1
|
Activation and degranulation of CAR-T cells using engineered antigen-presenting cell surfaces. PLoS One 2020; 15:e0238819. [PMID: 32976541 PMCID: PMC7518621 DOI: 10.1371/journal.pone.0238819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 08/24/2020] [Indexed: 11/19/2022] Open
Abstract
Adoptive cell transfer of Chimeric Antigen Receptor (CAR)-T cells showed promising results in patients with B cell malignancies. However, the detailed mechanism of CAR-T cell interaction with the target tumor cells is still not well understood. This work provides a systematic method for analyzing the activation and degranulation of second-generation CAR-T cells utilizing antigen-presenting cell surfaces. Antigen-presenting cell surfaces composed of circular micropatterns of CAR-specific anti-idiotype antibodies have been developed to mimic the interaction of CAR-T cells with target tumor cells using micro-contact printing. The levels of activation and degranulation of fixed non-transduced T cells (NT), CD19.CAR-T cells, and GD2.CAR-T cells on the antigen-presenting cell surfaces were quantified and compared by measuring the intensity of the CD3ζ chain phosphorylation and the Lysosome-Associated Membrane Protein 1 (LAMP-1), respectively. The size and morphology of the cells were also measured. The intracellular Ca2+ flux of NT and CAR-T cells upon engagement with the antigen-presenting cell surface was reported. Results suggest that NT and CD19.CAR-T cells have comparable activation levels, while NT have higher degranulation levels than CD19.CAR-T cells and GD2.CAR-T cells. The findings show that antigen-presenting cell surfaces allow a quantitative analysis of the molecules involved in synapse formation in different CAR-T cells in a systematic, reproducible manner.
Collapse
|
2
|
Abstract
B cells are essential to the adaptive immune system for providing the humoral immunity against cohorts of pathogens. The presentation of antigen to the B cell receptor (BCR) leads to the initiation of B cell activation, which is a process sensitive to the stiffness features of the substrates presenting the antigens. Mechanosensing of the B cells, potentiated through BCR signaling and the adhesion molecules, efficiently regulates B cell activation, proliferation and subsequent antibody responses. Defects in sensing of the antigen-presenting substrates can lead to the activation of autoreactive B cells in autoimmune diseases. The use of high-resolution, high-speed live-cell imaging along with the sophisticated biophysical materials, has uncovered the mechanisms underlying the initiation of B cell activation within seconds of its engagement with the antigen presenting substrates. In this chapter, we reviewed studies that have contributed to uncover the molecular mechanisms of B cell mechanosensing during the initiation of B cell activation.
Collapse
Affiliation(s)
- Samina Shaheen
- Center for life sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Zhengpeng Wan
- Center for life sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Kabeer Haneef
- Center for life sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Yingyue Zeng
- Center for life sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Wang Jing
- Center for life sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Wanli Liu
- Center for life sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China.
| |
Collapse
|
3
|
Sánchez MF, Murad F, Gülcüler Balta GS, Martin-Villalba A, García-Sáez AJ, Carrer DC. Early activation of CD95 is limited and localized to the cytotoxic synapse. FEBS J 2018; 285:2813-2827. [PMID: 29797791 DOI: 10.1111/febs.14518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 04/28/2018] [Accepted: 05/22/2018] [Indexed: 01/13/2023]
Abstract
The cytotoxic synapse formed between cytotoxic T lymphocytes or natural killer cells expressing CD95L and target cells with CD95 on their surface is a key pathway for apoptosis induction by the immune system. Despite similarities with the immune synapse in antigen presenting cells, little is known about the role of the spatiotemporal organization of agonistic proteins/receptor interactions for CD95 signaling. Here, we have developed an artificial cytotoxic synapse to examine how mobility and geometry of an anti-CD95 agonistic antibody affect receptor aggregation and mobility, ie the first step of receptor activation. By measuring the distribution, diffusion coefficient, and fraction of immobile CD95 receptor in living cells, we show that at short times, the initial activation of CD95 occurs locally and is limited to the contact region of the cytotoxic synapse. This anisotropic activation of apoptotic signaling supports a role for confined interactions on the efficiency of signal transduction that may have implications for biomedical applications of extrinsic apoptosis induction.
Collapse
Affiliation(s)
- María Florencia Sánchez
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), CONICET-Universidad Nacional de Córdoba, Argentina
| | - Fabronia Murad
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Gülce S Gülcüler Balta
- Department of Molecular Neurobiology, German Cancer Research Center (DFKZ), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Germany
| | - Ana Martin-Villalba
- Department of Molecular Neurobiology, German Cancer Research Center (DFKZ), Heidelberg, Germany
| | - Ana J García-Sáez
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Dolores C Carrer
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), CONICET-Universidad Nacional de Córdoba, Argentina
| |
Collapse
|
4
|
Guasch J, Muth CA, Diemer J, Riahinezhad H, Spatz JP. Integrin-Assisted T-Cell Activation on Nanostructured Hydrogels. NANO LETTERS 2017; 17:6110-6116. [PMID: 28876947 DOI: 10.1021/acs.nanolett.7b02636] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Adoptive cell therapy (ACT) has shown very promising results as treatment for cancer in a few clinical trials, such as the complete remissions of otherwise terminal leukemia patients. Nevertheless, the introduction of ACT into clinics requires overcoming not only medical but also technical challenges, such as the ex vivo expansion of large amounts of specific T-cells. Nanostructured surfaces represent a novel T-cell stimulation technique that enables us to fine-tune the density and orientation of activating molecules presented to the cells. In this work, we studied the influence of integrin-mediated cell-adhesion on T-cell activation, proliferation, and differentiation using nanostructured surfaces, which provide a well-defined system at the nanoscale compared with standard cultures. Specifically, we synthesized a polymeric polyethylene glycol (PEG) hydrogel cross-linked with two fibronectin-derived peptides, cyclic Arg-Gly-Asp (cRGD) and cyclic Leu-Asp-Val (cLDV), that are known to activate different integrins. Moreover, the hydrogels were decorated with a quasi-hexagonal array of gold nanoparticles (AuNPs) functionalized with the activating antibody CD3 to initiate T-cell activation. Both cLDV and cRGD hydrogels showed higher T-cell activation (CD69 expression and IL-2 secretion) than nonfunctionalized PEG hydrogels. However, only the cRGD hydrogels clearly supported proliferation giving a higher proportion of cells with memory (CD4+CD45RO+) than naı̈ve (CD4+CD45RA+) phenotypes when interparticle distances smaller than 150 nm were used. Thus, T-cell proliferation can be enhanced by the activation of integrins through the RGD sequence.
Collapse
Affiliation(s)
- Judith Guasch
- Dynamic Biomaterials for Cancer Immunotherapy, Max Planck Partner Group, Institute of Materials Science of Barcelona (ICMAB-CSIC) , Campus UAB, Bellaterra, E-08193, Spain
- Department of Molecular Nanoscience and Organic Materials, Institute of Materials Science of Barcelona (ICMAB-CSIC) and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) , Campus UAB, Bellaterra, E-08193, Spain
- Department of Cellular Biophysics, Max Planck Institute for Medical Research , Jahnstrasse 29, Heidelberg, D-69120, Germany
- Department of Biophysical Chemistry, University of Heidelberg , Im Neuenheimer Feld 253, Heidelberg, D-69120, Germany
| | - Christine A Muth
- Department of Cellular Biophysics, Max Planck Institute for Medical Research , Jahnstrasse 29, Heidelberg, D-69120, Germany
- Department of Biophysical Chemistry, University of Heidelberg , Im Neuenheimer Feld 253, Heidelberg, D-69120, Germany
| | - Jennifer Diemer
- Department of Cellular Biophysics, Max Planck Institute for Medical Research , Jahnstrasse 29, Heidelberg, D-69120, Germany
- Department of Biophysical Chemistry, University of Heidelberg , Im Neuenheimer Feld 253, Heidelberg, D-69120, Germany
| | - Hossein Riahinezhad
- Department of Cellular Biophysics, Max Planck Institute for Medical Research , Jahnstrasse 29, Heidelberg, D-69120, Germany
- Department of Biophysical Chemistry, University of Heidelberg , Im Neuenheimer Feld 253, Heidelberg, D-69120, Germany
| | - Joachim P Spatz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research , Jahnstrasse 29, Heidelberg, D-69120, Germany
- Department of Biophysical Chemistry, University of Heidelberg , Im Neuenheimer Feld 253, Heidelberg, D-69120, Germany
| |
Collapse
|
5
|
Sánchez MF, Dodes Traian MM, Levi V, Carrer DC. One-Photon Lithography for High-Quality Lipid Bilayer Micropatterns. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:11943-11950. [PMID: 26452154 DOI: 10.1021/acs.langmuir.5b02934] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A relevant question in cell biology with broad implications in biomedicine is how the organization and dynamics of interacting membranes modulate signaling cascades that involve cell-cell contact. The functionalization of surfaces with supported lipid bilayers containing tethered proteins is a particularly useful method to present ligands with membrane-like mobility to cells. Here, we present a method to generate micrometer-sized patches of lipid bilayers decorated with proteins. The method uses an economic microcontact printing technique based on one-photon lithography that can be easily implemented in a commercial laser scanning microscope. We verified that both proteins and lipids freely diffuse within the patterned bilayer, as assessed by z-scan fluorescence correlation spectroscopy and fluorescence recovery after photobleaching. These results suggest that the supported lipid bilayer patterns constitute an optimal system to explore processes involving direct interactions between cells. We also illustrate possible applications of this method by exploring the interaction of cells expressing the Fas receptor and patterns of lipid bilayers containing an agonist antibody against Fas.
Collapse
Affiliation(s)
- M Florencia Sánchez
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), CONICET-Universidad Nacional de Córdoba , Friuli 2434, CC389, 5000 Córdoba, Argentina
| | - Martín M Dodes Traian
- Departamento de Química Biológica-IQUIBICEN Facultad de Ciencias Exactas, Universidad de Buenos Aires, Ciudad Universitaria , 1428 Buenos Aires, Argentina
| | - Valeria Levi
- Departamento de Química Biológica-IQUIBICEN Facultad de Ciencias Exactas, Universidad de Buenos Aires, Ciudad Universitaria , 1428 Buenos Aires, Argentina
| | - Dolores C Carrer
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), CONICET-Universidad Nacional de Córdoba , Friuli 2434, CC389, 5000 Córdoba, Argentina
| |
Collapse
|
6
|
Platzman I, Janiesch JW, Matić J, Spatz JP. Artificial Antigen-Presenting Interfaces in the Service of Immunology. Isr J Chem 2013. [DOI: 10.1002/ijch.201300060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Abstract
It is increasingly recognized that cell signaling, as a chemical process, must be considered at the local, micrometer scale. Micro- and nanofabrication techniques provide access to these dimensions, with the potential to capture and manipulate the spatial complexity of intracellular signaling in experimental models. This review focuses on recent advances in adapting surface engineering for use with biomolecular systems that interface with cell signaling, particularly with respect to surfaces that interact with multiple receptor systems on individual cells. The utility of this conceptual and experimental approach is demonstrated in the context of epithelial cells and T lymphocytes, two systems whose ability to perform their physiological function is dramatically impacted by the convergence and balance of multiple signaling pathways.
Collapse
Affiliation(s)
- L.C. Kam
- Deparment of Biomedical Engineering, Columbia University, New York, NY 10027
| | - K. Shen
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114;
| | - M.L. Dustin
- Molecular Pathogenesis Program, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016;
| |
Collapse
|