1
|
Biney M, Gusiatin MZ. Biochar from Co-Pyrolyzed Municipal Sewage Sludge (MSS): Part 2: Biochar Characterization and Application in the Remediation of Heavy Metal-Contaminated Soils. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3850. [PMID: 39124513 PMCID: PMC11314058 DOI: 10.3390/ma17153850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
The disposal of municipal sewage sludge (MSS) from wastewater treatment plants poses a major environmental challenge due to the presence of inorganic and organic pollutants. Co-pyrolysis, in which MSS is thermally decomposed in combination with biomass feedstocks, has proven to be a promising method to immobilize inorganic pollutants, reduce the content of organic pollutants, reduce the toxicity of biochar and improve biochar's physical and chemical properties. This part of the review systematically examines the effects of various co-substrates on the physical and chemical properties of MSS biochar. This review also addresses the effects of the pyrolysis conditions (temperature and mixing ratio) on the content and stability of the emerging pollutants in biochar. Finally, this review summarizes the results of recent studies to provide an overview of the current status of the application of MSS biochar from pyrolysis and co-pyrolysis for the remediation of HM-contaminated soils. This includes consideration of the soil and heavy metal types, experimental conditions, and the efficiency of HM immobilization. This review provides a comprehensive analysis of the potential of MSS biochar for environmental sustainability and offers insights into future research directions for optimizing biochar applications in soil remediation.
Collapse
Affiliation(s)
| | - Mariusz Z. Gusiatin
- Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Sloneczna Str. 45G, 10-709 Olsztyn, Poland;
| |
Collapse
|
2
|
Schlederer F, Martín-Hernández E, Vaneeckhaute C. Micropollutants in biochar produced from sewage sludge: A systematic review on the impact of pyrolysis operating conditions. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 174:618-629. [PMID: 38154418 DOI: 10.1016/j.wasman.2023.12.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/10/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Abstract
Biochar obtained from sewage sludge serves as a valuable soil amendment in agriculture, enhancing soil properties by increasing the nutrient content, cation exchange capacity, water retention, and oxygen transmission. However, its utilisation is hampered by the presence of micropollutants such as polycyclic aromatic hydrocarbons (PAHs), polychlorinated dibenzodioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), polychlorinated biphenyls (PCBs), and volatile organic compounds (VOCs). Previous studies indicate that the type and amount of micropollutants can be significantly adjusted by selecting the right process parameters. This literature review provides an overview of how (1) pyrolysis temperature, (2) carrier gas flow and type, (3) heating rate, and (4) residence time affect the concentration of micropollutants in biochar produced from sewage sludge. The micropollutants targeted are those listed by the European Biochar Certificate (EBC) and by the International Biochar Institution (IBI), including PAHs, PCDD/Fs, PCBs and VOCs. In addition, per- and poly-fluoroalkyl substances (PFAS) are also considered due to their presence in sewage sludge. The findings suggest that higher pyrolysis temperatures reduce micropollutant levels. Moreover, the injection of a carrier gas (N2 or CO2) during the pyrolysis and cooling processes effectively lowers PAHs and PCDD/Fs, by reducing the contact of biochar with oxygen, which is crucial in mitigating micropollutants. Nevertheless, limited available data impedes an assessment of the impact of these parameters on PFAS in biochar. In addition, further research is essential to understand the effects of carrier gas type, heating rate, and residence time in order to determine the optimal pyrolysis process parameters for generating clean biochar.
Collapse
Affiliation(s)
- Felizitas Schlederer
- BioEngine Research Team on Green Process Engineering and Biorefineries, Department of Chemical Engineering, Université Laval, 1065 Avenue de la Médecine, Québec, QC G1V 0A6, Canada; CentrEau Water Research Center, 1065 Avenue de la Médecine, Québec, QC G1V 0A6, Canada
| | - Edgar Martín-Hernández
- BioEngine Research Team on Green Process Engineering and Biorefineries, Department of Chemical Engineering, Université Laval, 1065 Avenue de la Médecine, Québec, QC G1V 0A6, Canada; CentrEau Water Research Center, 1065 Avenue de la Médecine, Québec, QC G1V 0A6, Canada
| | - Céline Vaneeckhaute
- BioEngine Research Team on Green Process Engineering and Biorefineries, Department of Chemical Engineering, Université Laval, 1065 Avenue de la Médecine, Québec, QC G1V 0A6, Canada; CentrEau Water Research Center, 1065 Avenue de la Médecine, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
3
|
Sarvi M, Kainulainen A, Malk V, Kaseva J, Rasa K. Industrial pilot scale slow pyrolysis reduces the content of organic contaminants in sewage sludge. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 171:95-104. [PMID: 37651946 DOI: 10.1016/j.wasman.2023.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/06/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023]
Abstract
Pyrolysis has been gaining global interest as a viable option for reducing organic contaminant levels in waste materials such as sewage sludge (SS) for their subsequent use as a soil amendment. However, publicly available knowledge on the capacity of pyrolysis to reduce the levels in SSs is mostly based on laboratory or bench scale studies. The aim of this study was to examine the effects of industrial pilot scale slow pyrolysis at two temperatures and retention times (450 °C, 1 h and 500 °C, 1.5 h) on a wide range of organic and inorganic contaminants in SSs. Pyrolysis at 500 °C decreased the concentrations of the detected per- and polyfluoroalkyl substances (PFASs, by 30-93 %), brominated diphenyl ethers (BDEs; by 97-98 %) and most endocrine disrupting compounds (EDCs, by 82-96 %) more efficiently than pyrolysis at 450 °C. Estrone and pharmaceuticals, with the exception of paracetamol, were removed to below quantification limits. Non-volatile inorganic contaminants concentrated to the chars (22-46 % increase). These results confirm that slow pyrolysis has the capacity to significantly reduce organic contaminant levels in SSs at an industrial scale, while content of inorganic contaminants depends mainly on the feedstock properties. Pyrolysis temperature of over 500 °C is advised to secure efficient removal of organic contaminants. However, it is anticipated that reactor design with good heat transfer and volatile removal could further improve the removal of organic contaminants from SSs. The results are especially valuable for sludge management operators planning to procure a pyrolysis plant.
Collapse
Affiliation(s)
- Minna Sarvi
- Natural Resources Institute Finland (Luke), Tietotie 4, FI-31600 Jokioinen, Finland.
| | - Aino Kainulainen
- Helsinki Region Environmental Services Authority HSY, Ilmalantori 1, FI-00240, Helsinki, Finland
| | - Vuokko Malk
- South-Eastern Finland University of Applied Sciences (Xamk), Patteristonkatu 2, FI-50100 Mikkeli, Finland
| | - Janne Kaseva
- Natural Resources Institute Finland (Luke), Tietotie 4, FI-31600 Jokioinen, Finland
| | - Kimmo Rasa
- Natural Resources Institute Finland (Luke), Tietotie 4, FI-31600 Jokioinen, Finland
| |
Collapse
|
4
|
Pozzebon EA, Seifert L. Emerging environmental health risks associated with the land application of biosolids: a scoping review. Environ Health 2023; 22:57. [PMID: 37599358 PMCID: PMC10440945 DOI: 10.1186/s12940-023-01008-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 08/14/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Over 40% of the six million dry metric tons of sewage sludge, often referred to as biosolids, produced annually in the United States is land applied. Biosolids serve as a sink for emerging pollutants which can be toxic and persist in the environment, yet their fate after land application and their impacts on human health have not been well studied. These gaps in our understanding are exacerbated by the absence of systematic monitoring programs and defined standards for human health protection. METHODS The purpose of this paper is to call critical attention to the knowledge gaps that currently exist regarding emerging pollutants in biosolids and to underscore the need for evidence-based testing standards and regulatory frameworks for human health protection when biosolids are land applied. A scoping review methodology was used to identify research conducted within the last decade, current regulatory standards, and government publications regarding emerging pollutants in land applied biosolids. RESULTS Current research indicates that persistent organic compounds, or emerging pollutants, found in pharmaceuticals and personal care products, microplastics, and per- and polyfluoroalkyl substances (PFAS) have the potential to contaminate ground and surface water, and the uptake of these substances from soil amended by the land application of biosolids can result in contamination of food sources. Advanced technologies to remove these contaminants from wastewater treatment plant influent, effluent, and biosolids destined for land application along with tools to detect and quantify emerging pollutants are critical for human health protection. CONCLUSIONS To address these current risks, there needs to be a significant investment in ongoing research and infrastructure support for advancements in wastewater treatment; expanded manufacture and use of sustainable products; increased public communication of the risks associated with overuse of pharmaceuticals and plastics; and development and implementation of regulations that are protective of health and the environment.
Collapse
Affiliation(s)
- Elizabeth A Pozzebon
- California Conference of Directors of Environmental Health, P.O. Box 2017, Cameron Park, CA, 95682-2017, USA
| | - Lars Seifert
- California Conference of Directors of Environmental Health, P.O. Box 2017, Cameron Park, CA, 95682-2017, USA.
| |
Collapse
|
5
|
McNamara P, Liu Z, Tong Y, Santha H, Moss L, Zitomer D. Pyrolysis-A tool in the wastewater solids handling portfolio, not a silver bullet: Benefits, drawbacks, and future directions. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10863. [PMID: 37021664 DOI: 10.1002/wer.10863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Pyrolysis is the process whereby carbonaceous materials, such as biosolids, are heated between 400°C and 900°C in the absence of oxygen. Three main products are generated: a solid product called biochar, a py-liquid that consists of aqueous phase and non-aqueous phase liquid, and py-gas. The biochar holds value as a beneficial soil amendment and sequesters carbon. The py-liquid is potentially hazardous and needs to be dealt with (including potentially reducing it on-site via catalysis or thermal oxidation). Py-gas can be used on-site for energy recovery. Pyrolysis has gained recent interest due to concern over per- and polyfluoroalkyl substances (PFAS) in biosolids. Although pyrolysis can remove PFAS from biosolids, it has been shown to produce PFAS that reside in py-liquid, and the fate in py-gas remains a knowledge gap. More research is needed to help close the PFAS and fluorine mass balance through pyrolysis influent and effluent products because pyrolysis alone does not destroy all PFAS. The moisture content of biosolids substantially affects the energy balance for pyrolysis. Utilities that already produce a dried biosolids product are in a better position to install pyrolysis. Pyrolysis has both defined benefits (solids reduction, PFAS removal from biosolids, and biochar production) as well as remaining questions (the fate of PFAS in py-gas and py-liquid, mass balance on nutrients, and py-liquid handling options) that will be answered through more pilot and full-scale demonstrations. Regulations and local policies (such as carbon sequestration credits) could affect pyrolysis implementation. Pyrolysis should be considered as an option in the biosolids stabilization toolbox with application being based on individual circumstances of a utility (e.g., energy, moisture content of biosolids, PFAS). PRACTITIONER POINTS: Pyrolysis has known benefits but limited full-scale operational data. Pyrolysis removes PFAS from biochar, but PFAS fate in gas phase is unknown. Moisture content of influent feed solids affects energy balance of pyrolysis. Policy on PFAS, carbon sequestration, or renewable energy could impact pyrolysis.
Collapse
Affiliation(s)
- Patrick McNamara
- Water Technology Group, Black & Veatch, Overland Park, Kansas, USA
- Department of Civil, Construction & Environmental Engineering, Marquette University, Milwaukee, Wisconsin, USA
| | - Zhongzhe Liu
- Department of Physics and Engineering, California State University-Bakersfield, 9001 Stockdale Highway, Bakersfield, California, 93311, USA
| | - Yiran Tong
- Stantec, Minneapolis, Minnesota, 55402, USA
| | - Hari Santha
- Water Technology Group, Black & Veatch, Overland Park, Kansas, USA
| | - Lynne Moss
- Water Technology Group, Black & Veatch, Overland Park, Kansas, USA
| | - Daniel Zitomer
- Department of Civil, Construction & Environmental Engineering, Marquette University, Milwaukee, Wisconsin, USA
| |
Collapse
|
6
|
Winchell LJ, Ross JJ, Brose DA, Pluth TB, Fonoll X, Norton JW, Bell KY. High-temperature technology survey and comparison among incineration, pyrolysis, and gasification systems for water resource recovery facilities. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10715. [PMID: 35388572 PMCID: PMC9324225 DOI: 10.1002/wer.10715] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 05/13/2023]
Abstract
Solids from wastewater treatment undergo processing to reduce mass, minimize pathogens, and condition the products for specific end uses. However, costs and contaminant concerns (e.g., per- and polyfluoroalkyl substances [PFAS]) challenge traditional landfill and land application practices. Incineration can overcome these issues but has become complicated due to evolving emissions regulations, and it suffers from poor public perception. These circumstances are driving the re-emergence of pyrolysis and gasification technologies. A survey of suppliers was conducted to document differences with technologies. Both offer advantages over incineration with tailored production of a carbon-rich solid, currently less stringent air emission requirements, and lower flue gas flows requiring treatment. However, incineration more simply combines drying and thermal processing into one reactor. Equipment costs provided favor pyrolysis and gasification at lower capacities but converge with incineration at higher capacities. Long-term operational experience will confirm technology competitiveness and elucidate whether pyrolysis and gasification warrant widespread adoption. PRACTITIONER POINTS: Pyrolysis and gasification systems are gaining traction in the wastewater industry with several full-scale installations operating, in construction, or design Several advantages, but some disadvantages, are considered in comparison with incineration Organic contaminants, including PFAS, will undergo transformation and potentially complete mineralization through each process.
Collapse
Affiliation(s)
| | | | - Dominic A. Brose
- Metropolitan Water Reclamation District of Greater ChicagoCiceroIllinoisUSA
| | - Thaís B. Pluth
- Metropolitan Water Reclamation District of Greater ChicagoCiceroIllinoisUSA
| | | | | | | |
Collapse
|