Development 2018; 145:dev.168716. [PMID: 30389852 DOI: 10.1242/dev.168716] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/29/2018] [Indexed: 12/20/2022]
Abstract
Adult stem cell niche boundaries must be precisely maintained to facilitate the segregation of stem cell and daughter cell fates. However, the mechanisms that govern this process in epithelial tissues are not fully understood. In this study, we investigated the relationship between two signals, Wnt and EGFR, that are necessary for self-renewal of the epithelial follicle stem cells (FSCs) in the Drosophila ovary, but must be downregulated in cells that have exited the niche to allow for differentiation. We found that Wingless produced by inner germarial sheath (IGS) cells acts over a short distance to activate Wnt signaling in FSCs, and that movement across the FSC niche boundary is limited. In addition, we show that Wnt signaling functions genetically upstream of EGFR signaling by activating the expression of the EGFR ligand, Spitz, and that constitutive activation of EGFR partially rescues the self-renewal defect caused by loss of Wnt signaling. Collectively, our findings support a model in which the Wnt and EGFR pathways operate in a signaling hierarchy to promote FSC self-renewal.
Collapse
Affiliation(s)
- Rebecca P Kim-Yip
- Center for Reproductive Sciences, Departments of Anatomy and OB/GYN-RS, University of California, San Francisco, CA 94143-0452, USA
| | - Todd G Nystul
- Center for Reproductive Sciences, Departments of Anatomy and OB/GYN-RS, University of California, San Francisco, CA 94143-0452, USA
| |
Collapse
|
13
|
White KA, Grillo-Hill BK, Esquivel M, Peralta J, Bui VN, Chire I, Barber DL. β-Catenin is a pH sensor with decreased stability at higher intracellular pH. J Cell Biol 2018; 217:3965-3976. [PMID: 30315137 PMCID: PMC6219716 DOI: 10.1083/jcb.201712041] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 07/16/2018] [Accepted: 08/31/2018] [Indexed: 02/08/2023] Open
Abstract
White et al. find that intracellular pH regulates the stability of β-catenin, the Wnt signaling molecule that controls cell polarity, adhesion, and differentiation. A conserved histidine residue in β-catenin mediates pH-dependent binding to the E3 ligase β-TrCP for degradation, and a cancer-associated mutation that bypasses this pH-sensitive regulation induces ectopic tumors in the Drosophila eye. β-Catenin functions as an adherens junction protein for cell–cell adhesion and as a signaling protein. β-catenin function is dependent on its stability, which is regulated by protein–protein interactions that stabilize β-catenin or target it for proteasome-mediated degradation. In this study, we show that β-catenin stability is regulated by intracellular pH (pHi) dynamics, with decreased stability at higher pHi in both mammalian cells and Drosophila melanogaster. β-Catenin degradation requires phosphorylation of N-terminal residues for recognition by the E3 ligase β-TrCP. While β-catenin phosphorylation was pH independent, higher pHi induced increased β-TrCP binding and decreased β-catenin stability. An evolutionarily conserved histidine in β-catenin (found in the β-TrCP DSGIHS destruction motif) is required for pH-dependent binding to β-TrCP. Expressing a cancer-associated H36R–β-catenin mutant in the Drosophila eye was sufficient to induce Wnt signaling and produced pronounced tumors not seen with other oncogenic β-catenin alleles. We identify pHi dynamics as a previously unrecognized regulator of β-catenin stability, functioning in coincidence with phosphorylation.
Collapse
Affiliation(s)
- Katharine A White
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA
| | - Bree K Grillo-Hill
- Department of Biological Sciences, San Jose State University, San Jose, CA
| | - Mario Esquivel
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA
| | - Jobelle Peralta
- Department of Biological Sciences, San Jose State University, San Jose, CA
| | - Vivian N Bui
- Department of Biological Sciences, San Jose State University, San Jose, CA
| | - Ismahan Chire
- Department of Biological Sciences, San Jose State University, San Jose, CA
| | - Diane L Barber
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
14
|
Drosophila Glypicans Regulate Follicle Stem Cell Maintenance and Niche Competition. Genetics 2018; 209:537-549. [PMID: 29632032 DOI: 10.1534/genetics.118.300839] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/04/2018] [Indexed: 01/06/2023] Open
Abstract
Adult stem cells reside in specialized microenvironments called niches, which provide signals for stem cells to maintain their undifferentiated and self-renewing state. To maintain stem cell quality, several types of stem cells are known to be regularly replaced by progenitor cells through niche competition. However, the cellular and molecular bases for stem cell competition for niche occupancy are largely unknown. Here, we show that two Drosophila members of the glypican family of heparan sulfate proteoglycans (HSPGs), Dally and Dally-like (Dlp), differentially regulate follicle stem cell (FSC) maintenance and competitiveness for niche occupancy. Lineage analyses of glypican mutant FSC clones showed that dally is essential for normal FSC maintenance. In contrast, dlp is a hypercompetitive mutation: dlp mutant FSC progenitors often eventually occupy the entire epithelial sheet. RNA interference knockdown experiments showed that Dally and Dlp play both partially redundant and distinct roles in regulating Jak/Stat, Wg, and Hh signaling in FSCs. The Drosophila FSC system offers a powerful genetic model to study the mechanisms by which HSPGs exert specific functions in stem cell replacement and competition.
Collapse
|
15
|
Rossi L, Salvetti A. Planarian stem cell niche, the challenge for understanding tissue regeneration. Semin Cell Dev Biol 2018. [PMID: 29534938 DOI: 10.1016/j.semcdb.2018.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Stem cell fate depends on surrounding microenvironment, the so called niche. For this reason, understanding stem cell niche is one of the most challenging target in cell biology field and need to be unraveled with in vivo studies. Planarians offer this unique opportunity, as their stem cells, the neoblasts, are abundant, highly characterized and genetically modifiable by RNA interference in alive animals. However, despite impressive advances have been done in the understanding planarian stem cells and regeneration, only a few information is available in defining signals from differentiated tissues, which affect neoblast stemness and fate. Here, we review on molecular factors that have been found activated in differentiated tissues and directly or indirectly affect neoblast behavior, and we suggest future directions for unravelling this challenge in understanding planarian stem cells.
Collapse
Affiliation(s)
- Leonardo Rossi
- Departement of Clinical and Experimental Medicine, Unit of Experimental Biology and Genetics, University of Pisa, Via Volta 4 Pisa, Italy
| | - Alessandra Salvetti
- Departement of Clinical and Experimental Medicine, Unit of Experimental Biology and Genetics, University of Pisa, Via Volta 4 Pisa, Italy.
| |
Collapse
|
16
|
Park JS, Jeon HJ, Pyo JH, Kim YS, Yoo MA. Deficiency in DNA damage response of enterocytes accelerates intestinal stem cell aging in Drosophila. Aging (Albany NY) 2018; 10:322-338. [PMID: 29514136 PMCID: PMC5892683 DOI: 10.18632/aging.101390] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 02/23/2018] [Indexed: 09/29/2023]
Abstract
Stem cell dysfunction is closely linked to tissue and organismal aging and age-related diseases, and heavily influenced by the niche cells' environment. The DNA damage response (DDR) is a key pathway for tissue degeneration and organismal aging; however, the precise protective role of DDR in stem cell/niche aging is unclear. The Drosophila midgut is an excellent model to study the biology of stem cell/niche aging because of its easy genetic manipulation and its short lifespan. Here, we showed that deficiency of DDR in Drosophila enterocytes (ECs) accelerates intestinal stem cell (ISC) aging. We generated flies with knockdown of Mre11, Rad50, Nbs1, ATM, ATR, Chk1, and Chk2, which decrease the DDR system in ECs. EC-specific DDR depletion induced EC death, accelerated the aging of ISCs, as evidenced by ISC hyperproliferation, DNA damage accumulation, and increased centrosome amplification, and affected the adult fly's survival. Our data indicated a distinct effect of DDR depletion in stem or niche cells on tissue-resident stem cell proliferation. Our findings provide evidence of the essential role of DDR in protecting EC against ISC aging, thus providing a better understanding of the molecular mechanisms of stem cell/niche aging.
Collapse
Affiliation(s)
- Joung-Sun Park
- Department of Molecular Biology, Pusan National University, Busan 46241, Republic of Korea
- Equal contribution
| | - Ho-Jun Jeon
- Department of Molecular Biology, Pusan National University, Busan 46241, Republic of Korea
- Equal contribution
| | - Jung-Hoon Pyo
- Department of Molecular Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Young-Shin Kim
- Department of Molecular Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Mi-Ae Yoo
- Department of Molecular Biology, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
17
|
Basak AK, Chatterjee T, Ghosh SK, Chakravarty A. Impacts of dietary exposure to sodium or potassium salts of nitrate and nitrite on the development of Drosophila melanogaster. Interdiscip Toxicol 2017; 10:70-78. [PMID: 30123041 PMCID: PMC6096860 DOI: 10.1515/intox-2017-0012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 10/25/2017] [Indexed: 12/27/2022] Open
Abstract
The effects of four food additives, namely sodium nitrite (NaNO2), sodium nitrate (NaNO3), potassium nitrite (KNO2), and potassium nitrate (KNO3), on animal development were evaluated by using Drosophila melanogster, a model organism. Adult male and female flies were allowed to breed in culture medium, each containing one of 4 concentrations, i.e.10, 20, 30 or 40 mM of the above mentioned salts. The concentration of 40 mM, NaNO2 and KNO2 completely arrested the development of the flies. Of the different concentrations of the four salts tested, exposure of flies to 30 mM NaNO2 exhibited only significant delays in the initial appearances of third instar larvae, pupae and young adults, along with huge reduction in the number of pupae and young adults compared to controls. Rearrangements like inversions, deletion looping, regional shrinking, as well as highly enlarged puffing, etc. were also observed in the polytene chromosomes of the third instar larvae exposed to 30 mM NaNO2. Developmental outcomes of the flies exposed to varying concentrations of NaNO3 and KNO3 did not differ significantly from the controls. Owing to the extensive genetic homology between Drosophila and human and the successful uses of this fly as models in developmental and toxicological studies, we speculate that the experimental results exhibited by this organism in our study strongly advocate for abstaining from the dietary use of NaNO2 and KNO2 during human pregnancies to avoid possible negative developmental outcomes.
Collapse
Affiliation(s)
- Ashim Kumar Basak
- Dept. of Molecular Biology, Institute of Genetic Engineering, 30 Thakurhat Road, Kolkata-700128, West Bengal, India
| | - Tridip Chatterjee
- Dept. of Molecular Biology, Institute of Genetic Engineering, 30 Thakurhat Road, Kolkata-700128, West Bengal, India
- Dept. of Human Genetics, Institute of Genetic Medicine and Genomic Science, 30A Thakurhat Road, Kolkata-700128, West Bengal, India
| | - Swapan Kumar Ghosh
- Molecular Mycopathology Lab, Department of Botany, R K Mission VC College, Rahara, Kolkata 700118, India
| | - Amit Chakravarty
- Dept. of Molecular Biology, Institute of Genetic Engineering, 30 Thakurhat Road, Kolkata-700128, West Bengal, India
- Dept. of Human Genetics, Institute of Genetic Medicine and Genomic Science, 30A Thakurhat Road, Kolkata-700128, West Bengal, India
| |
Collapse
|
18
|
Tatapudy S, Benitez M, Nystul T. Methods for Imaging Intracellular pH of the Follicle Stem Cell Lineage in Live Drosophila Ovarian Tissue. J Vis Exp 2017. [PMID: 28994781 DOI: 10.3791/56316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Changes in intracellular pH (pHi) play important roles in the regulation of many cellular functions, including metabolism, proliferation, and differentiation. Typically, pHi dynamics are determined in cultured cells, which are amenable to measuring and experimentally manipulating pHi. However, the recent development of new tools and methodologies has made it possible to study pHi dynamics within intact, live tissue. For Drosophila research, one important development was the generation of a transgenic line carrying a pHi biosensor, mCherry::pHluorin. Here, we describe a protocol that we routinely use for imaging live Drosophila ovarioles to measure pHi in the epithelial follicle stem cell (FSC) lineage in mCherry::pHluorin transgenic wild type lines; however, the methods described here can be easily adapted for other tissues, including the wing discs and eye epithelium. We describe techniques for expressing mCherry::pHluorin in the FSC lineage, maintaining ovarian tissue during live imaging, and acquiring and analyzing images to obtain pHi values.
Collapse
Affiliation(s)
- Sumitra Tatapudy
- Departments of Anatomy and OB/GYN-RS, University of California, San Francisco
| | - Marimar Benitez
- Departments of Anatomy and OB/GYN-RS, University of California, San Francisco
| | - Todd Nystul
- Departments of Anatomy and OB/GYN-RS, University of California, San Francisco;
| |
Collapse
|
19
|
Cook MS, Cazin C, Amoyel M, Yamamoto S, Bach E, Nystul T. Neutral Competition for Drosophila Follicle and Cyst Stem Cell Niches Requires Vesicle Trafficking Genes. Genetics 2017; 206:1417-1428. [PMID: 28512187 PMCID: PMC5500140 DOI: 10.1534/genetics.117.201202] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/10/2017] [Indexed: 12/03/2022] Open
Abstract
The process of selecting for cellular fitness through competition plays a critical role in both development and disease. The germarium, a structure at the tip of the ovariole of a Drosophila ovary, contains two follicle stem cells (FSCs) that undergo neutral competition for the stem cell niche. Using the FSCs as a model, we performed a genetic screen through a collection of 126 mutants in essential genes on the X chromosome to identify candidates that increase or decrease competition for the FSC niche. We identified ∼55 and 6% of the mutations screened as putative FSC hypo- or hyper-competitors, respectively. We found that a large majority of mutations in vesicle trafficking genes (11 out of the 13 in the collection of mutants) are candidate hypo-competition alleles, and we confirmed the hypo-competition phenotype for four of these alleles. We also show that Sec16 and another COPII vesicle trafficking component, Sar1, are required for follicle cell differentiation. Lastly, we demonstrate that, although some components of vesicle trafficking are also required for neutral competition in the cyst stem cells of the testis, there are important tissue-specific differences. Our results demonstrate a critical role for vesicle trafficking in stem cell niche competition and differentiation, and we identify a number of putative candidates for further exploration.
Collapse
Affiliation(s)
- Matthew S Cook
- Center for Reproductive Sciences, University of California, San Francisco, California 94143-0452
- Department of Anatomy, University of California, San Francisco, California 94143-0452
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, California 94143-0452
| | - Coralie Cazin
- The Helen and Martin Kimmel Center for Stem Cell Biology, New York University School of Medicine, New York 10016
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York 10016
| | - Marc Amoyel
- The Helen and Martin Kimmel Center for Stem Cell Biology, New York University School of Medicine, New York 10016
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York 10016
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, United Kingdom
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030
| | - Erika Bach
- The Helen and Martin Kimmel Center for Stem Cell Biology, New York University School of Medicine, New York 10016
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York 10016
| | - Todd Nystul
- Center for Reproductive Sciences, University of California, San Francisco, California 94143-0452
- Department of Anatomy, University of California, San Francisco, California 94143-0452
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, California 94143-0452
| |
Collapse
|
20
|
Teuscher M, Ströhlein N, Birkenbach M, Schultheis D, Schoppmeier M. TC003132 is essential for the follicle stem cell lineage in telotrophic Tribolium oogenesis. Front Zool 2017; 14:26. [PMID: 28533810 PMCID: PMC5438533 DOI: 10.1186/s12983-017-0212-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/11/2017] [Indexed: 12/31/2022] Open
Abstract
Background Stem cells are undifferentiated cells with a potential for self-renewal, which are essential to support normal development and homeostasis. To gain insight into the molecular mechanisms underlying adult stem cell biology and organ evolution, we use the telotrophic ovary of the beetle Tribolium. To this end, we participated in a large-scale RNAi screen in the red flour beetle Tribolium, which identified functions in embryonic and postembryonic development for more than half of the Tribolium genes. Results We identified TC003132 as candidate gene for the follicle stem cell linage in telotrophic Tribolium oogenesis. TC003132 belongs to the Casein Kinase 2 substrate family (CK2S), which in humans is associated with the proliferative activity of different cancers. Upon TC003132 RNAi, central pre-follicular cells are lost, which results in termination of oogenesis. Given that also Notch-signalling is required to promote the mitotic activity of central pre-follicular cells, we performed epistasis experiments with Notch and cut. In addition, we identified a putative follicle stem cell population by monitoring the mitotic pattern of wild type and TC003132 depleted follicle cells by EdU incorporations. In TC003132 RNAi these putative FSCs cease the expression of differentiation makers and are eventually lost. Conclusions TC003132 depleted pre-follicular cells neither react to mitosis or endocycle stimulating signals, suggesting that TC003132 provides competence for differentiation cues. This may resemble the situation in C. elegans were CK2 is required to maintain the balance between proliferation and differentiation in the germ line. Since the earliest effect of TC003132 RNAi is characterized by the loss of putative FSCs, we posit that TC003132 crucially contributes to the proliferation or maintenance of follicle stem cells in the telotrophic Tribolium ovary. Electronic supplementary material The online version of this article (doi:10.1186/s12983-017-0212-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matthias Teuscher
- Department Biology, Developmental Biology Unit, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstr. 5, 91058 Erlangen, Germany
| | - Nadi Ströhlein
- Department Biology, Developmental Biology Unit, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstr. 5, 91058 Erlangen, Germany
| | - Markus Birkenbach
- Department Biology, Developmental Biology Unit, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstr. 5, 91058 Erlangen, Germany
| | - Dorothea Schultheis
- Present address: Institute of Neuropathology, University Hospital Erlangen, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Michael Schoppmeier
- Department Biology, Developmental Biology Unit, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstr. 5, 91058 Erlangen, Germany
| |
Collapse
|
21
|
Liu H, Liu Q, Zhou X, Huang Y, Zhang Z. Genome Editing of Wnt-1, a Gene Associated with Segmentation, via CRISPR/Cas9 in the Pine Caterpillar Moth, Dendrolimus punctatus. Front Physiol 2017; 7:666. [PMID: 28111552 PMCID: PMC5216022 DOI: 10.3389/fphys.2016.00666] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 12/19/2016] [Indexed: 01/11/2023] Open
Abstract
The pine caterpillar moth, Dendrolimus punctatus, is a devastating forest pest. Genetic manipulation of this insect pest is limited due to the lack of genomic and functional genomic toolsets. Recently, CRISPR/Cas9 technology has been demonstrated to be a promising approach to modify the genome. To investigate gene functions during the embryogenesis, we introduced CRISPR/Cas9 system in D. punctatus to precisely and effectively manipulate gene expressions inmutant embryos. Compared to controls, knocking out of DpWnt-1, a gene well known for its role in the early body planning, led to high embryonic mortality. Among these mutants, 32.9% of the embryos and larvae showed an abnormal development. DpWnt-1 mutants predominantly exhibited abnormal posterior segments. In addition, multiple phenotypes were observed, including the loss of limbs and the head deformation, suggesting that DpWnt-1 signaling pathway is necessary for anterior segmentation and appendage development. Overall, our results demonstrate that CRISPR/Cas9 system is feasible and efficient in inducing mutations at a specific locus in D. punctatus. This study not only lays the foundation for characterizing gene functions in a non-model species, but also facilitates the future development of pest control alternatives for a major defoliator.
Collapse
Affiliation(s)
- Huihui Liu
- Key Laboratory of Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, State Forestry Administration Beijing, China
| | - Qun Liu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky Lexington, KY, USA
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | - Zhen Zhang
- Key Laboratory of Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, State Forestry Administration Beijing, China
| |
Collapse
|
22
|
Blake AJ, Finger DS, Hardy VL, Ables ET. RNAi-Based Techniques for the Analysis of Gene Function in Drosophila Germline Stem Cells. Methods Mol Biol 2017; 1622:161-184. [PMID: 28674809 DOI: 10.1007/978-1-4939-7108-4_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Elucidating the full repertoire of molecular mechanisms that promote stem cell maintenance requires sophisticated techniques for identifying and characterizing gene function in stem cells in their native environment. Ovarian germline stem cells in the fruit fly, Drosophila melanogaster, are an ideal model to study the complex molecular mechanisms driving stem cell function in vivo. A variety of new genetic tools make RNAi a useful complement to traditional genetic mutants for the investigation of the molecular mechanisms guiding ovarian germline stem cell function. Here, we provide a detailed guide for using targeted RNAi knockdown for the discovery of gene function in ovarian germline stem cells and their progeny.
Collapse
Affiliation(s)
- Amelia J Blake
- East Carolina University, 1001 E. 10th Street, Mailstop 551, Greenville, NC, 27858, USA
| | - Danielle S Finger
- East Carolina University, 1001 E. 10th Street, Mailstop 551, Greenville, NC, 27858, USA
| | - Victoria L Hardy
- East Carolina University, 1001 E. 10th Street, Mailstop 551, Greenville, NC, 27858, USA
| | - Elizabeth T Ables
- East Carolina University, 1001 E. 10th Street, Mailstop 551, Greenville, NC, 27858, USA.
| |
Collapse
|
23
|
Riechmann V. In vivo RNAi in the Drosophila Follicular Epithelium: Analysis of Stem Cell Maintenance, Proliferation, and Differentiation. Methods Mol Biol 2017; 1622:185-206. [PMID: 28674810 DOI: 10.1007/978-1-4939-7108-4_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In vivo RNAi in Drosophila facilitates simple and rapid analysis of gene functions in a cell- or tissue-specific manner. The versatility of the UAS-GAL4 system allows to control exactly where and when during development the function of a gene is depleted. The epithelium of the ovary is a particularly good model to study in a living animal how stem cells are maintained and how their descendants proliferate and differentiate. Here I provide basic information about the publicly available reagents for in vivo RNAi, and I describe how the oogenesis system can be applied to analyze stem cells and epithelial development at a histological level. Moreover, I give helpful hints to optimize the use of the UAS-GAL4 system for RNAi induction in the follicular epithelium. Finally, I provide detailed step-by-step protocols for ovary dissection, antibody stainings, and ovary mounting for microscopic analysis.
Collapse
Affiliation(s)
- Veit Riechmann
- Medical Faculty Mannheim, Department of Cell and Molecular Biology, Heidelberg University, Ludolf-Krehl-Strasse 13-17, D-68167, Mannheim, Germany.
| |
Collapse
|
24
|
Parker D, Moran A, Mitra K. Studying Mitochondrial Structure and Function in Drosophila Ovaries. JOURNAL OF VISUALIZED EXPERIMENTS : JOVE 2016:54989. [PMID: 28117804 PMCID: PMC6622407 DOI: 10.3791/54989] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Analysis of the mitochondrial structure-function relationship is required for a thorough understanding of the regulatory mechanisms of mitochondrial functionality. Fluorescence microscopy is an indispensable tool for the direct assessment of mitochondrial structure and function in live cells and for studying the mitochondrial structure-function relationship, which is primarily modulated by the molecules governing fission and fusion events between mitochondria. This paper describes and demonstrates specific methods for studying mitochondrial structure and function in live as well as in fixed tissue in the model organism Drosophila melanogaster. The tissue of choice here is the Drosophila ovary, which can be isolated and made amenable for ex vivo live confocal microscopy. Furthermore, the paper describes how to genetically manipulate the mitochondrial fission protein, Drp1, in Drosophila ovaries to study the involvement of Drp1-driven mitochondrial fission in modulating the mitochondrial structure-function relationship. The broad use of such methods is demonstrated in already-published as well as in novel data. The described methods can be further extended towards understanding the direct impact of nutrients and/or growth factors on the mitochondrial properties ex vivo. Given that mitochondrial dysregulation underlies the etiology of various diseases, the described innovative methods developed in a genetically tractable model organism, Drosophila, are anticipated to contribute significantly to the understanding of the mechanistic details of the mitochondrial structure-function relationship and to the development of mitochondria-directed therapeutic strategies.
Collapse
Affiliation(s)
- Danitra Parker
- Department of Genetics, School of Medicine, University of Alabama at
Birmingham
| | - Aida Moran
- Department of Genetics, School of Medicine, University of Alabama at
Birmingham
| | - Kasturi Mitra
- Department of Genetics, School of Medicine, University of Alabama at
Birmingham
| |
Collapse
|
25
|
Johnston MJ, Bar-Cohen S, Paroush Z, Nystul TG. Phosphorylated Groucho delays differentiation in the follicle stem cell lineage by providing a molecular memory of EGFR signaling in the niche. Development 2016; 143:4631-4642. [PMID: 27836963 PMCID: PMC5201033 DOI: 10.1242/dev.143263] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/31/2016] [Indexed: 01/03/2023]
Abstract
In the epithelial follicle stem cells (FSCs) of the Drosophila ovary, Epidermal Growth Factor Receptor (EGFR) signaling promotes self-renewal, whereas Notch signaling promotes differentiation of the prefollicle cell (pFC) daughters. We have identified two proteins, Six4 and Groucho (Gro), that link the activity of these two pathways to regulate the earliest cell fate decision in the FSC lineage. Our data indicate that Six4 and Gro promote differentiation towards the polar cell fate by promoting Notch pathway activity. This activity of Gro is antagonized by EGFR signaling, which inhibits Gro-dependent repression via p-ERK mediated phosphorylation. We have found that the phosphorylated form of Gro persists in newly formed pFCs, which may delay differentiation and provide these cells with a temporary memory of the EGFR signal. Collectively, these findings demonstrate that phosphorylated Gro labels a transition state in the FSC lineage and describe the interplay between Notch and EGFR signaling that governs the differentiation processes during this period.
Collapse
Affiliation(s)
- Michael J Johnston
- The University of California, San Francisco, Departments of Anatomy and OB-GYN/RS, CA 94122, USA
| | - Shaked Bar-Cohen
- The Hebrew University, Department of Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, Jerusalem 9112102, Israel
| | - Ze'ev Paroush
- The Hebrew University, Department of Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, Jerusalem 9112102, Israel
| | - Todd G Nystul
- The University of California, San Francisco, Departments of Anatomy and OB-GYN/RS, CA 94122, USA
| |
Collapse
|
26
|
Mario LC, Borghesi J, Crivellari-Damasceno WT, Favaron PO, Carreira ACO, Will SEAL, Maria DA, Miglino MA. Egg and fourth instar larvae gut of Aedes aegypti as a source of stem cells. Tissue Cell 2016; 48:558-65. [PMID: 27401144 DOI: 10.1016/j.tice.2016.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/20/2016] [Accepted: 05/14/2016] [Indexed: 11/17/2022]
Abstract
According to the World Health Organization, 2015 registered more than 1.206.172 cases of Dengue in the Americas. Recently, the Aedes aegypti has been not only related to Dengue, but also with cases of Zika virus and Chikungunya. Due to its epidemiological importance, this study characterized the morphology of the embryonated eggs of A. aegypti and provided a protocol to culture stem cells from eggs and digestive tract of fourth instar larvae in order to examine cell biology and expression of markers in these vectors. Cells were isolated and cultured in DMEM-High at 28°C, and their morphology, cell cycle and immunophenotyping were examined. Morphologically, embryos were at the end of the embryonic period and showed: head, thorax, and abdomen with eight abdominal segments. The embryonic tissues expressed markers related to cell proliferation (PCNA), pluripotency (Sox2 and OCT3/4), neural cells (Nestin), mesenchymal cells (Vimentin and Stro-1), and endosomal cells (GM130 and RAB5). In culture, cells from both tissues (eggs and larvae gut) were composed by a heterogeneous population. The cells had a globoid shape and small size. Cell cycle analysis on passage 1 (P1) showed 27.5%±2.0% of cell debris, 68% of cells on G0-G1 phase, 30.2% on S phase, 1.9%±0.5% on G2-M phase. In addition, cells on passage 2 showed: 10% of cell debris, 92.4% of cells on G0-G1 phase, 6.8% on S phase, 0.6% on G2-M phase. Embryonated eggs expressed markers involved with pluripotency (Sox2 and Oct 3/4), mesenchymal cells (vimentin and Stro-1), neural cells (Nestin), and cellular death by apoptosis (Caspase 3). Specific endosomal markers for insect cells (GM130 and RAB5) were also highly expressed. In cell culture of A. aegypti larvae gut the same labeling pattern was observed, with a small decrease in the expression of mesenchymal (vimentin and Stro-1) and neural (Nestin) markers. In summary, we were able to establish a protocol to culture embryonated eggs and larvae gut of A. aegypti, describing the characteristics of undifferentiated cells, as well as the cell cycle and expression of markers, which can be used for biotechnology studies for the biological control of this vector.
Collapse
Affiliation(s)
- Lara C Mario
- Departament of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, SP, Brazil.
| | - Jéssica Borghesi
- Departament of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Wilson T Crivellari-Damasceno
- Departament of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, SP, Brazil; Laboratory of Biochemistry and Biophysics, Butantan Institute, Sao Paulo, SP, Brazil
| | - Phelipe O Favaron
- Departament of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Ana Claudia O Carreira
- Center for Molecular and Cellular Therapy (NUCEL) and Center for Cellular and Molecular Therapy (NETCEM), School of Medicine, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Sonia E A L Will
- Laboratory of Biochemistry and Biophysics, Butantan Institute, Sao Paulo, SP, Brazil
| | - Durvanei A Maria
- Departament of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, SP, Brazil; Laboratory of Biochemistry and Biophysics, Butantan Institute, Sao Paulo, SP, Brazil
| | - Maria A Miglino
- Departament of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
27
|
Tseng CY, Kao SH, Hsu HJ. Snail controls proliferation of Drosophila ovarian epithelial follicle stem cells, independently of E-cadherin. Dev Biol 2016; 414:142-8. [DOI: 10.1016/j.ydbio.2016.04.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 04/28/2016] [Accepted: 04/28/2016] [Indexed: 01/11/2023]
|
28
|
Ma Q, de Cuevas M, Matunis EL. Chinmo is sufficient to induce male fate in somatic cells of the adult Drosophila ovary. Development 2016; 143:754-63. [PMID: 26811385 DOI: 10.1242/dev.129627] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 01/16/2016] [Indexed: 01/08/2023]
Abstract
Sexual identity is continuously maintained in specific differentiated cell types long after sex determination occurs during development. In the adult Drosophila testis, the putative transcription factor Chronologically inappropriate morphogenesis (Chinmo) acts with the canonical male sex determinant DoublesexM (Dsx(M)) to maintain the male identity of somatic cyst stem cells and their progeny. Here we find that ectopic expression of chinmo is sufficient to induce a male identity in adult ovarian somatic cells, but it acts through a Dsx(M)-independent mechanism. Conversely, the feminization of the testis somatic stem cell lineage caused by loss of chinmo is enhanced by expression of the canonical female sex determinant Dsx(F), indicating that chinmo acts in parallel with the canonical sex determination pathway to maintain the male identity of testis somatic cells. Consistent with this finding, ectopic expression of female sex determinants in the adult testis disrupts tissue morphology. The miRNA let-7 downregulates chinmo in many contexts, and ectopic expression of let-7 in the adult testis is sufficient to recapitulate the chinmo loss-of-function phenotype, but we find no apparent phenotypes upon removal of let-7 in the adult ovary or testis. Our finding that chinmo is necessary and sufficient to promote a male identity in adult gonadal somatic cells suggests that the sexual identity of somatic cells can be reprogrammed in the adult Drosophila ovary as well as in the testis.
Collapse
Affiliation(s)
- Qing Ma
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Margaret de Cuevas
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Erika L Matunis
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| |
Collapse
|
29
|
Abstract
Stem cells are necessary for the maintenance of many adult tissues. Signals within the stem cell microenvironment, or niche, regulate the self-renewal and differentiation capability of these cells. Misregulation of these signals through mutation or damage can lead to overgrowth or depletion of different stem cell pools. In this review, we focus on the Drosophila testis and ovary, both of which contain well-defined niches, as well as the mouse testis, which has become a more approachable stem cell system with recent technical advances. We discuss the signals that regulate gonadal stem cells in their niches, how these signals mediate self-renewal and differentiation under homeostatic conditions, and how stress, whether from mutations or damage, can cause changes in cell fate and drive stem cell competition.
Collapse
Affiliation(s)
- Leah Joy Greenspan
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; , ,
| | - Margaret de Cuevas
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; , ,
| | - Erika Matunis
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; , ,
| |
Collapse
|
30
|
Silva D, Jemc JC. Sorting Out Identities: An Educational Primer for Use with "Novel Tools for Genetic Manipulation of Follicle Stem Cells in the Drosophila Ovary Reveal an Integrin-Dependent Transition from Quiescence to Proliferation". Genetics 2015; 201:13-22. [PMID: 26354974 PMCID: PMC4566258 DOI: 10.1534/genetics.115.179911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Organisms are made up of thousands of different cell types that must migrate, proliferate, and interact with each other to yield functional organ systems and ultimately a viable organism. A characteristic that distinguishes one cell type from another is the set of genes that it expresses. An article by Hartman et al. in the April 2015 issue of GENETICS identified methods to uniquely identify different cell populations during oogenesis, providing valuable tools for future studies. This Primer article provides background information on the Drosophila ovary as a system in which to study stem cell regulation, mechanisms for regulating gene expression, and the techniques used by Hartman et al. to identify specific cell populations and study their function.
Collapse
Affiliation(s)
- Diane Silva
- Department of Biology, Loyola University Chicago, Chicago, Illinois 60660
| | - Jennifer C Jemc
- Department of Biology, Loyola University Chicago, Chicago, Illinois 60660
| |
Collapse
|
31
|
Vlachos S, Jangam S, Conder R, Chou M, Nystul T, Harden N. A Pak-regulated cell intercalation event leading to a novel radial cell polarity is involved in positioning of the follicle stem cell niche in the Drosophila ovary. Development 2015; 142:82-91. [PMID: 25516970 DOI: 10.1242/dev.111039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the germarium of the Drosophila ovary, germline cysts are encapsulated one at a time by a follicular epithelium derived from two follicle stem cells (FSCs). Ovaries in flies mutant for the serine/threonine kinase Pak exhibit a novel phenotype, in which two side-by-side cysts are encapsulated at a time, generating paired egg chambers. This striking phenotype originates in the pupal ovary, where the developing germarium is shaped by the basal stalk, a stack of cells formed by cell intercalation. The process of basal stalk formation is not well understood, and we provide evidence that the cell intercalation is driven by actomyosin contractility of DE-Cadherin-adhered cells, leading to a column of disk-shaped cells exhibiting a novel radial cell polarity. Cell intercalation fails in Pak mutant ovaries, leading to abnormally wide basal stalks and consequently wide germaria with side-by-side cysts. We present evidence that Pak mutant germaria have extra FSCs, and we propose that contact of a germline cyst with the basal stalk in the pupal ovary contributes to FSC niche formation. The wide basal stalk in Pak mutants enables the formation of extra FSC niches which are mispositioned and yet functional, indicating that the FSC niche can be established in diverse locations.
Collapse
Affiliation(s)
- Stephanie Vlachos
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Sharayu Jangam
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Ryan Conder
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Michael Chou
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Todd Nystul
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6 Departments of Anatomy and OB/GYN-RS, University of California, San Francisco, CA 94143, USA
| | - Nicholas Harden
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| |
Collapse
|
32
|
Laws KM, Drummond-Barbosa D. Genetic Mosaic Analysis of Stem Cell Lineages in the Drosophila Ovary. Methods Mol Biol 2015; 1328:57-72. [PMID: 26324429 DOI: 10.1007/978-1-4939-2851-4_4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Genetic mosaic analyses represent an invaluable approach for the study of stem cell lineages in the Drosophila ovary. The generation of readily identifiable, homozygous mutant cells in the context of wild-type ovarian tissues within intact organisms allows the pinpointing of cellular requirements for gene function, which is particularly important for understanding the physiological control of stem cells and their progeny. Here, we provide a step-by-step guide to the generation and analysis of genetically mosaic ovaries using flippase (FLP)/FLP recognition target (FRT)-mediated recombination in adult Drosophila melanogaster, with a focus on the processes of oogenesis that are controlled by diet-dependent factors.
Collapse
Affiliation(s)
- Kaitlin M Laws
- Division of Reproductive Biology, Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205, USA
| | | |
Collapse
|
33
|
Abstract
The Drosophila melanogaster genetic tool box includes many stocks for generating genetically mosaic tissue in which a clone of cells, related by lineage, contain a common genetic alteration. These tools have made it possible to study the postembryonic function of essential genes and to better understand how individual cells interact within intact tissues. We have screened through 201 enhancer-trap flippase lines to identify lines that produce useful clone patterns in the adult ovary. We found that approximately 70% of the lines produced clones that were present in the adult ovary and that many ovarian cell types were represented among the different clone patterns produced by these lines. We have also identified and further characterized five particularly useful enhancer-trap flippase lines. These lines make it possible to generate clones specifically in germ cells, escort cells, prefollicle cells, or terminal filament cells. In addition, we have found that chickadee is specifically upregulated in the posterior escort cells, follicle stem cells, and prefollicle cells that comprise the follicle stem cell niche region. Collectively, these studies provide several new tools for genetic mosaic analysis in the Drosophila ovary.
Collapse
|
34
|
Kronen MR, Schoenfelder KP, Klein AM, Nystul TG. Basolateral junction proteins regulate competition for the follicle stem cell niche in the Drosophila ovary. PLoS One 2014; 9:e101085. [PMID: 24991805 PMCID: PMC4084627 DOI: 10.1371/journal.pone.0101085] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 06/02/2014] [Indexed: 11/26/2022] Open
Abstract
Epithelial stem cells are routinely lost or damaged during adult life and must therefore be replaced to maintain homeostasis. Recent studies indicate that stem cell replacement occurs through neutral competition in many types of epithelial tissues, but little is known about the factors that determine competitive outcome. The epithelial follicle stem cells (FSCs) in the Drosophila ovary are regularly lost and replaced during normal homeostasis, and we show that FSC replacement conforms to a model of neutral competition. In addition, we found that FSCs mutant for the basolateral junction genes, lethal giant larvae (lgl) or discs large (dlg), undergo a biased competition for niche occupancy characterized by increased invasion of neighboring FSCs and reduced loss. Interestingly, FSCs mutant for a third basolateral junction gene, scribble (scrib), do not exhibit biased competition, suggesting that Lgl and Dlg regulate niche competition through a Scrib-independent process. Lastly, we found that FSCs have a unique cell polarity characterized by broadly distributed adherens junctions and the lack of a mature apical domain. Collectively, these observations indicate that Lgl and Dlg promote the differentiation of FSC progeny to a state in which they are less prone to invade the neighboring niche. In addition, we demonstrate that the neutral drift model can be adapted to quantify non-neutral behavior of mutant clones.
Collapse
Affiliation(s)
- Maria R. Kronen
- University of California, San Francisco, Center for Reproductive Sciences, Departments of Anatomy and OB/GYN-RS, San Francisco, California, United States of America
| | - Kevin P. Schoenfelder
- University of California, San Francisco, Center for Reproductive Sciences, Departments of Anatomy and OB/GYN-RS, San Francisco, California, United States of America
| | - Allon M. Klein
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (TGN); (AMK)
| | - Todd G. Nystul
- University of California, San Francisco, Center for Reproductive Sciences, Departments of Anatomy and OB/GYN-RS, San Francisco, California, United States of America
- * E-mail: (TGN); (AMK)
| |
Collapse
|
35
|
Tipping M, Perrimon N. Drosophila as a model for context-dependent tumorigenesis. J Cell Physiol 2013; 229:27-33. [PMID: 23836429 DOI: 10.1002/jcp.24427] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 06/21/2013] [Indexed: 01/06/2023]
Abstract
Drosophila can exhibit classic hallmarks of cancer, such as evasion of apoptosis, sustained proliferation, metastasis, prolonged survival, genome instability, and metabolic reprogramming, when cancer-related genes are perturbed. In the last two decades, studies in flies have identified several tumor suppressor and oncogenes. However, the greatest strength of the fly lies in its ability to model cancer hallmarks in a variety of tissue types, which enables the study of context-dependent tumorigenesis. We review the organs and tissues that have been used to model tumor formation, and propose new strategies to maximize the potential of Drosophila in cancer research.
Collapse
Affiliation(s)
- Marla Tipping
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
36
|
Sahai-Hernandez P, Nystul TG. A dynamic population of stromal cells contributes to the follicle stem cell niche in the Drosophila ovary. Development 2013; 140:4490-8. [PMID: 24131631 DOI: 10.1242/dev.098558] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Epithelial stem cells are maintained within niches that promote self-renewal by providing signals that specify the stem cell fate. In the Drosophila ovary, epithelial follicle stem cells (FSCs) reside in niches at the anterior tip of the tissue and support continuous growth of the ovarian follicle epithelium. Here, we demonstrate that a neighboring dynamic population of stromal cells, called escort cells, are FSC niche cells. We show that escort cells produce both Wingless and Hedgehog ligands for the FSC lineage, and that Wingless signaling is specific for the FSC niche whereas Hedgehog signaling is active in both FSCs and daughter cells. In addition, we show that multiple escort cells simultaneously encapsulate germ cell cysts and contact FSCs. Thus, FSCs are maintained in a dynamic niche by a non-dedicated population of niche cells.
Collapse
Affiliation(s)
- Pankaj Sahai-Hernandez
- Center for Reproductive Sciences, Departments of Anatomy and OB/GYN-RS, University of California, San Francisco, CA 94143-0452, USA
| | | |
Collapse
|
37
|
Stine RR, Matunis EL. Stem cell competition: finding balance in the niche. Trends Cell Biol 2013; 23:357-64. [PMID: 23597843 DOI: 10.1016/j.tcb.2013.03.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 02/28/2013] [Accepted: 03/01/2013] [Indexed: 01/11/2023]
Abstract
Adult stem cells reside in local microenvironments (niches) that produce signals regulating the outcome of stem cell divisions and stem cell-niche interactions. Limited space and signals in the niche often force stem cells to compete with one another. Although previous studies have uncovered several examples of genetically distinct stem cells competing for niche access, recent studies demonstrate that genetically equivalent stem cells compete under normal conditions, resulting in dynamic stem cell behavior in the niche. New work in multiple vertebrate and invertebrate tissues shows that stem cell competition occurs continuously and mutations disrupting the balance between competing stem cells can cause diseases and defects in the niche. This review discusses recent insights into stem cell competition in mammals and Drosophila.
Collapse
Affiliation(s)
- Rachel R Stine
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
38
|
Lin G, Zhang X, Ren J, Pang Z, Wang C, Xu N, Xi R. Integrin signaling is required for maintenance and proliferation of intestinal stem cells in Drosophila. Dev Biol 2013; 377:177-87. [PMID: 23410794 DOI: 10.1016/j.ydbio.2013.01.032] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 01/24/2013] [Accepted: 01/27/2013] [Indexed: 11/16/2022]
Abstract
Tissue-specific stem cells are maintained by both local secreted signals and cell adhesion molecules that position the stem cells in the niche microenvironment. In the Drosophila midgut, multipotent intestinal stem cells (ISCs) are located basally along a thin layer of basement membrane that composed of extracellular matrix (ECM), which separates ISCs from the surrounding visceral musculature: the muscle cells constitute a regulatory niche for ISCs by producing multiple secreted signals that directly regulate ISC maintenance and proliferation. Here we show that integrin-mediated cell adhesion, which connects the ECM and intracellular cytoskeleton, is required for ISC anchorage to the basement membrane. Specifically, the α-integrin subunits including αPS1 encoded by mew and αPS3 encoded by scb, and the β-integrin subunit encoded by mys are richly expressed in ISCs and are required for the maintenance, rather than their survival or multiple lineage differentiation. Furthermore, ISC maintenance also requires the intercellular and intracellular integrin signaling components including Talin, Integrin-linked kinase (Ilk), and the ligand, Laminin A. Notably, integrin mutant ISCs are also less proliferative, and genetic interaction studies suggest that proper integrin signaling is a pre-requisite for ISC proliferation in response to various proliferative signals and for the initiation of intestinal hyperplasia after loss of adenomatous polyposis coli (Apc). Our studies suggest that integrin not only functions to anchor ISCs to the basement membrane, but also serves as an essential element for ISC proliferation during normal homeostasis and in response to oncogenic mutations.
Collapse
Affiliation(s)
- Guonan Lin
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | | | | | | | | | | | | |
Collapse
|