1
|
Kulkarni MB, Ayachit NH, Aminabhavi TM. Recent Advancements in Nanobiosensors: Current Trends, Challenges, Applications, and Future Scope. BIOSENSORS 2022; 12:892. [PMID: 36291028 PMCID: PMC9599941 DOI: 10.3390/bios12100892] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 05/30/2023]
Abstract
In recent years, there has been immense advancement in the development of nanobiosensors as these are a fundamental need of the hour that act as a potential candidate integrated with point-of-care-testing for several applications, such as healthcare, the environment, energy harvesting, electronics, and the food industry. Nanomaterials have an important part in efficiently sensing bioreceptors such as cells, enzymes, and antibodies to develop biosensors with high selectivity, peculiarity, and sensibility. It is virtually impossible in science and technology to perform any application without nanomaterials. Nanomaterials are distinguished from fine particles used for numerous applications as a result of being unique in properties such as electrical, thermal, chemical, optical, mechanical, and physical. The combination of nanostructured materials and biosensors is generally known as nanobiosensor technology. These miniaturized nanobiosensors are revolutionizing the healthcare domain for sensing, monitoring, and diagnosing pathogens, viruses, and bacteria. However, the conventional approach is time-consuming, expensive, laborious, and requires sophisticated instruments with skilled operators. Further, automating and integrating is quite a challenging process. Thus, there is a considerable demand for the development of nanobiosensors that can be used along with the POCT module for testing real samples. Additionally, with the advent of nano/biotechnology and the impact on designing portable ultrasensitive devices, it can be stated that it is probably one of the most capable ways of overcoming the aforementioned problems concerning the cumulative requirement for the development of a rapid, economical, and highly sensible device for analyzing applications within biomedical diagnostics, energy harvesting, the environment, food and water, agriculture, and the pharmaceutical industry.
Collapse
Affiliation(s)
- Madhusudan B. Kulkarni
- Department of Research & Development, Renalyx Health Systems (P) Limited, Bengaluru 560004, Karnataka, India
| | - Narasimha H. Ayachit
- Department of Physics, Visvesvaraya Technological University (VTU), Belagavi 590018, Karnataka, India
| | - Tejraj M. Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi 580031, Karnataka, India
| |
Collapse
|
2
|
Effect of Risk-Focused Diversified Safety Management Mode in Patients with Major Artery Stent Implantation. Emerg Med Int 2022; 2022:1284254. [PMID: 36212997 PMCID: PMC9546671 DOI: 10.1155/2022/1284254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/28/2022] [Accepted: 09/02/2022] [Indexed: 11/18/2022] Open
Abstract
Background Intracranial atherosclerotic stenosis (ICAS) causes a series of neurological symptoms, such as vertigo, impaired consciousness, limb weakness, ataxia, dysphagia, ocular motility disorders, and visual impairment. With the improvement of people's living standards, there are higher requirements for nursing care. Nursing, as an indispensable part of medical care, is closely related to achieving the goal of patient's safety and the overall quality of nurses, quality of care, and nursing management methods. Objective To explore the effect of risk-centered diversified safety management in patients undergoing aortic stenting. Methods Eighty patients with cerebral infarction were selected and treated with percutaneous transluminal angioplasty and stent implantation (PTAS). Then they were divided into a control group (40 cases) with routine monitoring and an experimental group (40 cases) with risk-focused intervention of a diversified safety management model according to the mode of care. Patient satisfaction and blood index test results were compared after the intervention. Results Patients in the experimental group had 6 falls, 3 bed falls, 3 phlebitis, 4 tube slips, and 10 deep vein thrombosis, all significantly fewer than those in the control group. Thirty-eight patients in the experimental group expressed satisfaction with safe management, which was substantially better than the control group (P < 0.05). The levels of tissue plasminogen activator (tPA), plasminogen activator inhibitor-1 (PA1-1), and von Willebrand factor (vWF) in the experimental group were (13.5 ± 1.3) ng/mL, (60.1 ± 9.9) ng/mL, and (2.1 ± 0.2), respectively, which were substantially lower than those in the control group ((14.6 ± 2.4) ng/mL, (64.2 ± 10.7) ng/mL, and (2.8 ± 0.3)), respectively (P < 0.05). Conclusion The risk-centered diversified safety management model can effectively reduce the probability of adverse events in patients, improve patient satisfaction with nursing services, and promote faster postoperative recovery, which has clinical application value.
Collapse
|
3
|
Common Pathogens and Drug Resistance of Neonatal Pneumonia with New Multichannel Sensor. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:2208636. [PMID: 36043149 PMCID: PMC9377937 DOI: 10.1155/2022/2208636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 11/18/2022]
Abstract
This study aimed to study the application value of a new multichannel sensor in pathogen detection and drug resistance analysis of neonatal pneumonia. 180 newborns with infectious pneumonia were selected, and a new multichannel piezoelectric sensor was constructed. The traditional Kirby–Bauer (K–B) method and the piezoelectric sensor were adopted to detect the pathogens and drug resistance in newborn samples, respectively. The results showed that the sensitivity and specificity under the K–B method (99.58% and 99.32%) and the multichannel piezoelectric sensor (99.43% and 94.29%) were not statistically different (P > 0.05). The detection time (17.25 h) of the K–B method was significantly longer than that (7.43 h) of the multichannel piezoelectric sensor (P < 0.05). From the results of pathogen detection, it was found that Klebsiella pneumoniae accounted for a relatively high proportion of 25.1%, followed by Staphylococcus aureus and Haemophilus influenzae of 13.4% and 12.33%, respectively. The resistance rate of the Staphylococcus aureus to vancomycin and rifampicin was as high as 100% and that to gentamicin, ciprofloxacin, and erythromycin reached more than 50%. In short, the new multichannel piezoelectric sensor had the high sensitivity and specificity for the pathogens' detection of neonatal pneumonia, and it required a shorter time. The pathogens were mostly Gram-negative bacteria, followed by Gram-positive bacteria and fungi. Klebsiella pneumoniae, Staphylococcus aureus, and Haemophilus influenzae were the main ones. The neonatal pneumonia pathogens had also strong drug resistance against vancomycin, rifampicin, chloramphenicol, meropenem, amikacin sulfate, chloramphenicol, and many other antibacterial drugs.
Collapse
|
4
|
Dat LT, Pham VNT, Vy ND, Payam AF. Frequency equation and semi-empirical mechanical coupling strength of microcantilevers in an array. Microsc Res Tech 2022; 85:3237-3244. [PMID: 35708241 DOI: 10.1002/jemt.24180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/29/2022] [Indexed: 11/06/2022]
Abstract
A characteristic equation for the frequencies of the T-shaped and overhang-shaped cantilevers is derived for the first time. We show that there are optimum values of the overhang lengths and widths that maximize the frequency and the number of maxima is corresponding to the mode number. The frequency of higher-order modes could be tuned by changing the overhang dimensions. Especially, a semi-empirical formula for the coupling strength κ $$ \left(\kappa \right) $$ between cantilevers in an array is proposed where the strength presents a cubic decrease with the overhang width ξ $$ \left(\xi \right) $$ and a linear increase with the overhang length η $$ \left(\eta \right) $$ , κ = η / ξ 3 $$ \kappa =\eta /{\xi}^3 $$ . There is a very good agreement between the proposed formula and the values obtained in recent experiments by other researchers.
Collapse
Affiliation(s)
- Le Tri Dat
- Computational Laboratory for Advanced Materials and Structures, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Vinh N T Pham
- Department of Physics, Ho Chi Minh City University of Education, Ho Chi Minh City, Vietnam.,International Cooperation Office, Ho Chi Minh City University of Education, Ho Chi Minh City, Vietnam
| | - Nguyen Duy Vy
- Laboratory of Applied Physics, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, Vietnam.,Faculty of Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Amir F Payam
- School of Engineering, Ulster University, Co. Antrim, UK
| |
Collapse
|
5
|
Singh S, Numan A, Cinti S. Point-of-Care for Evaluating Antimicrobial Resistance through the Adoption of Functional Materials. Anal Chem 2022; 94:26-40. [PMID: 34802244 PMCID: PMC8756393 DOI: 10.1021/acs.analchem.1c03856] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sima Singh
- IES
Institute of Pharmacy, IES University Campus, Kalkheda, Ratibad Main Road, Bhopal 462044, Madhya Pradesh, India
| | - Arshid Numan
- Graphene
& Advanced 2D Materials Research Group (GAMRG), School of Engineering
and Technology, Sunway University, 5, Jalan University, Bandar Sunway, 47500 Petaling
Jaya, Selangor, Malaysia
| | - Stefano Cinti
- Department
of Pharmacy, University of Naples “Federico
II”, Via D. Montesano 49, 80131 Naples, Italy
- BAT
Center−Interuniversity Center for Studies on Bioinspired Agro-Environmental
Technology, University of Napoli Federico
II, 80055 Naples, Italy
| |
Collapse
|
6
|
Busch RT, Karim F, Sun Y, Fry HC, Liu Y, Zhao C, Vasquez ES. Detection and Aggregation of Listeria Monocytogenes Using Polyclonal Antibody Gold-Coated Magnetic Nanoshells Surface-Enhanced Raman Spectroscopy Substrates. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.653744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Magnetic nanoshells with tailored surface chemistry can enhance bacterial detection and separation technologies. This work demonstrated a simple technique to detect, capture, and aggregate bacteria with the aid of end-functionalized polyclonal antibody gold-coated magnetic nanoshells (pAb-Lis-AuMNs) as surface-enhanced Raman spectroscopy (SERS) probes. Listeria monocytogenes were used as the pathogenic bacteria and the pAb-Lis-AuMNs, 300 nm diameter, were used as probes allowing facile magnetic separation and aggregation. An optimized covalent bioconjugation procedure between the magnetic nanoshells and the polyclonal antibody was performed at pH six via a carbodiimide crosslinking reaction. Spectroscopic and morphological characterization techniques confirmed the fabrication of stable pAb-Lis-AuMNs. The resulting pAb-Lis-AuMNs acted as a SERS probe for L. monocytogenes based on the targeted capture via surface binding interactions and magnetically induced aggregation. Label-free SERS measurements were recorded for the minimum detectable amount of L. monocytogenes based on the SERS intensity at the 1388 cm−1 Raman shift. L. monocytogenes concentrations exhibited detection limits in the range of 104–107 CFU ml−1, before and after aggregation. By fitting these concentrations, the limit of detection of this method was ∼103 CFU ml−1. Using a low-intensity magnetic field of 35 G, pAb-Lis-AuMNs aggregated L. monocytogenes as demonstrated with microscopy techniques, including SEM and optical microscopy. Overall, this work presents a label-free SERS probe method comprised of a surface-modified polyclonal antibody sub-micron magnetic nanoshell structures with high sensitivity and magnetic induced separation that could lead to the fabrication of multiple single-step sensors.
Collapse
|
7
|
Gao M, Gao Y, Chen G, Huang X, Xu X, Lv J, Wang J, Xu D, Liu G. Recent Advances and Future Trends in the Detection of Contaminants by Molecularly Imprinted Polymers in Food Samples. Front Chem 2020; 8:616326. [PMID: 33335893 PMCID: PMC7736048 DOI: 10.3389/fchem.2020.616326] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/09/2020] [Indexed: 12/17/2022] Open
Abstract
Drug residues, organic dyes, heavy metals, and other chemical pollutants not only cause environmental pollution, but also have a serious impact on food safety. Timely and systematic summary of the latest scientific advances is of great importance for the development of new detection technologies. In particular, molecularly imprinted polymers (MIPs) can mimic antibodies, enzymes and other biological molecules to recognize, enrich, and separate contaminants, with specific recognition, selective adsorption, high affinity, and strong resistance characteristics. Therefore, MIPs have been widely used in chemical analysis, sensing, and material adsorption. In this review, we first describe the basic principles and production processes of molecularly imprinted polymers. Secondly, an overview of recent applications of molecularly imprinted polymers in sample pre-treatment, sensors, chromatographic separation, and mimetic enzymes is highlighted. Finally, a brief assessment of current technical issues and future trends in molecularly imprinted polymers is also presented.
Collapse
Affiliation(s)
- Mingkun Gao
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuhang Gao
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ge Chen
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaodong Huang
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaomin Xu
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Lv
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Wang
- Key Laboratory of Agro-Product Quality and Safety, Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Ministry of Agriculture Beijing, Beijing, China
| | - Donghui Xu
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guangyang Liu
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
8
|
Choi JH, Lee JH, Choi JW. Applications of Bionano Sensor for Extracellular Vesicles Analysis. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3677. [PMID: 32825537 PMCID: PMC7503349 DOI: 10.3390/ma13173677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022]
Abstract
Recently, extracellular vesicles (EVs) and their contents have been revealed to play crucial roles in the intrinsic intercellular communications and have received extensive attention as next-generation biomarkers for diagnosis of diseases such as cancers. However, due to the structural nature of the EVs, the precise isolation and characterization are extremely challenging. To this end, tremendous efforts have been made to develop bionano sensors for the precise and sensitive characterization of EVs from a complex biologic fluid. In this review, we will provide a detailed discussion of recently developed bionano sensors in which EVs analysis applications were achieved, typically in optical and electrochemical methods. We believe that the topics discussed in this review will be useful to provide a concise guideline in the development of bionano sensors for EVs monitoring in the future. The development of a novel strategy to monitor various bio/chemical materials from EVs will provide promising information to understand cellular activities in a more precise manner and accelerates research on both cancer and cell-based therapy.
Collapse
Affiliation(s)
- Jin-Ha Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea;
| | - Jin-Ho Lee
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Korea
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea;
| |
Collapse
|
9
|
Barrera G, Coisson M, Celegato F, Martino L, Tiwari P, Verma R, Kane SN, Mazaleyrat F, Tiberto P. Specific Loss Power of Co/Li/Zn-Mixed Ferrite Powders for Magnetic Hyperthermia. SENSORS 2020; 20:s20072151. [PMID: 32290270 PMCID: PMC7181155 DOI: 10.3390/s20072151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022]
Abstract
An important research effort on the design of the magnetic particles is increasingly required to optimize the heat generation in biomedical applications, such as magnetic hyperthermia and heat-assisted drug release, considering the severe restrictions for the human body’s exposure to an alternating magnetic field. Magnetic nanoparticles, considered in a broad sense as passive sensors, show the ability to detect an alternating magnetic field and to transduce it into a localized increase of temperature. In this context, the high biocompatibility, easy synthesis procedure and easily tunable magnetic properties of ferrite powders make them ideal candidates. In particular, the tailoring of their chemical composition and cation distribution allows the control of their magnetic properties, tuning them towards the strict demands of these heat-assisted biomedical applications. In this work, Co0.76Zn0.24Fe2O4, Li0.375Zn0.25Fe2.375O4 and ZnFe2O4 mixed-structure ferrite powders were synthesized in a ‘dry gel’ form by a sol-gel auto-combustion method. Their microstructural properties and cation distribution were obtained by X-ray diffraction characterization. Static and dynamic magnetic measurements were performed revealing the connection between the cation distribution and magnetic behavior. Particular attention was focused on the effect of Co2+ and Li+ ions on the magnetic properties at a magnetic field amplitude and the frequency values according to the practical demands of heat-assisted biomedical applications. In this context, the specific loss power (SLP) values were evaluated by ac-hysteresis losses and thermometric measurements at selected values of the dynamic magnetic fields.
Collapse
Affiliation(s)
- Gabriele Barrera
- Nanoscience and Materials Division, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce 91, I-10135 Torino, Italy; (M.C.); (F.C.); (L.M.); (P.T.)
- Correspondence:
| | - Marco Coisson
- Nanoscience and Materials Division, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce 91, I-10135 Torino, Italy; (M.C.); (F.C.); (L.M.); (P.T.)
| | - Federica Celegato
- Nanoscience and Materials Division, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce 91, I-10135 Torino, Italy; (M.C.); (F.C.); (L.M.); (P.T.)
| | - Luca Martino
- Nanoscience and Materials Division, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce 91, I-10135 Torino, Italy; (M.C.); (F.C.); (L.M.); (P.T.)
| | - Priyanka Tiwari
- Magnetic Materials Laboratory, School of Physics, Devi Ahilya University, Khandwa road Campus, Indore 452001, India; (P.T.); (R.V.); (S.N.K.)
- Department of Physics, Prestige Institute of Engineering Management and Research, Indore 452010, India
| | - Roshni Verma
- Magnetic Materials Laboratory, School of Physics, Devi Ahilya University, Khandwa road Campus, Indore 452001, India; (P.T.); (R.V.); (S.N.K.)
| | - Shashank N. Kane
- Magnetic Materials Laboratory, School of Physics, Devi Ahilya University, Khandwa road Campus, Indore 452001, India; (P.T.); (R.V.); (S.N.K.)
| | - Frédéric Mazaleyrat
- Laboratory of Systems & Applications of Information & Energy Technologies (SATIE), ENS University Paris-Saclay, CNRS 8029, 61 Av. du Pdt. Wilson, F-94230 Cachan, France;
| | - Paola Tiberto
- Nanoscience and Materials Division, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce 91, I-10135 Torino, Italy; (M.C.); (F.C.); (L.M.); (P.T.)
| |
Collapse
|
10
|
Matys J, Gieroba B, Jóźwiak K. Recent developments of bioanalytical methods in determination of neurotransmitters in vivo. J Pharm Biomed Anal 2020; 180:113079. [DOI: 10.1016/j.jpba.2019.113079] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/24/2022]
|
11
|
Gür SD, Bakhshpour M, Denizli A. Selective detection of Escherichia coli caused UTIs with surface imprinted plasmonic nanoscale sensor. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109869. [DOI: 10.1016/j.msec.2019.109869] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/21/2019] [Accepted: 06/05/2019] [Indexed: 12/13/2022]
|
12
|
M13 Bacteriophages as Bioreceptors in Biosensor Device. LECTURE NOTES IN ELECTRICAL ENGINEERING 2019. [DOI: 10.1007/978-3-030-04324-7_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|