1
|
Nano-Biomaterials for Retinal Regeneration. NANOMATERIALS 2021; 11:nano11081880. [PMID: 34443710 PMCID: PMC8399153 DOI: 10.3390/nano11081880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 12/22/2022]
Abstract
Nanoscience and nanotechnology have revolutionized key areas of environmental sciences, including biological and physical sciences. Nanoscience is useful in interconnecting these sciences to find new hybrid avenues targeted at improving daily life. Pharmaceuticals, regenerative medicine, and stem cell research are among the prominent segments of biological sciences that will be improved by nanostructure innovations. The present review was written to present a comprehensive insight into various emerging nanomaterials, such as nanoparticles, nanowires, hybrid nanostructures, and nanoscaffolds, that have been useful in mice for ocular tissue engineering and regeneration. Furthermore, the current status, future perspectives, and challenges of nanotechnology in tracking cells or nanostructures in the eye and their use in modified regenerative ophthalmology mechanisms have also been proposed and discussed in detail. In the present review, various research findings on the use of nano-biomaterials in retinal regeneration and retinal remediation are presented, and these findings might be useful for future clinical applications.
Collapse
|
2
|
Karamitsos A, Lamprogiannis L, Karagkiozaki V, Laskarakis A, Papadopoulou L, Fatouros D, Ziakas N, Logothetidis S, Tsinopoulos I. Design, characterisation and drug release study of polymeric, drug-eluting single layer thin films on the surface of intraocular lenses. IET Nanobiotechnol 2021; 14:501-507. [PMID: 32755960 DOI: 10.1049/iet-nbt.2020.0005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
To design, develop and study a novel drug delivery system for intraocular applications. The spin coating technique was applied to develop a polymeric, drug-eluting thin film consisting of a blend of organic polymers [poly (D, L lactide coglycolide) lactide: glycolide 75: 25, PLGA and polycaprolactone, PCL] and dexamethasone on the surface of intraocular lenses (IOLs). The initial durability of the IOLs during spinning was assessed. Information about the structural and optical properties of the modified IOLs was extracted using atomic force microscopy, scanning electron microscopy and spectroscopic ellipsometry. A drug release study was conducted for 8 weeks. The IOLs were durable in spinning speeds higher than the ones used to develop thin films. Single-layer thin films were successfully developed on the optics and the haptics of the lenses. The films formed nanopores with encapsulated aggregates of dexamethasone. The spectroscopic ellipsometry showed an acceptable optical transparency of the lenses regardless of the deposition of the drug-eluting films on their surface. The drug release study demonstrated gradual dexamethasone release over the selected period. In conclusion, the novel drug-eluting IOL system exhibited desired properties regarding its transparency and drug release rate. Further research is necessary to assess their suitability as an intraocular drug delivery system.
Collapse
Affiliation(s)
- Athanasios Karamitsos
- Lab for Thin Films - Nanobiomaterials - Nanosystems & Nanometrology (LTFN), Department of Physics, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| | - Lampros Lamprogiannis
- Lab for Thin Films - Nanobiomaterials - Nanosystems & Nanometrology (LTFN), Department of Physics, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | | | - Argyrios Laskarakis
- Lab for Thin Films - Nanobiomaterials - Nanosystems & Nanometrology (LTFN), Department of Physics, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Lambrini Papadopoulou
- Lab of Scanning Electron Microscopy, Department of Mineralogy-Petrology-Economic Geology, School of Geology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios Fatouros
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Ziakas
- Second Ophthalmology Department, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stergios Logothetidis
- Lab for Thin Films - Nanobiomaterials - Nanosystems & Nanometrology (LTFN), Department of Physics, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Ioannis Tsinopoulos
- Second Ophthalmology Department, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
3
|
Tavakoli Z, Yazdian F, Tabandeh F, Sheikhpour M. Regenerative medicine as a novel strategy for AMD treatment: a review. Biomed Phys Eng Express 2019; 6:012001. [PMID: 33438587 DOI: 10.1088/2057-1976/ab269a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Age-related macular degeneration (AMD) is known as a major cause of irreversible blindness in elderly adults. The segment of the retina responsible for central vision damages in the disease process. Degeneration of retinal pigmented epithelium (RPE) cells, photoreceptors, and choriocapillaris associated with aging participate for visual loss. In 2010, AMD involved 6.6% of all blindness cases around the world. Some of the researches have evaluated the replacing of damaged RPE in AMD patients by using the cells from various sources. Today, the advancement of RPE differentiation or generation from stem cells has been gained, and currently, clinical trials are testing the efficiency and safety of replacing degenerated RPE with healthy RPE. However, the therapeutic success of RPE transplantation may be restricted unless the transplanted cells can be adhered, distributed and survive for long-term in the transplanted site without any infections. In recent years a variety of scaffold types were used as a carrier for RPE transplantation and AMD treatment. In this review, we have discussed types of scaffolds; natural or synthetic, solid or hydrogel and their results in RPE replacement. Eventually, our aim is highlighting the novel and best scaffold carriers that may have potentially promoting the efficacy of RPE transplantation.
Collapse
Affiliation(s)
- Zahra Tavakoli
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | | | | | | |
Collapse
|
4
|
Sahle FF, Kim S, Niloy KK, Tahia F, Fili CV, Cooper E, Hamilton DJ, Lowe TL. Nanotechnology in regenerative ophthalmology. Adv Drug Deliv Rev 2019; 148:290-307. [PMID: 31707052 PMCID: PMC7474549 DOI: 10.1016/j.addr.2019.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/18/2022]
Abstract
In recent years, regenerative medicine is gaining momentum and is giving hopes for restoring function of diseased, damaged, and aged tissues and organs and nanotechnology is serving as a catalyst. In the ophthalmology field, various types of allogenic and autologous stem cells have been investigated to treat some ocular diseases due to age-related macular degeneration, glaucoma, retinitis pigmentosa, diabetic retinopathy, and corneal and lens traumas. Nanomaterials have been utilized directly as nanoscaffolds for these stem cells to promote their adhesion, proliferation and differentiation or indirectly as vectors for various genes, tissue growth factors, cytokines and immunosuppressants to facilitate cell reprogramming or ocular tissue regeneration. In this review, we reviewed various nanomaterials used for retina, cornea, and lens regenerations, and discussed the current status and future perspectives of nanotechnology in tracking cells in the eye and personalized regenerative ophthalmology. The purpose of this review is to provide comprehensive and timely insights on the emerging field of nanotechnology for ocular tissue engineering and regeneration.
Collapse
Affiliation(s)
- Fitsum Feleke Sahle
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Sangyoon Kim
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Kumar Kulldeep Niloy
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Faiza Tahia
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Cameron V Fili
- Department of Comparative Medicine, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Emily Cooper
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - David J Hamilton
- Department of Comparative Medicine, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Tao L Lowe
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA.
| |
Collapse
|
5
|
Kundu J, Michaelson A, Baranov P, Chiumiento M, Nigl T, Young MJ, Carrier RL. Interphotoreceptor matrix based biomaterial: Impact on human retinal progenitor cell attachment and differentiation. J Biomed Mater Res B Appl Biomater 2017; 106:891-899. [PMID: 28419733 DOI: 10.1002/jbm.b.33901] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 02/27/2017] [Accepted: 03/28/2017] [Indexed: 11/08/2022]
Abstract
While cell transplantation therapies show great promise as treatments for retinal degeneration, the challenge of low cell survival upon transplantation motivates exploration of materials that may serve as cell delivery vehicles and promote survival and differentiation. In this study, we explored the native matrix that surrounds the outer segments of photoreceptors and promotes their homeostasis, interphotoreceptor matrix (IPM), as a substrate for human retinal progenitor cells (hRPCs). Bovine IPM was characterized to determine its structure and biochemical composition, and processed to develop substrates for cells. Cell viability, morphology, proliferation and expression of photoreceptors marker genes were studied on IPM-based substrates in vitro. We explored different preparations of IPM as a scaffold. Lectin staining revealed that a distinct honeycomb structure of native IPM is lost during centrifugation to prepare a more concentrated suspension of matrix. Biochemical analysis of bovine IPM indicated presence of glycosaminoglycans and proteins. IPM mediated hRPC attachment and spreading with no signs of cytotoxicity. Cells proliferated more on native IPM substrates compared to IPM that was centrifuged to create a concentrated suspension. Cells cultured on IPM substrates expressed markers of photoreceptors: rhodopsin, NRL and ROM1. Together this data supports further exploration of IPM as a tool for retinal tissue engineering. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 891-899, 2018.
Collapse
Affiliation(s)
- Joydip Kundu
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, 02115.,Schepens Eye Research Institute, Massachusetts Eye and Ear, An affiliate of Harvard Medical School, Boston, Massachusetts, 02114
| | - Andrew Michaelson
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, 02115
| | - Petr Baranov
- Schepens Eye Research Institute, Massachusetts Eye and Ear, An affiliate of Harvard Medical School, Boston, Massachusetts, 02114
| | - Marco Chiumiento
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, 02115
| | - Tom Nigl
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, 02115
| | - Michael J Young
- Schepens Eye Research Institute, Massachusetts Eye and Ear, An affiliate of Harvard Medical School, Boston, Massachusetts, 02114
| | - Rebecca L Carrier
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, 02115
| |
Collapse
|
6
|
Oliveira AV, Rosa da Costa AM, Silva GA. Non-viral strategies for ocular gene delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:1275-1289. [PMID: 28532005 DOI: 10.1016/j.msec.2017.04.068] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/11/2017] [Accepted: 04/13/2017] [Indexed: 02/08/2023]
Abstract
The success of gene therapy relies on efficient gene transfer and stable transgene expression. The in vivo efficiency is determined by the delivery vector, route of administration, therapeutic gene, and target cells. While some requirements are common to several strategies, others depend on the target disease and transgene product. Consequently, it is unlikely that a single system is suitable for all applications. This review examines current gene therapy strategies, focusing on non-viral approaches and the use of natural polymers with the eye, and particularly the retina, as their gene delivery target.
Collapse
Affiliation(s)
- Ana V Oliveira
- Center for Biomedical Research (CBMR), University of Algarve, Faro 8005-139, Portugal
| | - Ana M Rosa da Costa
- Department of Chemistry and Pharmacy, University of Algarve, Faro 8005-139, Portugal; Algarve Chemistry Research Centre (CIQA), University of Algarve, Faro 8005-139, Portugal
| | - Gabriela A Silva
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal.
| |
Collapse
|
7
|
Nanoengineering of therapeutics for retinal vascular disease. Eur J Pharm Biopharm 2015; 95:323-30. [PMID: 26022642 DOI: 10.1016/j.ejpb.2015.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 04/29/2015] [Accepted: 05/05/2015] [Indexed: 01/07/2023]
Abstract
Retinal vascular diseases, including diabetic retinopathy, neovascular age related macular degeneration, and retinal vein occlusion, are leading causes of blindness in the Western world. These diseases share several common disease mechanisms, including vascular endothelial growth factor (VEGF) signaling, hypoxia, and inflammation, which provide opportunities for common therapeutic strategies. Treatment of these diseases using laser therapy, anti-VEGF injections, and/or steroids has significantly improved clinical outcomes. However, these strategies do not address the underlying root causes of pathology, and may have deleterious side effects. Furthermore, many patients continue to progress toward legal blindness despite receiving regular therapy. Nanomedicine, the engineering of therapeutics at the 1-100 nm scale, is a promising approach for improving clinical management of retinal vascular diseases. Nanomedicine-based technologies have the potential to revolutionize the treatment of ophthalmology, through enabling sustained release of drugs over several months, reducing side effects due to specific targeting of dysfunctional cells, and interfacing with currently "undruggable" targets. We will discuss emerging nanomedicine-based applications for the treatment of complications associated with retinal vascular diseases, including angiogenesis and inflammation.
Collapse
|
8
|
Wang PW, Kuo HM, Huang HT, Chang AYW, Weng SW, Tai MH, Chuang JH, Chen IY, Huang SC, Lin TK, Liou CW. Biphasic response of mitochondrial biogenesis to oxidative stress in visceral fat of diet-induced obesity mice. Antioxid Redox Signal 2014; 20:2572-88. [PMID: 24111683 PMCID: PMC4025601 DOI: 10.1089/ars.2013.5334] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AIMS Studies in skeletal muscle demonstrate a strong association of mitochondrial dysfunction with insulin resistance (IR). However, there is still a paucity of knowledge regarding the alteration of mitochondria in adipose tissue (AT) in the pathogenesis of IR in obesity. We investigated the mitochondrial biogenesis in visceral fat (VF) and subcutaneous fat (SF) in C57BL/6J mice fed a high-fat high-sucrose diet for 12 months. RESULTS Impairment of glucose tolerance and insulin sensitivity developed after 1 month of the diet and was associated with a prompt increase of VF. The VF adipocytes were larger than those in the SF and had increased expressions of HIF-1α and p-NFκB p65. However, the alteration of mitochondrial biogenesis did not occur in the early stage when increased intracellular reactive oxygen species (ROS), mitochondrial oxygen consumption rate, and mitochondrial ROS emerged at the 1st, 2nd and 2nd month, respectively. Until the 6th month, the VF had markedly increased mitochondrial DNA content and expression of PGC-1α, Tfam, ATP5A, and MnSOD. This increase of mitochondrial biogenesis was followed by a generalized decrease at the 12th month and the mitochondrial morphology altered markedly. In the late stage, although mitochondrial ROS decreased, the increased expression of 8-OHdG in VF continued. INNOVATION AND CONCLUSION These data suggest that IR and ROS production occur before the biphasic changes of mitochondrial biogenesis in AT, and the VF plays a more crucial role.
Collapse
Affiliation(s)
- Pei-Wen Wang
- Department of Internal Medicine, Chang Gung University College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Hsiao-Mei Kuo
- Department of Internal Medicine, Chang Gung University College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Hung-Tu Huang
- Department of Anatomy, College of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Alice YW Chang
- Center for Translational Research in Biomedical Sciences, Chang Gung University College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Shao-Wen Weng
- Department of Internal Medicine, Chang Gung University College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Ming-Hong Tai
- Department of Biological Sciences, Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Jiin-Haur Chuang
- Department of Surgery, Chang Gung University College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - I-Ya Chen
- Department of Internal Medicine, Chang Gung University College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Shun-Chen Huang
- Department of Anatomic Pathology, Chang Gung University College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Tsu-Kung Lin
- Department of Neurology, Chang Gung University College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chia-Wei Liou
- Department of Neurology, Chang Gung University College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| |
Collapse
|
9
|
Affiliation(s)
- Marco A Zarbin
- From the Institute of Ophthalmology and Visual Science, Rutgers-New Jersey Medical School, Rutgers University, Newark, NJ
| |
Collapse
|
10
|
Zarbin MA, Arlow T, Ritch R. Regenerative nanomedicine for vision restoration. Mayo Clin Proc 2013; 88:1480-90. [PMID: 24290123 DOI: 10.1016/j.mayocp.2013.05.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 05/27/2013] [Accepted: 05/30/2013] [Indexed: 11/29/2022]
Abstract
Herein, we discuss recent applications of nanotechnology to ophthalmology, including nanoparticles for drug, gene, and trophic factor delivery; regenerative medicine (in the areas of optogenetics and optic nerve regeneration); and diagnostics (eg, minimally invasive biometric monitoring). Specific applications for the management of choroidal neovascularization, retinal neovascularization, oxidative damage, optic nerve damage, and retinal degenerative disease are considered. Nanotechnology will play an important role in early- and late-stage interventions in the management of blinding diseases.
Collapse
Affiliation(s)
- Marco A Zarbin
- Institute of Ophthalmology and Visual Science, New Jersey Medical School, Rutgers University, Newark, NJ.
| | | | | |
Collapse
|
11
|
Nanomedicine for the treatment of retinal and optic nerve diseases. Curr Opin Pharmacol 2013; 13:134-48. [DOI: 10.1016/j.coph.2012.10.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 10/04/2012] [Accepted: 10/04/2012] [Indexed: 01/02/2023]
|