1
|
Bhandari A, Gu B, Kashkooli FM, Zhan W. Image-based predictive modelling frameworks for personalised drug delivery in cancer therapy. J Control Release 2024; 370:721-746. [PMID: 38718876 DOI: 10.1016/j.jconrel.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/11/2024] [Accepted: 05/02/2024] [Indexed: 05/19/2024]
Abstract
Personalised drug delivery enables a tailored treatment plan for each patient compared to conventional drug delivery, where a generic strategy is commonly employed. It can not only achieve precise treatment to improve effectiveness but also reduce the risk of adverse effects to improve patients' quality of life. Drug delivery involves multiple interconnected physiological and physicochemical processes, which span a wide range of time and length scales. How to consider the impact of individual differences on these processes becomes critical. Multiphysics models are an open system that allows well-controlled studies on the individual and combined effects of influencing factors on drug delivery outcomes while accommodating the patient-specific in vivo environment, which is not economically feasible through experimental means. Extensive modelling frameworks have been developed to reveal the underlying mechanisms of drug delivery and optimise effective delivery plans. This review provides an overview of currently available models, their integration with advanced medical imaging modalities, and code packages for personalised drug delivery. The potential to incorporate new technologies (i.e., machine learning) in this field is also addressed for development.
Collapse
Affiliation(s)
- Ajay Bhandari
- Biofluids Research Lab, Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
| | - Boram Gu
- School of Chemical Engineering, Chonnam National University, Gwangju, Republic of Korea
| | | | - Wenbo Zhan
- School of Engineering, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
2
|
Kashkooli FM, Jakhmola A, A Ferrier G, Sathiyamoorthy K, Tavakkoli J(J, C Kolios M. Development of an ultrasound-mediated nano-sized drug-delivery system for cancer treatment: from theory to experiment. Nanomedicine (Lond) 2024; 19:1167-1189. [PMID: 38722104 PMCID: PMC11418290 DOI: 10.2217/nnm-2023-0259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/06/2024] [Indexed: 09/21/2024] Open
Abstract
Aim: To establish a methodology for understanding how ultrasound (US) induces drug release from nano-sized drug-delivery systems (NSDDSs) and enhances drug penetration and uptake in tumors. This aims to advance cancer treatment strategies.Materials & methods: We developed a multi-physics mathematical model to elucidate and understand the intricate mechanisms governing drug release, transport and delivery. Unique in vitro models (monolayer, multilayer, spheroid) and a tailored US exposure setup were introduced to evaluate drug penetration and uptake.Results: The results highlight the potential advantages of US-mediated NSDDSs over conventional NSDDSs and chemotherapy, notably in enhancing drug release and inducing cell death.Conclusion: Our sophisticated numerical and experimental methods aid in determining and quantifying drug penetration and uptake into solid tumors.
Collapse
Affiliation(s)
| | - Anshuman Jakhmola
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada
| | - Graham A Ferrier
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada
| | | | - Jahangir (Jahan) Tavakkoli
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada
- Institute for Biomedical Engineering, Science & Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Michael C Kolios
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada
- Institute for Biomedical Engineering, Science & Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| |
Collapse
|
3
|
Jadhav V, Roy A, Kaur K, Roy A, Sharma K, Verma R, Rustagi S, Malik S. Current advancements in functional nanomaterials for drug delivery systems. NANO-STRUCTURES & NANO-OBJECTS 2024; 38:101177. [DOI: 10.1016/j.nanoso.2024.101177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
|
4
|
Moradi Kashkooli F, Kolios MC. Multi-Scale and Multi-Physics Models of the Transport of Therapeutic/Diagnostic Cancer Agents. Cancers (Basel) 2023; 15:5850. [PMID: 38136395 PMCID: PMC10741463 DOI: 10.3390/cancers15245850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
The effectiveness of tumor treatment heavily relies on the successful delivery of anticancer drugs [...].
Collapse
Affiliation(s)
| | - Michael C. Kolios
- Department of Physics, Toronto Metropolitan University, Toronto, ON M5B 1T8, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
| |
Collapse
|
5
|
Hornsby TK, Kashkooli FM, Jakhmola A, Kolios MC, Tavakkoli JJ. Kinetic modelling of ultrasound-triggered chemotherapeutic drug release from the surface of gold nanoparticles. Sci Rep 2023; 13:21301. [PMID: 38042841 PMCID: PMC10693567 DOI: 10.1038/s41598-023-48082-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023] Open
Abstract
Therapeutic ultrasound can be used to trigger the on-demand release of chemotherapeutic drugs from gold nanoparticles (GNPs). In the previous work, our group achieved doxorubicin (DOX) release from the surface of GNPS under low-intensity pulsed ultrasound (LIPUS) exposure. However, the specific release kinetics of ultrasound-triggered DOX release from GNPs is not known. Here, we present a release kinetics study of DOX from GNPs under ultrasound exposure for the first time. A novel dialysis membrane setup was designed to quantify DOX release from LIPUS-activated GNPs at 37.0 °C and 43.4 °C (hyperthermia temperature range). Contributions of thermal and non-thermal mechanisms of LIPUS-triggered DOX release were also quantified. Non-thermal mechanisms accounted for 40 ± 7% and 34 ± 5% of DOX release for 37.0 °C and 43.4 °C trials, respectively. DOX release under LIPUS exposure was found to follow Korsmeyer-Peppas (K-P) kinetics, suggesting a shift from a Fickian (static) to a non-Fickian (dynamic) release profile with the addition of non-thermal interactions. DOX release was attributed to an anomalous diffusion release mechanism from the GNP surface. A finite element model was also developed to quantify the acoustic radiation force, believed to be the driving force of non-thermal DOX release inside the dialysis bag.
Collapse
Affiliation(s)
- Tyler K Hornsby
- Department of Physics, Toronto Metropolitan University, Toronto, Canada
| | | | - Anshuman Jakhmola
- Department of Physics, Toronto Metropolitan University, Toronto, Canada
| | - Michael C Kolios
- Department of Physics, Toronto Metropolitan University, Toronto, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
| | - Jahangir Jahan Tavakkoli
- Department of Physics, Toronto Metropolitan University, Toronto, Canada.
- Institute for Biomedical Engineering, Science and Technology (iBEST), Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada.
| |
Collapse
|
6
|
Mohammadi M, Sefidgar M, Aghanajafi C, Kohandel M, Soltani M. Computational Multi-Scale Modeling of Drug Delivery into an Anti-Angiogenic Therapy-Treated Tumor. Cancers (Basel) 2023; 15:5464. [PMID: 38001724 PMCID: PMC10670623 DOI: 10.3390/cancers15225464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
The present study develops a numerical model, which is the most complex one, in comparison to previous research to investigate drug delivery accompanied by the anti-angiogenesis effect. This paper simulates intravascular blood flow and interstitial fluid flow using a dynamic model. The model accounts for the non-Newtonian behavior of blood and incorporates the adaptation of the diameter of a heterogeneous microvascular network derived from modeling the evolution of endothelial cells toward a circular tumor sprouting from two-parent vessels, with and without imposing the inhibitory effect of angiostatin on a modified discrete angiogenesis model. The average solute exposure and its uniformity in solid tumors of different sizes are studied by numerically solving the convection-diffusion equation. Three different methodologies are considered for simulating anti-angiogenesis: modifying the capillary network, updating the transport properties, and considering both microvasculature and transport properties modifications. It is shown that anti-angiogenic therapy decreases drug wash-out in the periphery of the tumor. Results show the decisive role of microvascular structure, particularly its distribution, and interstitial transport properties modifications induced via vascular normalization on the quality of drug delivery, such that it is improved by 39% in uniformity by the second approach in R = 0.2 cm.
Collapse
Affiliation(s)
- Mahya Mohammadi
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19919-43344, Iran; (M.M.); (C.A.)
| | - Mostafa Sefidgar
- Department of Mechanical Engineering, Pardis Branch, Islamic Azad University, Pardis 16581-74583, Iran;
| | - Cyrus Aghanajafi
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19919-43344, Iran; (M.M.); (C.A.)
| | - Mohammad Kohandel
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - M. Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19919-43344, Iran; (M.M.); (C.A.)
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Centre for Sustainable Business, International Business University, Toronto, ON M5S 2V1, Canada
| |
Collapse
|
7
|
Moradi Kashkooli, Jakhmola A, Ferrier GA, Hornsby TK, Tavakkoli J(J, Kolios MC. Integrating Therapeutic Ultrasound With Nanosized Drug Delivery Systems in the Battle Against Cancer. Technol Cancer Res Treat 2023; 22:15330338231211472. [PMID: 37946517 PMCID: PMC10637173 DOI: 10.1177/15330338231211472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/27/2017] [Accepted: 10/16/2023] [Indexed: 11/12/2023] Open
Abstract
Controlled, localized, and timely activation of nanosized drug delivery systems (NSDDSs), using an external stimulus such as therapeutic ultrasound (TUS), can improve the efficacy of cancer treatments compared to either conventional chemotherapy methods or passive NSDDSs alone. Specifically, TUS induces thermal and mechanical effects that trigger drug release from NSDDSs and overcomes drug delivery barriers in tumor microenvironments to allow nanoparticle drug carriers to penetrate more deeply into tumor tissue while minimizing side effects. This review highlights recent advancements, contemplates future prospects, and addresses challenges in using TUS-mediated NSDDSs for cancer treatment, encompassing preclinical and clinical applications.
Collapse
Affiliation(s)
- Moradi Kashkooli
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada
| | - Anshuman Jakhmola
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada
| | - Graham A. Ferrier
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada
| | - Tyler K. Hornsby
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada
| | - Jahangir (Jahan) Tavakkoli
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Michael C. Kolios
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| |
Collapse
|