1
|
Zhang E, Shotbolt M, Chang CY, Scott-Vandeusen A, Chen S, Liang P, Radu D, Khizroev S. Controlling action potentials with magnetoelectric nanoparticles. Brain Stimul 2024; 17:1005-1017. [PMID: 39209064 DOI: 10.1016/j.brs.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/06/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Non-invasive or minutely invasive and wireless brain stimulation that can target any region of the brain is an open problem in engineering and neuroscience with serious implications for the treatment of numerous neurological diseases. Despite significant recent progress in advancing new methods of neuromodulation, none has successfully replicated the efficacy of traditional wired stimulation and improved on its downsides without introducing new complications. Due to the capability to convert magnetic fields into local electric fields, MagnetoElectric NanoParticle (MENP) neuromodulation is a recently proposed framework based on new materials that can locally sensitize neurons to specific, low-strength alternating current (AC) magnetic fields (50Hz 1.7 kOe field). However, the current research into this neuromodulation concept is at a very early stage, and the theoretically feasible game-changing advantages remain to be proven experimentally. To break this stalemate phase, this study leveraged understanding of the non-linear properties of MENPs and the nanoparticles' field interaction with the cellular microenvironment. Particularly, the applied magnetic field's strength and frequency were tailored to the M - H hysteresis loop of the nanoparticles. Furthermore, rectangular prisms instead of the more traditional "spherical" nanoparticle shapes were used to: (i) maximize the magnetoelectric effect and (ii) improve the nanoparticle-cell-membrane surface interface. Neuromodulation performance was evaluated in a series of exploratory in vitro experiments on 2446 rat hippocampus neurons. Linear mixed effect models were used to ensure the independence of samples by accounting for fixed adjacency effects in synchronized firing. Neural activity was measured over repeated 4-min segments, containing 90 s of baseline measurements, 90 s of stimulation measurements, and 60 s of post stimulation measurements. 87.5 % of stimulation attempts produced statistically significant (P < 0.05) changes in neural activity, with 58.3 % producing large changes (P < 0.01). In negative controls using either zero or 1.7 kOe-strength field without nanoparticles, no experiments produced significant changes in neural activity (P > 0.05 and P > 0.15 respectively). Furthermore, an exploratory analysis of a direct current (DC) magnetic field indicated that the DC field could be used with MENPs to inhibit neuron activity (P < 0.01). These experiments demonstrated the potential for magnetoelectric neuromodulation to offer a near one-to-one functionality match with conventional electrode stimulation without requiring surgical intervention or genetic modification to achieve success, instead relying on physical properties of these nanoparticles as "On/Off" control mechanisms. ONE-SENTENCE SUMMARY: This in vitro neural cell culture study explores how to exploit the non-linear and anisotropic properties of magnetoelectric nanoparticles for wireless neuromodulation, the importance of magnetic field strength and frequency matching for optimization, and demonstrates, for the first time, that magnetoelectric neuromodulation can inhibit neural responses.
Collapse
Affiliation(s)
- Elric Zhang
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, FL, USA
| | - Max Shotbolt
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
| | - Chen-Yu Chang
- Department of Mechanical and Materials Engineering, Florida International University, Miami, FL, USA
| | | | - Shawnus Chen
- Department of Chemical, Environmental and Materials Engineering, Coral Gables, FL, University of Miami, USA
| | | | - Daniela Radu
- Department of Mechanical and Materials Engineering, Florida International University, Miami, FL, USA
| | - Sakhrat Khizroev
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, FL, USA; The Miami Project to Cure Paralysis, Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
2
|
Giménez S, Millan A, Mora-Morell A, Ayuso N, Gastaldo-Jordán I, Pardo M. Advances in Brain Stimulation, Nanomedicine and the Use of Magnetoelectric Nanoparticles: Dopaminergic Alterations and Their Role in Neurodegeneration and Drug Addiction. Molecules 2024; 29:3580. [PMID: 39124985 PMCID: PMC11314096 DOI: 10.3390/molecules29153580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
Recent advancements in brain stimulation and nanomedicine have ushered in a new era of therapeutic interventions for psychiatric and neurodegenerative disorders. This review explores the cutting-edge innovations in brain stimulation techniques, including their applications in alleviating symptoms of main neurodegenerative disorders and addiction. Deep Brain Stimulation (DBS) is an FDA-approved treatment for specific neurodegenerative disorders, including Parkinson's Disease (PD), and is currently under evaluation for other conditions, such as Alzheimer's Disease. This technique has facilitated significant advancements in understanding brain electrical circuitry by enabling targeted brain stimulation and providing insights into neural network function and dysfunction. In reviewing DBS studies, this review places particular emphasis on the underlying main neurotransmitter modifications and their specific brain area location, particularly focusing on the dopaminergic system, which plays a critical role in these conditions. Furthermore, this review delves into the groundbreaking developments in nanomedicine, highlighting how nanotechnology can be utilized to target aberrant signaling in neurodegenerative diseases, with a specific focus on the dopaminergic system. The discussion extends to emerging technologies such as magnetoelectric nanoparticles (MENPs), which represent a novel intersection between nanoformulation and brain stimulation approaches. These innovative technologies offer promising avenues for enhancing the precision and effectiveness of treatments by enabling the non-invasive, targeted delivery of therapeutic agents as well as on-site, on-demand stimulation. By integrating insights from recent research and technological advances, this review aims to provide a comprehensive understanding of how brain stimulation and nanomedicine can be synergistically applied to address complex neuropsychiatric and neurodegenerative disorders, paving the way for future therapeutic strategies.
Collapse
Affiliation(s)
- Silvia Giménez
- Department of Psychobiology, Universidad de Valencia, 46010 Valencia, Spain; (S.G.); (N.A.)
| | - Alexandra Millan
- Department of Neurobiology and Neurophysiology, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain;
| | - Alba Mora-Morell
- Faculty of Biological Sciences, Universidad de Valencia, 46100 Valencia, Spain;
| | - Noa Ayuso
- Department of Psychobiology, Universidad de Valencia, 46010 Valencia, Spain; (S.G.); (N.A.)
| | - Isis Gastaldo-Jordán
- Psychiatry Service, Doctor Peset University Hospital, FISABIO, 46017 Valencia, Spain;
| | - Marta Pardo
- Department of Psychobiology, Universidad de Valencia, 46010 Valencia, Spain; (S.G.); (N.A.)
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), 46022 Valencia, Spain
| |
Collapse
|
3
|
Tian G, Yang D, Chen C, Duan X, Kim DH, Chen H. Simultaneous Presentation of Dexamethasone and Nerve Growth Factor via Layered Carbon Nanotubes and Polypyrrole to Interface Neural Cells. ACS Biomater Sci Eng 2023; 9:5015-5027. [PMID: 37489848 DOI: 10.1021/acsbiomaterials.3c00593] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The implantation of neural electrodes usually induces acute and chronic inflammation, which can result in the formation of glial scars encapsulating the implanted electrodes and the loss of neurons near the active electrode sites. Local presentation of anti-inflammatory drugs or neural protective factors has been evidenced as an effective strategy to modulate inflammatory responses and promote electrode-neuron integration. Here, a novel delivery system for the simultaneous presentation of both anti-inflammatory drugs (dexamethasone, Dex) and nerve-growth-promoting factors (nerve growth factor, NGF) from the electrode sites was developed via layer-structured carbon nanotubes and conductive polymers. The modified electrodes exhibited higher charge storage capacitance and lower electrochemical impedance compared to unmodified electrodes and electrodes coated with polypyrrole/Dex. Dex released from the functional coating under controlled electrochemical stimulation was able to inhibit the lipopolysaccharide-induced secretion or mRNA transcription of inflammatory cytokines, including nitric oxide, TNF-α, and IL-6 in RAW264.7 cells, and control the activation of cultured astrocytes. In addition, the functional coatings did not show a toxic effect on PC12 cells and primary neural cells but exhibited promoted activities on the adhesion, growth, and neurite extension of neural cells.
Collapse
Affiliation(s)
- Guangzhao Tian
- School of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, People's Republic of China
| | - Dan Yang
- School of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, People's Republic of China
| | - Chunrong Chen
- School of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, People's Republic of China
| | - Xiaoge Duan
- School of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, People's Republic of China
| | - Dong-Hwan Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Hailan Chen
- School of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, People's Republic of China
| |
Collapse
|
4
|
Modeling of core-shell magneto-electric nanoparticles for biomedical applications: Effect of composition, dimension, and magnetic field features on magnetoelectric response. PLoS One 2022; 17:e0274676. [PMID: 36149898 PMCID: PMC9506614 DOI: 10.1371/journal.pone.0274676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/01/2022] [Indexed: 12/03/2022] Open
Abstract
The recent development of core-shell nanoparticles which combine strain coupled magnetostrictive and piezoelectric phases, has attracted a lot of attention due to their ability to yield strong magnetoelectric effect even at room temperature, thus making them a promising tool to enable biomedical applications. To fully exploit their potentialities and to adapt their use to in vivo applications, this study analyzes, through a numerical approach, their magnetoelectric behavior, shortly quantified by the magnetoelectric coupling coefficient (αME), thus providing an important milestone for the characterization of the magnetoelectric effect at the nanoscale. In view of recent evidence showing that αME is strongly affected by both the applied magnetic field DC bias and AC frequency, this study implements a nonlinear model, based on magnetic hysteresis, to describe the responses of two different core-shell nanoparticles to various magnetic field excitation stimuli. The proposed model is also used to evaluate to which extent realistic variables such as core diameter and shell thickness affect the electric output. Results prove that αME of 80 nm cobalt ferrite-barium titanate (CFO-BTO) nanoparticles with a 60:40 ratio is equal to about 0.28 V/cm∙Oe corresponding to electric fields up to about 1000 V/cm when a strong DC bias is applied. However, the same electric output can be obtained even in absence of DC field with very low AC fields, by exploiting the hysteretic characteristics of the same composites. The analysis of core and shell dimension is as such to indicate that, to maximize αME, larger core diameter and thinner shell nanoparticles should be preferred. These results, taken together, suggest that it is possible to tune magnetoelectric nanoparticles electric responses by controlling their composition and their size, thus opening the opportunity to adapt their structure on the specific application to pursue.
Collapse
|