1
|
BenDavid E, Ramezanian S, Lu Y, Rousseau J, Schroeder A, Lavertu M, Tremblay JP. Emerging Perspectives on Prime Editor Delivery to the Brain. Pharmaceuticals (Basel) 2024; 17:763. [PMID: 38931430 PMCID: PMC11206523 DOI: 10.3390/ph17060763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Prime editing shows potential as a precision genome editing technology, as well as the potential to advance the development of next-generation nanomedicine for addressing neurological disorders. However, turning in prime editors (PEs), which are macromolecular complexes composed of CRISPR/Cas9 nickase fused with a reverse transcriptase and a prime editing guide RNA (pegRNA), to the brain remains a considerable challenge due to physiological obstacles, including the blood-brain barrier (BBB). This review article offers an up-to-date overview and perspective on the latest technologies and strategies for the precision delivery of PEs to the brain and passage through blood barriers. Furthermore, it delves into the scientific significance and possible therapeutic applications of prime editing in conditions related to neurological diseases. It is targeted at clinicians and clinical researchers working on advancing precision nanomedicine for neuropathologies.
Collapse
Affiliation(s)
- Eli BenDavid
- Laboratory of Biomaterials and Tissue Engineering, Department of Chemical Engineering, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada;
- Division of Human Genetics, Centre de Recherche du CHU de Québec—Université Laval, Québec, QC G1V 4G2, Canada
- Laboratory of Molecular Genetics and Gene Therapy, Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
- Laboratory of Nanopharmacology and Pharmaceutical Nanoscience, Faculty of Pharmacy, Laval University, Québec, QC G1V 4G2, Canada
- Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3525433, Israel
| | - Sina Ramezanian
- Division of Human Genetics, Centre de Recherche du CHU de Québec—Université Laval, Québec, QC G1V 4G2, Canada
- Laboratory of Molecular Genetics and Gene Therapy, Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
| | - Yaoyao Lu
- Division of Human Genetics, Centre de Recherche du CHU de Québec—Université Laval, Québec, QC G1V 4G2, Canada
- Laboratory of Molecular Genetics and Gene Therapy, Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
| | - Joël Rousseau
- Division of Human Genetics, Centre de Recherche du CHU de Québec—Université Laval, Québec, QC G1V 4G2, Canada
| | - Avi Schroeder
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel;
| | - Marc Lavertu
- Laboratory of Biomaterials and Tissue Engineering, Department of Chemical Engineering, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada;
| | - Jacques P. Tremblay
- Division of Human Genetics, Centre de Recherche du CHU de Québec—Université Laval, Québec, QC G1V 4G2, Canada
- Laboratory of Molecular Genetics and Gene Therapy, Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
| |
Collapse
|
2
|
Gao Z. Strategies for enhanced gene delivery to the central nervous system. NANOSCALE ADVANCES 2024; 6:3009-3028. [PMID: 38868835 PMCID: PMC11166101 DOI: 10.1039/d3na01125a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/12/2024] [Indexed: 06/14/2024]
Abstract
The delivery of genes to the central nervous system (CNS) has been a persistent challenge due to various biological barriers. The blood-brain barrier (BBB), in particular, hampers the access of systemically injected drugs to parenchymal cells, allowing only a minimal percentage (<1%) to pass through. Recent scientific insights highlight the crucial role of the extracellular space (ECS) in governing drug diffusion. Taking into account advancements in vectors, techniques, and knowledge, the discussion will center on the most notable vectors utilized for gene delivery to the CNS. This review will explore the influence of the ECS - a dynamically regulated barrier-on drug diffusion. Furthermore, we will underscore the significance of employing remote-control technologies to facilitate BBB traversal and modulate the ECS. Given the rapid progress in gene editing, our discussion will also encompass the latest advances focused on delivering therapeutic editing in vivo to the CNS tissue. In the end, a brief summary on the impact of Artificial Intelligence (AI)/Machine Learning (ML), ultrasmall, soft endovascular robots, and high-resolution endovascular cameras on improving the gene delivery to the CNS will be provided.
Collapse
Affiliation(s)
- Zhenghong Gao
- Mechanical Engineering, The University of Texas at Dallas USA
| |
Collapse
|
3
|
Abbondanza A, Urushadze A, Alves-Barboza AR, Janickova H. Expression and function of nicotinic acetylcholine receptors in specific neuronal populations: Focus on striatal and prefrontal circuits. Pharmacol Res 2024; 204:107190. [PMID: 38704107 DOI: 10.1016/j.phrs.2024.107190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/06/2024]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are widely expressed in the central nervous system and play an important role in the control of neural functions including neuronal activity, transmitter release and synaptic plasticity. Although the common subtypes of nAChRs are abundantly expressed throughout the brain, their expression in different brain regions and by individual neuronal types is not homogeneous or incidental. In recent years, several studies have emerged showing that particular subtypes of nAChRs are expressed by specific neuronal populations in which they have major influence on the activity of local circuits and behavior. It has been demonstrated that even nAChRs expressed by relatively rare neuronal types can induce significant changes in behavior and contribute to pathological processes. Depending on the identity and connectivity of the particular nAChRs-expressing neuronal populations, the activation of nAChRs can have distinct or even opposing effects on local neuronal signaling. In this review, we will summarize the available literature describing the expression of individual nicotinic subunits by different neuronal types in two crucial brain regions, the striatum and the prefrontal cortex. The review will also briefly discuss nicotinic expression in non-neuronal, glial cells, as they cannot be ignored as potential targets of nAChRs-modulating drugs. The final section will discuss options that could allow us to target nAChRs in a neuronal-type-specific manner, not only in the experimental field, but also eventually in clinical practice.
Collapse
Affiliation(s)
- Alice Abbondanza
- Laboratory of Neurochemistry, Institute of Physiology of the Czech Academy of Sciences, Prague 14200, Czech Republic
| | - Anna Urushadze
- Laboratory of Neurochemistry, Institute of Physiology of the Czech Academy of Sciences, Prague 14200, Czech Republic
| | - Amanda Rosanna Alves-Barboza
- Laboratory of Neurochemistry, Institute of Physiology of the Czech Academy of Sciences, Prague 14200, Czech Republic
| | - Helena Janickova
- Laboratory of Neurochemistry, Institute of Physiology of the Czech Academy of Sciences, Prague 14200, Czech Republic.
| |
Collapse
|
4
|
Sisubalan N, Shalini R, Ramya S, Sivamaruthi BS, Chaiyasut C. Recent advances in nanomaterials for neural applications: opportunities and challenges. Nanomedicine (Lond) 2023; 18:1979-1994. [PMID: 38078433 DOI: 10.2217/nnm-2023-0261] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
Nanomedicines are promising for delivering drugs to the central nervous system, though their precision is still being improved. Fortifying nanoparticles with vital molecules can interact with the blood-brain barrier, enabling access to brain tissue. This study summarizes recent advances in nanomedicine to treat neurological complications. The integration of nanotechnology into cell biology aids in the study of brain cells' interactions. Magnetic microhydrogels have exhibited superior neuron activation compared with superparamagnetic iron oxide nanoparticles and hold promise for neuropsychiatric disorders. Nanomaterials have shown notable results, such as tackling neurodegenerative diseases by hindering harmful protein buildup and regulating cellular processes. However, further studies of the safety and effectiveness of nanoparticles in managing neurological diseases and disorders are still required.
Collapse
Affiliation(s)
- Natarajan Sisubalan
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Ramadoss Shalini
- Department of Botany, Bishop Heber College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620017, India
| | - Sakthivel Ramya
- Department of Botany, Bishop Heber College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620017, India
| | - Bhagavathi Sundaram Sivamaruthi
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
5
|
Bibi S, Khan MA, Shah JH, Damaševičius R, Alasiry A, Marzougui M, Alhaisoni M, Masood A. MSRNet: Multiclass Skin Lesion Recognition Using Additional Residual Block Based Fine-Tuned Deep Models Information Fusion and Best Feature Selection. Diagnostics (Basel) 2023; 13:3063. [PMID: 37835807 PMCID: PMC10572512 DOI: 10.3390/diagnostics13193063] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/19/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023] Open
Abstract
Cancer is one of the leading significant causes of illness and chronic disease worldwide. Skin cancer, particularly melanoma, is becoming a severe health problem due to its rising prevalence. The considerable death rate linked with melanoma requires early detection to receive immediate and successful treatment. Lesion detection and classification are more challenging due to many forms of artifacts such as hairs, noise, and irregularity of lesion shape, color, irrelevant features, and textures. In this work, we proposed a deep-learning architecture for classifying multiclass skin cancer and melanoma detection. The proposed architecture consists of four core steps: image preprocessing, feature extraction and fusion, feature selection, and classification. A novel contrast enhancement technique is proposed based on the image luminance information. After that, two pre-trained deep models, DarkNet-53 and DensNet-201, are modified in terms of a residual block at the end and trained through transfer learning. In the learning process, the Genetic algorithm is applied to select hyperparameters. The resultant features are fused using a two-step approach named serial-harmonic mean. This step increases the accuracy of the correct classification, but some irrelevant information is also observed. Therefore, an algorithm is developed to select the best features called marine predator optimization (MPA) controlled Reyni Entropy. The selected features are finally classified using machine learning classifiers for the final classification. Two datasets, ISIC2018 and ISIC2019, have been selected for the experimental process. On these datasets, the obtained maximum accuracy of 85.4% and 98.80%, respectively. To prove the effectiveness of the proposed methods, a detailed comparison is conducted with several recent techniques and shows the proposed framework outperforms.
Collapse
Affiliation(s)
- Sobia Bibi
- Department of CS, COMSATS University Islamabad, Wah Campus, Islamabad 45550, Pakistan; (S.B.); (J.H.S.)
| | - Muhammad Attique Khan
- Department of Computer Science and Mathematics, Lebanese American University, Beirut 1102-2801, Lebanon;
- Department of CS, HITEC University, Taxila 47080, Pakistan
| | - Jamal Hussain Shah
- Department of CS, COMSATS University Islamabad, Wah Campus, Islamabad 45550, Pakistan; (S.B.); (J.H.S.)
| | - Robertas Damaševičius
- Center of Excellence Forest 4.0, Faculty of Informatics, Kaunas University of Technology, 51368 Kaunas, Lithuania;
| | - Areej Alasiry
- College of Computer Science, King Khalid University, Abha 61413, Saudi Arabia; (A.A.); (M.M.)
| | - Mehrez Marzougui
- College of Computer Science, King Khalid University, Abha 61413, Saudi Arabia; (A.A.); (M.M.)
| | - Majed Alhaisoni
- Computer Sciences Department, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia;
| | - Anum Masood
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway
| |
Collapse
|
6
|
Wu D, Chen Q, Chen X, Han F, Chen Z, Wang Y. The blood-brain barrier: structure, regulation, and drug delivery. Signal Transduct Target Ther 2023; 8:217. [PMID: 37231000 PMCID: PMC10212980 DOI: 10.1038/s41392-023-01481-w] [Citation(s) in RCA: 238] [Impact Index Per Article: 238.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Blood-brain barrier (BBB) is a natural protective membrane that prevents central nervous system (CNS) from toxins and pathogens in blood. However, the presence of BBB complicates the pharmacotherapy for CNS disorders as the most chemical drugs and biopharmaceuticals have been impeded to enter the brain. Insufficient drug delivery into the brain leads to low therapeutic efficacy as well as aggravated side effects due to the accumulation in other organs and tissues. Recent breakthrough in materials science and nanotechnology provides a library of advanced materials with customized structure and property serving as a powerful toolkit for targeted drug delivery. In-depth research in the field of anatomical and pathological study on brain and BBB further facilitates the development of brain-targeted strategies for enhanced BBB crossing. In this review, the physiological structure and different cells contributing to this barrier are summarized. Various emerging strategies for permeability regulation and BBB crossing including passive transcytosis, intranasal administration, ligands conjugation, membrane coating, stimuli-triggered BBB disruption, and other strategies to overcome BBB obstacle are highlighted. Versatile drug delivery systems ranging from organic, inorganic, and biologics-derived materials with their synthesis procedures and unique physio-chemical properties are summarized and analyzed. This review aims to provide an up-to-date and comprehensive guideline for researchers in diverse fields, offering perspectives on further development of brain-targeted drug delivery system.
Collapse
Affiliation(s)
- Di Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 310053, Hangzhou, China.
- Zhejiang Rehabilitation Medical Center, The Third Affiliated Hospital of Zhejiang Chinese Medical University, 310053, Hangzhou, China.
| | - Qi Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 310053, Hangzhou, China
| | - Xiaojie Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 310053, Hangzhou, China
| | - Feng Han
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 310053, Hangzhou, China.
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 310053, Hangzhou, China.
- Zhejiang Rehabilitation Medical Center, The Third Affiliated Hospital of Zhejiang Chinese Medical University, 310053, Hangzhou, China.
| |
Collapse
|