1
|
Rybarczyk A, Sultan T, Hussain N, Azam HMH, Rafique S, Zdarta J, Jesionowski T. Fusion of enzymatic proteins: Enhancing biological activities and facilitating biological modifications. Adv Colloid Interface Sci 2025; 340:103473. [PMID: 40086016 DOI: 10.1016/j.cis.2025.103473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 02/28/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
The fusion of enzymatic proteins represents a dynamic frontier in biotechnology and enzymatic engineering. This in-depth review looks at the many different ways that fusion proteins can be used, showing their importance in biosensing, gene therapy, targeted drug delivery, and biocatalysis. Fusion proteins have shown an astounding ability to improve and fine-tune biological functions by combining the most beneficial parts of different enzymes. Our first step is to explain how protein fusion increases biological functions. This will provide a broad picture of how this phenomenon has changed many fields. We dissect the intricate mechanisms through which fusion proteins orchestrate cellular processes, underscoring their potential to revolutionize the landscape of molecular biology. We also explore the complicated world of structural analysis and design strategies, stressing the importance of molecular insights for making the fusion protein approach work better. These insights broaden understanding of the underlying principles and illuminate the path toward unlocking untapped potential. The review also introduces cutting-edge techniques for constructing fusion protein libraries, such as DNA shuffling and phage display. These new methods allow scientists to build a molecular orchestra with an unprecedented level of accuracy, and thus use fusion proteins to their full potential in various situations. In conclusion, we provide a glimpse into the current challenges and prospects in fusion protein research, shedding light on recent advancements that promise to reshape the future of biotechnology. As we make this interesting journey through the field of enzymatic protein combination, it becomes clear that the fusion paradigm is about to start a new era of innovation that will push the limits of what is possible in biology and molecular engineering.
Collapse
Affiliation(s)
- Agnieszka Rybarczyk
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Talha Sultan
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Nazim Hussain
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Hafiz Muhammad Husnain Azam
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1, 01968 Senftenberg, Germany
| | - Safa Rafique
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| |
Collapse
|
2
|
Kröger P, Shanmugaratnam S, Ferruz N, Schweimer K, Höcker B. A comprehensive binding study illustrates ligand recognition in the periplasmic binding protein PotF. Structure 2021; 29:433-443.e4. [PMID: 33406388 DOI: 10.1016/j.str.2020.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/28/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022]
Abstract
Periplasmic binding proteins (PBPs) are ubiquitous receptors in gram-negative bacteria. They sense solutes and play key roles in nutrient uptake. Escherichia coli's putrescine receptor PotF has been reported to bind putrescine and spermidine. We reveal that several similar biogenic polyamines are recognized by PotF. Using isothermal titration calorimetry paired with X-ray crystallography of the different complexes, we unveil PotF's binding modes in detail. The binding site for PBPs is located between two lobes that undergo a large conformational change upon ligand recognition. Hence, analyzing the influence of ligands on complex formation is crucial. Therefore, we solved crystal structures of an open and closed apo state and used them as a basis for molecular dynamics simulations. In addition, we accessed structural behavior in solution for all complexes by 1H-15N HSQC NMR spectroscopy. This combined analysis provides a robust framework for understanding ligand binding for future developments in drug design and protein engineering.
Collapse
Affiliation(s)
- Pascal Kröger
- Department of Biochemistry, University of Bayreuth, Universitätsstrasse 30, 95447 Bayreuth, Germany
| | - Sooruban Shanmugaratnam
- Department of Biochemistry, University of Bayreuth, Universitätsstrasse 30, 95447 Bayreuth, Germany
| | - Noelia Ferruz
- Department of Biochemistry, University of Bayreuth, Universitätsstrasse 30, 95447 Bayreuth, Germany
| | - Kristian Schweimer
- Department of Biochemistry, University of Bayreuth, Universitätsstrasse 30, 95447 Bayreuth, Germany; Northern Bavarian NMR Center, University of Bayreuth, Universitätsstrasse 30, 95447 Bayreuth, Germany
| | - Birte Höcker
- Department of Biochemistry, University of Bayreuth, Universitätsstrasse 30, 95447 Bayreuth, Germany.
| |
Collapse
|
3
|
Optimizing bacteriophage engineering through an accelerated evolution platform. Sci Rep 2020; 10:13981. [PMID: 32814789 PMCID: PMC7438504 DOI: 10.1038/s41598-020-70841-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023] Open
Abstract
The emergence of antibiotic resistance has raised serious concerns within scientific and medical communities, and has underlined the importance of developing new antimicrobial agents to combat such infections. Bacteriophages, naturally occurring bacterial viruses, have long been characterized as promising antibiotic alternatives. Although bacteriophages hold great promise as medical tools, clinical applications have been limited by certain characteristics of phage biology, with structural fragility under the high temperatures and acidic environments of therapeutic applications significantly limiting therapeutic effectiveness. This study presents and evaluates the efficacy of a new accelerated evolution platform, chemically accelerated viral evolution (CAVE), which provides an effective and robust method for the rapid enhancement of desired bacteriophage characteristics. Here, our initial use of this methodology demonstrates its ability to confer significant improvements in phage thermal stability. Analysis of the mutation patterns that arise through CAVE iterations elucidates the manner in which specific genetic modifications bring forth desired changes in functionality, thereby providing a roadmap for bacteriophage engineering.
Collapse
|
4
|
Antonacci A, Scognamiglio V. Photosynthesis-based hybrid nanostructures: Electrochemical sensors and photovoltaic cells as case studies. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
5
|
Kizer M, Huntress ID, Walcott BD, Fraser K, Bystroff C, Wang X. Complex between a Multicrossover DNA Nanostructure, PX-DNA, and T7 Endonuclease I. Biochemistry 2019; 58:1332-1342. [PMID: 30794750 DOI: 10.1021/acs.biochem.9b00057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Paranemic crossover DNA (PX-DNA) is a four-stranded multicrossover structure that has been implicated in recombination-independent recognition of homology. Although existing evidence has suggested that PX is the DNA motif in homologous pairing (HP), this conclusion remains ambiguous. Further investigation is needed but will require development of new tools. Here, we report characterization of the complex between PX-DNA and T7 endonuclease I (T7endoI), a junction-resolving protein that could serve as the prototype of an anti-PX ligand (a critical prerequisite for the future development of such tools). Specifically, nuclease-inactive T7endoI was produced and its ability to bind to PX-DNA was analyzed using a gel retardation assay. The molar ratio of PX to T7endoI was determined using gel electrophoresis and confirmed by the Hill equation. Hydroxyl radical footprinting of T7endoI on PX-DNA is used to verify the positive interaction between PX and T7endoI and to provide insight into the binding region. Cleavage of PX-DNA by wild-type T7endoI produces DNA fragments, which were used to identify the interacting sites on PX for T7endoI and led to a computational model of their interaction. Altogether, this study has identified a stable complex of PX-DNA and T7endoI and lays the foundation for engineering an anti-PX ligand, which can potentially assist in the study of molecular mechanisms for HP at an advanced level.
Collapse
Affiliation(s)
- Megan Kizer
- Department of Chemistry and Chemical Biology , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States.,Center for Biotechnology and Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Ian D Huntress
- Programs of Bioinformatics and Molecular Biology , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States.,Center for Biotechnology and Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Benjamin D Walcott
- Department of Biology , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States.,Center for Biotechnology and Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Keith Fraser
- Department of Biology , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States.,Center for Biotechnology and Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Christopher Bystroff
- Department of Biology , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States.,Center for Biotechnology and Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Xing Wang
- Department of Chemistry and Chemical Biology , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States.,Center for Biotechnology and Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| |
Collapse
|
6
|
Burnside D, Schoenrock A, Moteshareie H, Hooshyar M, Basra P, Hajikarimlou M, Dick K, Barnes B, Kazmirchuk T, Jessulat M, Pitre S, Samanfar B, Babu M, Green JR, Wong A, Dehne F, Biggar KK, Golshani A. In Silico Engineering of Synthetic Binding Proteins from Random Amino Acid Sequences. iScience 2018; 11:375-387. [PMID: 30660105 PMCID: PMC6348295 DOI: 10.1016/j.isci.2018.11.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/19/2018] [Accepted: 11/28/2018] [Indexed: 12/29/2022] Open
Abstract
Synthetic proteins with high affinity and selectivity for a protein target can be used as research tools, biomarkers, and pharmacological agents, but few methods exist to design such proteins de novo. To this end, the In-Silico Protein Synthesizer (InSiPS) was developed to design synthetic binding proteins (SBPs) that bind pre-determined targets while minimizing off-target interactions. InSiPS is a genetic algorithm that refines a pool of random sequences over hundreds of generations of mutation and selection to produce SBPs with pre-specified binding characteristics. As a proof of concept, we design SBPs against three yeast proteins and demonstrate binding and functional inhibition of two of three targets in vivo. Peptide SPOT arrays confirm binding sites, and a permutation array demonstrates target specificity. Our foundational approach will support the field of de novo design of small binding polypeptide motifs and has robust applicability while offering potential advantages over the limited number of techniques currently available. InSiPS engineers synthetic binding proteins (SBPs) using primary protein sequence SBPs are designed to a bind a target protein and avoid “off-target” interactions Binding and functional inhibition of two of three target proteins in yeast is demonstrated Our new approach offers advantages over alternative tools that rely on 3D models
Collapse
Affiliation(s)
- Daniel Burnside
- Department of Biology, Carleton University, Ottawa, ON K1S5B6, Canada; Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S5B6, Canada
| | - Andrew Schoenrock
- School of Computer Science, Carleton University, Ottawa, ON K1S5B6, Canada
| | - Houman Moteshareie
- Department of Biology, Carleton University, Ottawa, ON K1S5B6, Canada; Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S5B6, Canada
| | - Mohsen Hooshyar
- Department of Biology, Carleton University, Ottawa, ON K1S5B6, Canada
| | - Prabh Basra
- Department of Biology, Carleton University, Ottawa, ON K1S5B6, Canada
| | - Maryam Hajikarimlou
- Department of Biology, Carleton University, Ottawa, ON K1S5B6, Canada; Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S5B6, Canada
| | - Kevin Dick
- Department of Systems and Computer Engineering, Carleton University, Ottawa, ON K1S5B6, Canada
| | - Brad Barnes
- School of Computer Science, Carleton University, Ottawa, ON K1S5B6, Canada
| | - Tom Kazmirchuk
- Department of Biology, Carleton University, Ottawa, ON K1S5B6, Canada
| | - Matthew Jessulat
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, SK S4S 0A2, Canada
| | - Sylvain Pitre
- School of Computer Science, Carleton University, Ottawa, ON K1S5B6, Canada
| | - Bahram Samanfar
- Department of Biology, Carleton University, Ottawa, ON K1S5B6, Canada; Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C5, Canada
| | - Mohan Babu
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, SK S4S 0A2, Canada
| | - James R Green
- Department of Systems and Computer Engineering, Carleton University, Ottawa, ON K1S5B6, Canada
| | - Alex Wong
- Department of Biology, Carleton University, Ottawa, ON K1S5B6, Canada
| | - Frank Dehne
- School of Computer Science, Carleton University, Ottawa, ON K1S5B6, Canada
| | - Kyle K Biggar
- Department of Biology, Carleton University, Ottawa, ON K1S5B6, Canada; Institute of Biochemistry, Carleton University, Ottawa, ON K1S5B6, Canada
| | - Ashkan Golshani
- Department of Biology, Carleton University, Ottawa, ON K1S5B6, Canada; Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S5B6, Canada; Institute of Biochemistry, Carleton University, Ottawa, ON K1S5B6, Canada.
| |
Collapse
|
7
|
The state-of-play and future of antibody therapeutics. Adv Drug Deliv Rev 2017; 122:2-19. [PMID: 27916504 DOI: 10.1016/j.addr.2016.11.004] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/26/2016] [Accepted: 11/28/2016] [Indexed: 12/22/2022]
Abstract
It has been over four decades since the development of monoclonal antibodies (mAbs) using a hybridoma cell line was first reported. Since then more than thirty therapeutic antibodies have been marketed, mostly as oncology, autoimmune and inflammatory therapeutics. While antibodies are very efficient, their cost-effectiveness has always been discussed owing to their high costs, accumulating to more than one billion dollars from preclinical development through to market approval. Because of this, therapeutic antibodies are inaccessible to some patients in both developed and developing countries. The growing interest in biosimilar antibodies as affordable versions of therapeutic antibodies may provide alternative treatment options as well potentially decreasing costs. As certain markets begin to capitalize on this opportunity, regulatory authorities continue to refine the requirements for demonstrating quality, efficacy and safety of biosimilar compared to originator products. In addition to biosimilars, innovations in antibody engineering are providing the opportunity to design biobetter antibodies with improved properties to maximize efficacy. Enhancing effector function, antibody drug conjugates (ADC) or targeting multiple disease pathways via multi-specific antibodies are being explored. The manufacturing process of antibodies is also moving forward with advancements relating to host cell production and purification processes. Studies into the physical and chemical degradation pathways of antibodies are contributing to the design of more stable proteins guided by computational tools. Moreover, the delivery and pharmacokinetics of antibody-based therapeutics are improving as optimized formulations are pursued through the implementation of recent innovations in the field.
Collapse
|
8
|
Tobin PH, Richards DH, Callender RA, Wilson CJ. Protein engineering: a new frontier for biological therapeutics. Curr Drug Metab 2015; 15:743-56. [PMID: 25495737 DOI: 10.2174/1389200216666141208151524] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 11/27/2014] [Accepted: 12/07/2014] [Indexed: 12/14/2022]
Abstract
Protein engineering holds the potential to transform the metabolic drug landscape through the development of smart, stimulusresponsive drug systems. Protein therapeutics are a rapidly expanding segment of Food and Drug Administration approved drugs that will improve clinical outcomes over the long run. Engineering of protein therapeutics is still in its infancy, but recent general advances in protein engineering capabilities are being leveraged to yield improved control over both pharmacokinetics and pharmacodynamics. Stimulus- responsive protein therapeutics are drugs which have been designed to be metabolized under targeted conditions. Protein engineering is being utilized to develop tailored smart therapeutics with biochemical logic. This review focuses on applications of targeted drug neutralization, stimulus-responsive engineered protein prodrugs, and emerging multicomponent smart drug systems (e.g., antibody-drug conjugates, responsive engineered zymogens, prospective biochemical logic smart drug systems, drug buffers, and network medicine applications).
Collapse
Affiliation(s)
| | | | | | - Corey J Wilson
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, USA.
| |
Collapse
|