1
|
Wu L, Tanwar S, Kaur G, Date S, Goel L, Chatterjee A, McGuiggan P, Barman I. DNA Origami-Engineered Plasmonic Nanoprobes for Targeted Cancer Imaging. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2309929. [PMID: 39131199 PMCID: PMC11309351 DOI: 10.1002/adfm.202309929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Indexed: 08/13/2024]
Abstract
Plasmonic nanomaterials bearing targeting ligands are of great interest for surface-enhanced Raman scattering (SERS)-based bioimaging applications. However, the practical utility of SERS-based imaging strategies has been hindered by the lack of a straightforward method to synthesize highly sensitive SERS-active nanostructures with high yield and efficiency. In this work, leveraging DNA origami principles, we report the first-in-class design of a SERS-based plasmonically coupled nanoprobe for targeted cancer imaging (SPECTRA). The nanoprobe harnesses a cancer cell targeting DNA aptamer sequence and vibrational tag with stretching frequency in the cell-silent Raman window. Through the integration of aptamer sequence specific for DU145 cells, we show the unique capabilities of SPECTRA for targeted imaging of DU145 cells. Our results demonstrate that the scalability, cost-effectiveness, and reproducibility of this method of fabrication of SERS nanoprobes can serve as a versatile platform for creating nanoprobes with broad applications in the fields of cancer biology and biomedical imaging.
Collapse
Affiliation(s)
- Lintong Wu
- Department of Mechanical Engineering, Johns Hopkins University, Maryland 21218, USA
| | - Swati Tanwar
- Department of Mechanical Engineering, Johns Hopkins University, Maryland 21218, USA
| | - Gagandeep Kaur
- Department of Mechanical Engineering, Johns Hopkins University, Maryland 21218, USA
| | - Siddhi Date
- Department of Biomedical Engineering, Johns Hopkins University, Maryland 21218, USA
| | - Linika Goel
- Department of Biomedical Engineering, Johns Hopkins University, Maryland 21218, USA
| | - Arnab Chatterjee
- Department of Mechanical Engineering, Johns Hopkins University, Maryland 21218, USA
| | - Patty McGuiggan
- Department of Material Science and Engineering, Johns Hopkins University, Maryland 21218, USA
- Department of Chemistry, Johns Hopkins University, Maryland 21218, USA
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Maryland 21218, USA
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Maryland 21205, USA
- Department of Oncology, Johns Hopkins University, Maryland 21231, USA
| |
Collapse
|
2
|
Zheng P, Raj P, Liang L, Wu L, Paidi SK, Kim JH, Barman I. Label-free plasmonic spectral profiling of serum DNA. Biosens Bioelectron 2024; 254:116199. [PMID: 38492362 PMCID: PMC11056035 DOI: 10.1016/j.bios.2024.116199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
Genetic and epigenetic modifications are linked to the activation of oncogenes and inactivation of tumor suppressor genes. Likewise, the associated molecular alternations can best inform precision medicine for personalized tumor treatment. Therefore, performing characterization of genetic and epigenetic alternations at the molecular level represents a crucial step in early diagnosis and/or therapeutics of cancer. However, the prevailing methods for DNA analysis involve a series of tedious and complicated steps, in which important genetic and epigenetic information could be lost or altered. To provide a potential approach for non-invasive, direct, and efficient DNA analysis, herein, we present a promising strategy for label-free molecular profiling of serum DNA in its pristine form by fusing surface-enhanced Raman spectroscopy with machine learning on a superior plasmonic nanostructured platform. Using DNA methylation and single-point mutation as two case studies, the presented strategy allows a well-balanced sensitive and specific detection of epigenetic and genetic changes at the single-nucleotide level in serum. We envision the presented label-free strategy could serve as a versatile tool for direct molecular profiling in pristine forms of a wide range of biological markers and aid biomedical diagnostics as well as therapeutics.
Collapse
Affiliation(s)
- Peng Zheng
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, United States
| | - Piyush Raj
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, United States
| | - Le Liang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, United States; The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China; Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Lintong Wu
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, United States
| | - Santosh Kumar Paidi
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, United States
| | - Jeong Hee Kim
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, United States
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, United States; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, United States; The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, United States.
| |
Collapse
|
3
|
Su Z, Tan P, Zhang J, Wang P, Zhu S, Jiang N. Understanding the Mechanics of the Temporomandibular Joint Osteochondral Interface from Micro- and Nanoscopic Perspectives. NANO LETTERS 2023; 23:11702-11709. [PMID: 38060440 DOI: 10.1021/acs.nanolett.3c03564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
The condylar cartilage of the temporomandibular joint (TMJ) is connected to the subchondral bone by an osteochondral interface that transmits loads without causing fatigue damage. However, the microstructure, composition, and mechanical properties of this interface remain elusive. In this study, we found that structurally, a spatial gradient assembly of hydroxyapatite (HAP) particles exists in the osteochondral interface, with increasing volume of apatite crystals with depth and a tendency to form denser and stacked structures. Combined with nanoindentation, this complex assembly of nanoscale structures and components enhanced energy dissipation at the osteochondral interface, achieving a smooth stress transition between soft and hard tissues. This study comprehensively demonstrates the elemental composition and complex nanogradient spatial assembly of the osteochondral interface at the ultramicroscopic scale, providing a basis for exploring the construction of complex mechanical models of the interfacial region.
Collapse
Affiliation(s)
- Zhan Su
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Peijie Tan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jie Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Peng Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Nan Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
4
|
Tanwar S, Ghaemi B, Raj P, Singh A, Wu L, Yuan Y, Arifin DR, McMahon MT, Bulte JWM, Barman I. A Smart Intracellular Self-Assembling Bioorthogonal Raman Active Nanoprobe for Targeted Tumor Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304164. [PMID: 37715297 PMCID: PMC10700673 DOI: 10.1002/advs.202304164] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/21/2023] [Indexed: 09/17/2023]
Abstract
Inspired by the principle of in situ self-assembly, the development of enzyme-activated molecular nanoprobes can have a profound impact on targeted tumor detection. However, despite their intrinsic promise, obtaining an optical readout of enzyme activity with high specificity in native milieu has proven to be challenging. Here, a fundamentally new class of Raman-active self-assembling bioorthogonal enzyme recognition (nanoSABER) probes for targeted tumor imaging is reported. This class of Raman probes presents narrow spectral bands reflecting their vibrational fingerprints and offers an attractive solution for optical imaging at different bio-organization levels. The optical beacon harnesses an enzyme-responsive peptide sequence, unique tumor-penetrating properties, and vibrational tags with stretching frequencies in the cell-silent Raman window. The design of nanoSABER is tailored and engineered to transform into a supramolecular structure exhibiting distinct vibrational signatures in presence of target enzyme, creating a direct causality between enzyme activity and Raman signal. Through the integration of substrate-specific for tumor-associated enzyme legumain, unique capabilities of nanoSABER for imaging enzyme activity at molecular, cellular, and tissue levels in combination with machine learning models are shown. These results demonstrate that the nanoSABER probe may serve as a versatile platform for Raman-based recognition of tumor aggressiveness, drug accumulation, and therapeutic response.
Collapse
Affiliation(s)
- Swati Tanwar
- Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| | - Behnaz Ghaemi
- The Russell H. Morgan Department of Radiology and Radiological ScienceThe Johns Hopkins University School of MedicineBaltimoreMD21205USA
- Cellular Imaging Section and Vascular Biology ProgramInstitute for Cell EngineeringThe Johns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Piyush Raj
- Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| | - Aruna Singh
- The Russell H. Morgan Department of Radiology and Radiological ScienceThe Johns Hopkins University School of MedicineBaltimoreMD21205USA
- F.M. Kirby Research Center for Functional Brain ImagingKennedy Krieger Inc.BaltimoreMD21205USA
| | - Lintong Wu
- Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| | - Yue Yuan
- Department of ChemistryUniversity of Science and Technology of China96 Jinzhai RoadHefeiAnhui230026China
| | - Dian R. Arifin
- The Russell H. Morgan Department of Radiology and Radiological ScienceThe Johns Hopkins University School of MedicineBaltimoreMD21205USA
- Cellular Imaging Section and Vascular Biology ProgramInstitute for Cell EngineeringThe Johns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Michael T. McMahon
- The Russell H. Morgan Department of Radiology and Radiological ScienceThe Johns Hopkins University School of MedicineBaltimoreMD21205USA
- F.M. Kirby Research Center for Functional Brain ImagingKennedy Krieger Inc.BaltimoreMD21205USA
| | - Jeff W. M. Bulte
- The Russell H. Morgan Department of Radiology and Radiological ScienceThe Johns Hopkins University School of MedicineBaltimoreMD21205USA
- Cellular Imaging Section and Vascular Biology ProgramInstitute for Cell EngineeringThe Johns Hopkins University School of MedicineBaltimoreMD21205USA
- F.M. Kirby Research Center for Functional Brain ImagingKennedy Krieger Inc.BaltimoreMD21205USA
- Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
- Department of Chemical & Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
- Department of OncologyJohns Hopkins UniversityBaltimoreMD21231USA
| | - Ishan Barman
- Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
- The Russell H. Morgan Department of Radiology and Radiological ScienceThe Johns Hopkins University School of MedicineBaltimoreMD21205USA
- Department of OncologyJohns Hopkins UniversityBaltimoreMD21231USA
| |
Collapse
|
5
|
Liu Y, Li M, Liu H, Kang C, Yu X. Strategies and Progress of Raman Technologies for Cellular Uptake Analysis of the Drug Delivery Systems. Int J Nanomedicine 2023; 18:6883-6900. [PMID: 38026519 PMCID: PMC10674749 DOI: 10.2147/ijn.s435087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023] Open
Abstract
Nanoparticle (NP)-based drug delivery systems have the potential to significantly enhance the pharmacological and therapeutic properties of drugs. These systems enhance the bioavailability and biocompatibility of pharmaceutical agents via enabling targeted delivery to specific tissues or organs. However, the efficacy and safety of these systems are largely dependent on the cellular uptake and intracellular transport of NPs. Thus, it is crucial to monitor the intracellular behavior of NPs within a single cell. Yet, it is challenging due to the complexity and size of the cell. Recently, the development of the Raman instrumentation offers a versatile tool to allow noninvasive cellular measurements. The primary objective of this review is to highlight the most recent advancements in Raman techniques (spontaneous Raman scattering, bioorthogonal Raman scattering, coherence Raman scattering, and surface-enhanced Raman scattering) when it comes to assessing the internalization of NP-based drug delivery systems and their subsequent movement within cells.
Collapse
Affiliation(s)
- Yajuan Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology, and the NMPA & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People’s Republic of China
| | - Mei Li
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, People’s Republic of China
| | - Haisha Liu
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, People’s Republic of China
| | - Chao Kang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, People’s Republic of China
| | - Xiyong Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology, and the NMPA & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People’s Republic of China
| |
Collapse
|
6
|
Fortuni B, Ricci M, Vitale R, Inose T, Zhang Q, Hutchison JA, Hirai K, Fujita Y, Toyouchi S, Krzyzowska S, Van Zundert I, Rocha S, Uji-I H. SERS Endoscopy for Monitoring Intracellular Drug Dynamics. ACS Sens 2023; 8:2340-2347. [PMID: 37219991 DOI: 10.1021/acssensors.3c00394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Understanding the dynamics and distribution of medicinal drugs in living cells is essential for the design and discovery of treatments. The tools available for revealing this information are, however, extremely limited. Here, we report the application of surface-enhanced Raman scattering (SERS) endoscopy, using plasmonic nanowires as SERS probes, to monitor the intracellular fate and dynamics of a common chemo-drug, doxorubicin, in A549 cancer cells. The unique spatio-temporal resolution of this technique reveals unprecedented information on the mode of action of doxorubicin: its localization in the nucleus, its complexation with medium components, and its intercalation with DNA as a function of time. Notably, we were able to discriminate these factors for the direct administration of doxorubicin or the use of a doxorubicin delivery system. The results reported here show that SERS endoscopy may have an important future role in medicinal chemistry for studying the dynamics and mechanism of action of drugs in cells.
Collapse
Affiliation(s)
- Beatrice Fortuni
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Monica Ricci
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Raffaele Vitale
- U. Lille, CNRS, LASIRE, Laboratoire Avancé de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, Cité Scientifique, F-59000 Lille, France
| | - Tomoko Inose
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Qiang Zhang
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan
| | - James Andell Hutchison
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
| | - Kenji Hirai
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan
| | - Yasuhiko Fujita
- Toray Research Center, Inc., Sonoyama 3-3-7, Otsu, Shiga 520-8567, Japan
| | - Shuichi Toyouchi
- Research Institute for Light-Induced Acceleration System (RILACS), Osaka Metropolitan University, 1-2 Gakuencho, Nakaku, Sakai, Osaka 599-8570, Japan
| | - Sandra Krzyzowska
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Indra Van Zundert
- Synthetic Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Susana Rocha
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Hiroshi Uji-I
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan
| |
Collapse
|
7
|
Zhang T, Quan X, Cao N, Zhang Z, Li Y. Label-Free Detection of DNA via Surface-Enhanced Raman Spectroscopy Using Au@Ag Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12183119. [PMID: 36144907 PMCID: PMC9505376 DOI: 10.3390/nano12183119] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/03/2022] [Accepted: 09/04/2022] [Indexed: 06/12/2023]
Abstract
DNA is a building block of life; surface-enhanced Raman spectroscopy (SERS) has been broadly applied in the detection of biomolecules but there are challenges in obtaining high-quality DNA SERS signals under non-destructive conditions. Here, we developed a novel label-free approach for DNA detection based on SERS, in which the Au@AgNPs core-shell structure was selected as the enhancement substrate, which not only solved the problem of the weak enhancement effect of gold nanoparticles but also overcame the disadvantage of the inhomogeneous shapes of silver nanoparticles, thereby improving the sensitivity and reproducibility of the SERS signals of DNA molecules. The method obtained SERS signals for four DNA bases (A, C, G, and T) without destroying the structure, then further detected and qualified different specific structures of DNA molecules. These results promote the application of SERS technology in the field of biomolecular detection.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Pharmaceutical Analysis and Analytical Chemistry, Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Xubin Quan
- Department of Pharmaceutical Analysis and Analytical Chemistry, Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Naisi Cao
- Department of Pharmaceutical Analysis and Analytical Chemistry, Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Zhaoying Zhang
- The Fourth Hospital of Harbin Medical University, Harbin 150001, China
| | - Yang Li
- Department of Pharmaceutical Analysis and Analytical Chemistry, Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| |
Collapse
|