1
|
Ferreira GR, Emond-Rheault JG, Alves L, Leprohon P, Smith MA, Papadopoulou B. Evolutionary divergent clusters of transcribed extinct truncated retroposons drive low mRNA expression and developmental regulation in the protozoan Leishmania. BMC Biol 2024; 22:249. [PMID: 39468514 PMCID: PMC11520807 DOI: 10.1186/s12915-024-02051-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND The Leishmania genome harbors formerly active short interspersed degenerated retroposons (SIDERs) representing the largest family of repetitive elements among trypanosomatids. Their substantial expansion in Leishmania is a strong predictor of important biological functions. In this study, we combined multilevel bioinformatic predictions with high-throughput genomic and transcriptomic analyses to gain novel insights into the diversified roles retroposons of the SIDER2 subfamily play in Leishmania genome evolution and expression. RESULTS We show that SIDER2 retroposons form various evolutionary divergent clusters, each harboring homologous SIDER2 sequences usually located nearby in the linear sequence of chromosomes. This intriguing genomic organization underscores the importance of SIDER2 proximity in shaping chromosome dynamics and co-regulation. Accordingly, we show that transcripts belonging to the same SIDER2 cluster can display similar levels of expression. SIDER2 retroposons are mostly transcribed as part of 3'UTRs and account for 13% of the Leishmania transcriptome. Genome-wide expression profiling studies underscore SIDER2 association generally with low mRNA expression. The remarkable link of SIDER2 retroposons with downregulation of gene expression supports their co-option as major regulators of mRNA abundance. SIDER2 sequences also add to the diversification of the Leishmania gene expression repertoire since ~ 35% of SIDER2-containing transcripts can be differentially regulated throughout the parasite development, with a few encoding key virulence factors. In addition, we provide evidence for a functional bias of SIDER2-containing transcripts with protein kinase and transmembrane transporter activities being most represented. CONCLUSIONS Altogether, these findings provide important conceptual advances into evolutionary innovations of transcribed extinct retroposons acting as major RNA cis-regulators.
Collapse
Affiliation(s)
- Gabriel Reis Ferreira
- Research Center in Infectious Diseases and Axis of Infectious and Immune Diseases, Research Center of the Centre Hospitalier Universitaire de Québec-Université Laval, QC, Quebec, Canada
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, University Laval, Quebec, QC, G1V 4G2, Canada
| | - Jean-Guillaume Emond-Rheault
- Research Center in Infectious Diseases and Axis of Infectious and Immune Diseases, Research Center of the Centre Hospitalier Universitaire de Québec-Université Laval, QC, Quebec, Canada
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, University Laval, Quebec, QC, G1V 4G2, Canada
| | - Lysangela Alves
- Research Center in Infectious Diseases and Axis of Infectious and Immune Diseases, Research Center of the Centre Hospitalier Universitaire de Québec-Université Laval, QC, Quebec, Canada
- , Rua Prof. Algacyr Munhoz Mader 3775, Curitiba/PR, CIC, 81310-020, Brazil
| | - Philippe Leprohon
- Research Center in Infectious Diseases and Axis of Infectious and Immune Diseases, Research Center of the Centre Hospitalier Universitaire de Québec-Université Laval, QC, Quebec, Canada
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, University Laval, Quebec, QC, G1V 4G2, Canada
| | - Martin A Smith
- CHU Sainte-Justine Research Centre, Montreal, QC, H3T 1C5, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Montreal, QC, Montreal, H3T 1J4, Canada
- School of Biotechnology and Molecular Bioscience, Faculty of Science, UNSW Sydney, NSW, Sydney, 2052, Australia
| | - Barbara Papadopoulou
- Research Center in Infectious Diseases and Axis of Infectious and Immune Diseases, Research Center of the Centre Hospitalier Universitaire de Québec-Université Laval, QC, Quebec, Canada.
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, University Laval, Quebec, QC, G1V 4G2, Canada.
| |
Collapse
|
2
|
Karlström V, Sagredo E, Planells J, Welinder C, Jungfleisch J, Barrera-Conde A, Engfors L, Daniel C, Gebauer F, Visa N, Öhman M. ADAR3 modulates neuronal differentiation and regulates mRNA stability and translation. Nucleic Acids Res 2024; 52:12021-12038. [PMID: 39217468 PMCID: PMC11514483 DOI: 10.1093/nar/gkae753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
ADAR3 is a catalytically inactive member of the family of adenosine deaminases acting on RNA (ADARs). Here we have investigated its function in the context of the developing mouse brain. The expression of ADAR3 gradually increases throughout embryogenesis and drops after birth. Using primary cortical neurons, we show that ADAR3 is only expressed in a subpopulation of in vitro differentiated neurons, which suggests specific functions rather than being a general regulator of ADAR editing in the brain. The analysis of the ADAR3 interactome suggested a role in mRNA stability and translation, and we show that expression of ADAR3 in a neuronal cell line that is otherwise ADAR3-negative changes the expression and stability of a large number of mRNAs. Notably, we show that ADAR3 associates with polysomes and inhibits translation. We propose that ADAR3 binds to target mRNAs and stabilizes them in non-productive polysome complexes. Interestingly, the expression of ADAR3 downregulates genes related to neuronal differentiation and inhibits neurofilament outgrowth in vitro. In summary, we propose that ADAR3 negatively regulates neuronal differentiation, and that it does so by regulating mRNA stability and translation in an editing-independent manner.
Collapse
Affiliation(s)
- Victor Karlström
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm SE-106 91, Sweden
| | - Eduardo A Sagredo
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm SE-106 91, Sweden
| | - Jordi Planells
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm SE-106 91, Sweden
| | - Charlotte Welinder
- Mass Spectrometry, Clinical Sciences, Lund University, Lund SE-221 84, Sweden
| | - Jennifer Jungfleisch
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, ES-08003 Barcelona, Spain
| | - Andrea Barrera-Conde
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, ES-08003 Barcelona, Spain
| | - Linus Engfors
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm SE-106 91, Sweden
| | - Chammiran Daniel
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm SE-106 91, Sweden
| | - Fátima Gebauer
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, ES-08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), ES-08003 Barcelona, Spain
| | - Neus Visa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm SE-106 91, Sweden
| | - Marie Öhman
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm SE-106 91, Sweden
| |
Collapse
|
3
|
Li H, Song J, Deng Z, Yao Y, Qiao W, Tan J. Cleavage of Stau2 by 3C protease promotes EV-A71 replication. Virol J 2024; 21:216. [PMID: 39272111 PMCID: PMC11401396 DOI: 10.1186/s12985-024-02489-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Enterovirus A71 (EV-A71), as a neurotropic virus, mainly affects infants and young children under the age of 5. EV-A71 infection causes hand-foot-mouth disease and herpetic angina, and even life-threatening neurological complications. However, the molecular mechanism by which EV-A71 induces nervous system damage remains elusive. The viral protease 3C plays an important role during EV-A71 infection and is also a key intersection of virus-host interactions. Previously, we used yeast two-hybrid to screen out the host protein Double-stranded RNA-binding protein Staufen homolog 2 (Stau2), an important member involved in neuronal mRNA transport, potentially interacts with 3C. METHODS We used coimmunoprecipitation (Co-IP) and immunofluorescence assay (IFA) to confirm that EV-A71 3C interacts with Stau2. By constructing the mutant of Stau2, we found the specific site where the 3C protease cleaves Stau2. Detection of VP1 protein using Western blotting characterized EV-A71 viral replication, and overexpression or knockdown of Stau2 exhibited effects on EV-A71 replication. The effect of different cleavage products on EV-A71 replication was demonstrated by constructing Stau2 truncates. RESULTS In this study, we found that EV-A71 3C interacts with Stau2. Stau2 is cleaved by 3C at the Q507-G508 site. Overexpression of Stau2 promotes EV-A71 VP1 protein expression, whereas depletion of Stau2 by small interfering RNA inhibits EV-A71 replication. Stau2 is essential for EV-A71 replication, and the product of Stau2 cleavage by 3C, 508-570 aa, has activity that promotes EV-A71 replication. In addition, we found that mouse Stau2 is also cleaved by EV-A71 3C at the same site. CONCLUSIONS Our research provides an example for EV-A71-host interaction, enriching key targets of host factors that contribute to viral replication.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
- Precision Medicine Center, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jie Song
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zhi Deng
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yunfang Yao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Wentao Qiao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Juan Tan
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
4
|
Lv Z, Ren Y, Li Y, Niu F, Li Z, Li M, Li X, Li Q, Huang D, Yu Y, Xiong Y, Qian L. RNA-binding protein GIGYF2 orchestrates hepatic insulin resistance through STAU1/PTEN-mediated disruption of the PI3K/AKT signaling cascade. Mol Med 2024; 30:124. [PMID: 39138413 PMCID: PMC11323356 DOI: 10.1186/s10020-024-00889-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Obesity is well-established as a significant contributor to the development of insulin resistance (IR) and diabetes, partially due to elevated plasma saturated free fatty acids like palmitic acid (PA). Grb10-interacting GYF Protein 2 (GIGYF2), an RNA-binding protein, is widely expressed in various tissues including the liver, and has been implicated in diabetes-induced cognitive impairment. Whereas, its role in obesity-related IR remains uninvestigated. METHODS In this study, we employed palmitic acid (PA) exposure to establish an in vitro IR model in the human liver cancer cell line HepG2 with high-dose chronic PA treatment. The cells were stained with fluorescent dye 2-NBDG to evaluate cell glucose uptake. The mRNA expression levels of genes were determined by real-time qRT-PCR (RT-qPCR). Western blotting was employed to examine the protein expression levels. The RNA immunoprecipitation (RIP) was used to investigate the binding between protein and mRNA. Lentivirus-mediated gene knockdown and overexpression were employed for gene manipulation. In mice, an IR model induced by a high-fat diet (HFD) was established to validate the role and action mechanisms of GIGYF2 in the modulation of HFD-induced IR in vivo. RESULTS In hepatocytes, high levels of PA exposure strongly trigger the occurrence of hepatic IR evidenced by reduced glucose uptake and elevated extracellular glucose content, which is remarkably accompanied by up-regulation of GIGYF2. Silencing GIGYF2 ameliorated PA-induced IR and enhanced glucose uptake. Conversely, GIGYF2 overexpression promoted IR, PTEN upregulation, and AKT inactivation. Additionally, PA-induced hepatic IR caused a notable increase in STAU1, which was prevented by depleting GIGYF2. Notably, silencing STAU1 prevented GIGYF2-induced PTEN upregulation, PI3K/AKT pathway inactivation, and IR. STAU1 was found to stabilize PTEN mRNA by binding to its 3'UTR. In liver cells, tocopherol treatment inhibits GIGYF2 expression and mitigates PA-induced IR. In the in vivo mice model, GIGYF2 knockdown and tocopherol administration alleviate high-fat diet (HFD)-induced glucose intolerance and IR, along with the suppression of STAU1/PTEN and restoration of PI3K/AKT signaling. CONCLUSIONS Our study discloses that GIGYF2 mediates obesity-related IR by disrupting the PI3K/AKT signaling axis through the up-regulation of STAU1/PTEN. Targeting GIGYF2 may offer a potential strategy for treating obesity-related metabolic diseases, including type 2 diabetes.
Collapse
Affiliation(s)
- Ziwei Lv
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi, P.R. China
| | - Yuanyuan Ren
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi, P.R. China
| | - Yang Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi, P.R. China
| | - Fanglin Niu
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, 710018, Shaanxi, P.R. China
| | - Zhuozhuo Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi, P.R. China
| | - Man Li
- Department of Endocrinology, The Affiliated Hospital of Northwest University, Xi' an No.3 Hospital, Xi'an, 710018, Shaanxi, P.R. China
| | - Xiaofang Li
- Department of Gastroenterology, The Affiliated Hospital of Northwest University, Xi' an No.3 Hospital, Xi'an, 710018, Shaanxi, P.R. China
| | - Qinhua Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi, P.R. China
| | - Deqing Huang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi, P.R. China
| | - Yi Yu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi, P.R. China.
| | - Yuyan Xiong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi, P.R. China.
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, The Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, 710018, Shaanxi, P.R. China.
| | - Lu Qian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi, P.R. China.
- Xi'an Mental Health Center, Xi'an, 710100, Shaanxi, P.R. China.
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, The Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, 710018, Shaanxi, P.R. China.
| |
Collapse
|
5
|
Moezpoor MR, Stevenson M. Help or Hinder: Protein Host Factors That Impact HIV-1 Replication. Viruses 2024; 16:1281. [PMID: 39205255 PMCID: PMC11360189 DOI: 10.3390/v16081281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Interactions between human immunodeficiency virus type 1 (HIV-1) and the host factors or restriction factors of its target cells determine the cell's susceptibility to, and outcome of, infection. Factors intrinsic to the cell are involved at every step of the HIV-1 replication cycle, contributing to productive infection and replication, or severely attenuating the chances of success. Furthermore, factors unique to certain cell types contribute to the differences in infection between these cell types. Understanding the involvement of these factors in HIV-1 infection is a key requirement for the development of anti-HIV-1 therapies. As the list of factors grows, and the dynamic interactions between these factors and the virus are elucidated, comprehensive and up-to-date summaries that recount the knowledge gathered after decades of research are beneficial to the field, displaying what is known so that researchers can build off the groundwork of others to investigate what is unknown. Herein, we aim to provide a review focusing on protein host factors, both well-known and relatively new, that impact HIV-1 replication in a positive or negative manner at each stage of the replication cycle, highlighting factors unique to the various HIV-1 target cell types where appropriate.
Collapse
Affiliation(s)
- Michael Rameen Moezpoor
- Department of Microbiology and Immunology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Mario Stevenson
- Raymond F. Schinazi and Family Endowed Chair in Biomedicine; Professor of Medicine; Director, Institute of AIDS and Emerging Infectious Diseases; Department of Microbiology and Immunology, University of Miami Leonard M. Miller School of Medicine, Life Science Technology Park, 1951 NW 7th Avenue, Room 2331B, Suite 200, Miami, FL 33136, USA;
| |
Collapse
|
6
|
Li CL, Zhou GF, Xie XY, Wang L, Chen X, Pan QL, Pu YL, Yang J, Song L, Chen GJ. STAU1 exhibits a dual function by promoting amyloidogenesis and tau phosphorylation in cultured cells. Exp Neurol 2024; 377:114805. [PMID: 38729552 DOI: 10.1016/j.expneurol.2024.114805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
Staufen-1 (STAU1) is a double-stranded RNA-binding protein (RBP) involved in a variety of pathological conditions. In this study, we investigated the potential role of STAU1 in Alzheimer's disease (AD), in which two hallmarks are well-established as cerebral β-amyloid protein (Aβ) deposition and Tau-centered neurofibrillary tangles. We found that STAU1 protein level was significantly increased in cells that stably express full-length APP and the brain of APP/PS1 mice, an animal model of AD. STAU1 knockdown, as opposed to overexpression, significantly decreased the protein levels of β-amyloid converting enzyme 1 (BACE1) and Aβ. We further found that STAU1 extended the half-life of the BACE1 mRNA through binding to the 3' untranslated region (3'UTR). Transcriptome analysis revealed that STAU1 enhanced the expression of growth arrest and DNA damage 45 β (GADD45B) upstream of P38 MAPK signaling, which contributed to STAU1-induced regulation of Tau phosphorylation at Ser396 and Thr181. Together, STAU1 promoted amyloidogenesis by inhibiting BACE1 mRNA decay, and augmented Tau phosphorylation through activating GADD45B in relation to P38 MAPK. Targeting STAU1 that acts on both amyloidogenesis and tauopathy may serve as an optimistic approach for AD treatment.
Collapse
Affiliation(s)
- Chen-Lu Li
- Department of Neurology, The First Affiliated Hospital Of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Gui-Feng Zhou
- Department of Neurology, The First Affiliated Hospital Of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Xiao-Yong Xie
- Department of Neurology, The First Affiliated Hospital Of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Lu Wang
- Department of Neurology, The First Affiliated Hospital Of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Xue Chen
- Department of Neurology, The First Affiliated Hospital Of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Qiu-Ling Pan
- Department of Neurology, The First Affiliated Hospital Of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Ya-Lan Pu
- Department of Neurology, The First Affiliated Hospital Of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Jie Yang
- Department of Neurology, The First Affiliated Hospital Of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Li Song
- Department of Neurology, The First Affiliated Hospital Of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Guo-Jun Chen
- Department of Neurology, The First Affiliated Hospital Of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China.
| |
Collapse
|
7
|
Abdullaev B, Alsaab HO, Hjazi A, Alkhafaji AT, Alawadi AH, Hamzah HF. The mechanisms behind the dual role of long non-coding RNA (lncRNA) metastasis suppressor-1 in human tumors: Shedding light on the molecular mechanisms. Pathol Res Pract 2024; 256:155189. [PMID: 38452581 DOI: 10.1016/j.prp.2024.155189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 03/09/2024]
Abstract
When the expression levels of metastasis suppressor-1 (MTSS1) were discovered to be downregulated in a metastatic cancer cell line in 2002, it was proposed that MTSS1 functioned as a suppressor of metastasis. The 755 amino acid long protein MTSS1 connects to actin and organizes the cytoskeleton. Its gene is located on human chromosome 8q24. The suppressor of metastasis in metastatic cancer was first found to be MTSS1. Subsequent reports revealed that MTSS1 is linked to the prevention of metastasis in a variety of cancer types, including hematopoietic cancers like diffuse large B cell lymphoma and esophageal, pancreatic, and stomach cancers. Remarkably, conflicting results have also been documented. For instance, it has been reported that MTSS1 expression levels are elevated in a subset of melanomas, hepatocellular carcinoma associated with hepatitis B, head and neck squamous cell carcinoma, and lung squamous cell carcinoma. This article provides an overview of the pathological effects of lncRNA MTSS1 dysregulation in cancer. In order to facilitate the development of MTSS1-based therapeutic targeting, we also shed light on the current understanding of MTS1.
Collapse
Affiliation(s)
- Bekhzod Abdullaev
- Research Department of Biotechnology, New Uzbekistan University, Mustaqillik Avenue 54, Tashkent 100007, Republic ofUzbekistan
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif 21944, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | | | - Ahmed Hussien Alawadi
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Iraq
| | - Hamza Fadhel Hamzah
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| |
Collapse
|
8
|
Jiogo H, Crist C. Navigating translational control of gene expression in satellite cells. Curr Top Dev Biol 2024; 158:253-277. [PMID: 38670709 DOI: 10.1016/bs.ctdb.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Satellite cells, named for their satellite position around the sarcolemma of the myofibre, are responsible for skeletal muscle regeneration. Satellite cells normally reside in a quiescent state, but rapidly activate the myogenic program and the cell cycle in response to injury. Translational control of gene expression has emerged as an important regulator of satellite cell activity. Quiescent satellite cells maintain low levels of protein synthesis and selectively translate specific mRNAs to conserve limited energy. Activated satellite cells rapidly restore global protein synthesis to meet the demands of proliferating myogenic progenitors that participate in muscle repair. We propose a model by which translational control enables rapid protein level changes in response to injury-induced environmental shifts, serving as both a brake mechanism during quiescence and an accelerator for injury response. In this Chapter, we navigate the processing, translation and metabolism of newly transcribed mRNAs. We review the modifications of mRNA that occur during mRNA processing in the nucleus of satellite cells, and illustrate how these modifications impact the translation and stability of mRNAs. In the cytoplasm, we review how pathways work in concert to regulate protein synthesis globally, while trans acting microRNAs and RNA binding proteins modify specific mRNA translation within a context of tightly regulated protein synthesis. While navigating translational control of gene expression in satellite cells, this chapter reveals that despite significant progress, the field remains nascent in the broader scope of translational control in cell biology. We propose that future investigations will benefit from incorporating emerging global analyses to study translational control of gene expression in rare satellite cells, and we pose unanswered questions that warrant future exploration.
Collapse
Affiliation(s)
- Holly Jiogo
- Department of Human Genetics, McGill University, Montreal, QC, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| | - Colin Crist
- Department of Human Genetics, McGill University, Montreal, QC, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada.
| |
Collapse
|
9
|
Pasterczyk KR, Li XL, Singh R, Zibitt MS, Hartford CCR, Pongor L, Jenkins LM, Hu Y, Zhao PX, Muys BR, Kumar S, Roper N, Aladjem MI, Pommier Y, Grammatikakis I, Lal A. Staufen1 Represses the FOXA1-Regulated Transcriptome by Destabilizing FOXA1 mRNA in Colorectal Cancer Cells. Mol Cell Biol 2024; 44:43-56. [PMID: 38347726 PMCID: PMC10950277 DOI: 10.1080/10985549.2024.2307574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/13/2024] [Indexed: 02/25/2024] Open
Abstract
Transcription factors play key roles in development and disease by controlling gene expression. Forkhead box A1 (FOXA1), is a pioneer transcription factor essential for mouse development and functions as an oncogene in prostate and breast cancer. In colorectal cancer (CRC), FOXA1 is significantly downregulated and high FOXA1 expression is associated with better prognosis, suggesting potential tumor suppressive functions. We therefore investigated the regulation of FOXA1 expression in CRC, focusing on well-differentiated CRC cells, where FOXA1 is robustly expressed. Genome-wide RNA stability assays identified FOXA1 as an unstable mRNA in CRC cells. We validated FOXA1 mRNA instability in multiple CRC cell lines and in patient-derived CRC organoids, and found that the FOXA1 3'UTR confers instability to the FOXA1 transcript. RNA pulldowns and mass spectrometry identified Staufen1 (STAU1) as a potential regulator of FOXA1 mRNA. Indeed, STAU1 knockdown resulted in increased FOXA1 mRNA and protein expression due to increased FOXA1 mRNA stability. Consistent with these data, RNA-seq following STAU1 knockdown in CRC cells revealed that FOXA1 targets were upregulated upon STAU1 knockdown. Collectively, this study uncovers a molecular mechanism by which FOXA1 is regulated in CRC cells and provides insights into our understanding of the complex mechanisms of gene regulation in cancer.
Collapse
Affiliation(s)
- Katherine R. Pasterczyk
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Xiao Ling Li
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Ragini Singh
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Meira S. Zibitt
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Corrine Corrina R. Hartford
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Lorinc Pongor
- DNA Replication Group, Developmental Therapeutics Branch, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Lisa M. Jenkins
- Mass Spectrometry Section, Laboratory of Cell Biology, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Yue Hu
- Omics Bioinformatic Facility, Genetics Branch, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Patrick X. Zhao
- Omics Bioinformatic Facility, Genetics Branch, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Bruna R. Muys
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Suresh Kumar
- Molecular Pharmacology Group, Developmental Therapeutics Branch, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Nitin Roper
- Molecular Pharmacology Group, Developmental Therapeutics Branch, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Mirit I. Aladjem
- DNA Replication Group, Developmental Therapeutics Branch, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Yves Pommier
- Molecular Pharmacology Group, Developmental Therapeutics Branch, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Ioannis Grammatikakis
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Ashish Lal
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
10
|
Palazzo AF, Qiu Y, Kang YM. mRNA nuclear export: how mRNA identity features distinguish functional RNAs from junk transcripts. RNA Biol 2024; 21:1-12. [PMID: 38091265 PMCID: PMC10732640 DOI: 10.1080/15476286.2023.2293339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
The division of the cellular space into nucleoplasm and cytoplasm promotes quality control mechanisms that prevent misprocessed mRNAs and junk RNAs from gaining access to the translational machinery. Here, we explore how properly processed mRNAs are distinguished from both misprocessed mRNAs and junk RNAs by the presence or absence of various 'identity features'.
Collapse
Affiliation(s)
| | - Yi Qiu
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Yoon Mo Kang
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Almasi S, SarmastiEmami S, Baird S, Ning Z, Figeys D, Côté J, Cowan KN, Jasmin BJ. Staufen1 controls mitochondrial metabolism via HIF2α in embryonal rhabdomyosarcoma and promotes tumorigenesis. Cell Mol Life Sci 2023; 80:328. [PMID: 37847286 PMCID: PMC11071833 DOI: 10.1007/s00018-023-04969-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/31/2023] [Accepted: 09/18/2023] [Indexed: 10/18/2023]
Abstract
Elevated mitochondrial metabolism promotes tumorigenesis of Embryonal Rhabdomyosarcomas (ERMS). Accordingly, targeting oxidative phosphorylation (OXPHOS) could represent a therapeutic strategy for ERMS. We previously demonstrated that genetic reduction of Staufen1 (STAU1) levels results in the inhibition of ERMS tumorigenicity. Here, we examined STAU1-mediated mechanisms in ERMS and focused on its potential involvement in regulating OXPHOS. We report the novel and differential role of STAU1 in mitochondrial metabolism in cancerous versus non-malignant skeletal muscle cells (NMSkMCs). Specifically, our data show that STAU1 depletion reduces OXPHOS and inhibits proliferation of ERMS cells. Our findings further reveal the binding of STAU1 to several OXPHOS mRNAs which affects their stability. Indeed, STAU1 depletion reduced the stability of OXPHOS mRNAs, causing inhibition of mitochondrial metabolism. In parallel, STAU1 depletion impacted negatively the HIF2α pathway which further modulates mitochondrial metabolism. Exogenous expression of HIF2α in STAU1-depleted cells reversed the mitochondrial inhibition and induced cell proliferation. However, opposite effects were observed in NMSkMCs. Altogether, these findings revealed the impact of STAU1 in the regulation of mitochondrial OXPHOS in cancer cells as well as its differential role in NMSkMCs. Overall, our results highlight the therapeutic potential of targeting STAU1 as a novel approach for inhibiting mitochondrial metabolism in ERMS.
Collapse
Affiliation(s)
- Shekoufeh Almasi
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Sahar SarmastiEmami
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Stephen Baird
- High Throughput Lab, CHEO, University of Ottawa, Ottawa, ON, K1H 8L1, Canada
| | - Zhibin Ning
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Daniel Figeys
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Jocelyn Côté
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- The Eric J. Poulin Centre for Neuromuscular Diseases, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Kyle N Cowan
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- Department of Surgery, Division of Paediatric Surgery, University of Ottawa, Children's Hospital of Eastern Ontario, Ottawa, ON, K1Y 4E9, Canada
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario, Ottawa, ON, K1H 8L1, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
- The Eric J. Poulin Centre for Neuromuscular Diseases, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
12
|
Ying P, Chen C, Lu Z, Chen S, Zhang M, Cai Y, Zhang F, Huang J, Fan L, Ning C, Li Y, Wang W, Geng H, Liu Y, Tian W, Yang Z, Liu J, Huang C, Yang X, Xu B, Li H, Zhu X, Li N, Li B, Wei Y, Zhu Y, Tian J, Miao X. Genome-wide enhancer-gene regulatory maps link causal variants to target genes underlying human cancer risk. Nat Commun 2023; 14:5958. [PMID: 37749132 PMCID: PMC10520073 DOI: 10.1038/s41467-023-41690-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 09/14/2023] [Indexed: 09/27/2023] Open
Abstract
Genome-wide association studies have identified numerous variants associated with human complex traits, most of which reside in the non-coding regions, but biological mechanisms remain unclear. However, assigning function to the non-coding elements is still challenging. Here we apply Activity-by-Contact (ABC) model to evaluate enhancer-gene regulation effect by integrating multi-omics data and identified 544,849 connections across 20 cancer types. ABC model outperforms previous approaches in linking regulatory variants to target genes. Furthermore, we identify over 30,000 enhancer-gene connections in colorectal cancer (CRC) tissues. By integrating large-scale population cohorts (23,813 cases and 29,973 controls) and multipronged functional assays, we demonstrate an ABC regulatory variant rs4810856 associated with CRC risk (Odds Ratio = 1.11, 95%CI = 1.05-1.16, P = 4.02 × 10-5) by acting as an allele-specific enhancer to distally facilitate PREX1, CSE1L and STAU1 expression, which synergistically activate p-AKT signaling. Our study provides comprehensive regulation maps and illuminates a single variant regulating multiple genes, providing insights into cancer etiology.
Collapse
Grants
- Distinguished Young Scholars of China (NSFC-81925032), Key Program of National Natural Science Foundation of China (NSFC-82130098), the Fundamental Research Funds for the Central Universities (2042022rc0026, 2042023kf1005),Knowledge Innovation Program of Wuhan (2023020201010060).
- Youth Program of National Natural Science Foundation of China (NSFC-82003547), Program of Health Commission of Hubei Province (WJ2023M045) and Fundamental Research Funds for the Central Universities (WHU: 2042022kf1031).
- The National Science Fund for Excellent Young Scholars (NSFC-82322058), Program of National Natural Science Foundation of China (NSFC-82103929, NSFC-82273713), Young Elite Scientists Sponsorship Program by cst(2022QNRC001), National Science Fund for Distinguished Young Scholars of Hubei Province of China (2023AFA046), Fundamental Research Funds for the Central Universities (WHU:2042022kf1205) and Knowledge Innovation Program of Wuhan (whkxjsj011, 2023020201010073).
Collapse
Affiliation(s)
- Pingting Ying
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, Wuhan, 430071, China
| | - Can Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, Wuhan, 430071, China
| | - Zequn Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, Wuhan, 430071, China
| | - Shuoni Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Ming Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Yimin Cai
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Fuwei Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Jinyu Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Linyun Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Caibo Ning
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Yanmin Li
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Wenzhuo Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Hui Geng
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Yizhuo Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Wen Tian
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Zhiyong Yang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jiuyang Liu
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Chaoqun Huang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Xiaojun Yang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Bin Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, China
| | - Heng Li
- Department of Urology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xu Zhu
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, 430071, China
| | - Ni Li
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Bin Li
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Yongchang Wei
- Department of Gastrointestinal Oncology, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ying Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Jianbo Tian
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China.
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, Wuhan, 430071, China.
| | - Xiaoping Miao
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China.
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, Wuhan, 430071, China.
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, China.
| |
Collapse
|
13
|
Ferreira RS, Assis RIF, Racca F, Bontempi AC, da Silva RA, Wiench M, Andia DC. Analyzes In Silico Indicate the lncRNAs MIR31HG and LINC00939 as Possible Epigenetic Inhibitors of the Osteogenic Differentiation in PDLCs. Genes (Basel) 2023; 14:1649. [PMID: 37628700 PMCID: PMC10454380 DOI: 10.3390/genes14081649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Chromatin conformation, DNA methylation pattern, transcriptional profile, and non-coding RNAs (ncRNAs) interactions constitute an epigenetic pattern that influences the cellular phenotypic commitment and impacts the clinical outcomes in regenerative therapies. Here, we investigated the epigenetic landscape of the SP7 transcriptor factor (SP7) and Distal-Less Homeobox 4 (DLX4) osteoblastic transcription factors (TFs), in human periodontal ligament mesenchymal cells (PDLCs) with low (l-PDLCs) and high (h-PDLCs) osteogenic potential. Chromatin accessibility (ATAC-seq), genome DNA methylation (Methylome), and RNA sequencing (RNA-seq) assays were performed in l- and h-PDLCs, cultured at 10 days in non-induced (DMEM) and osteogenic (OM) medium in vitro. Data were processed in HOMER, Genome Studio, and edgeR programs, and metadata was analyzed by online bioinformatics tools and in R and Python environments. ATAC-seq analyses showed the TFs genomic regions are more accessible in l-PDLCs than in h-PDLCs. In Methylome analyses, the TFs presented similar average methylation intensities (AMIs), without differently methylated probes (DMPs) between l- and h-PDLCs; in addition, there were no differences in the expression profiles of TFs signaling pathways. Interestingly, we identified the long non-coding RNAs (lncRNAs), MIR31HG and LINC00939, as upregulated in l-PDLCs, in both DMEM and OM. In the following analysis, the web-based prediction tool LncRRIsearch predicted RNA:RNA base-pairing interactions between SP7, DLX4, MIR31HG, and LINC00939 transcripts. The machine learning program TriplexFPP predicted DNA:RNA triplex-forming potential for the SP7 DNA site and for one of the LINC00939 transcripts (ENST00000502479). PCR data confirmed the upregulation of MIR31HG and LINC00939 transcripts in l-PDLCs (× h-PDLCs) in both DMEM and OM (p < 0.05); conversely, SP7 and DLX4 were downregulated, confirming those results observed in the RNA-Seq analysis. Together, these results indicate the lncRNAs MIR31HG and LINC00939 as possible epigenetic inhibitors of the osteogenic differentiation in PDLCs by (post)transcriptional and translational repression of the SP7 and DLX4 TFs.
Collapse
Affiliation(s)
- Rogério S. Ferreira
- School of Dentistry, Health Science Institute, Paulista University, São Paulo 04026-002, SP, Brazil; (R.S.F.); (A.C.B.)
| | - Rahyza I. F. Assis
- Department of Clinical Dentistry, Federal University of Espírito Santo, Vitória 29043-910, ES, Brazil
| | - Francesca Racca
- Periodontology Department, The Ohio State University College of Dentistry, Columbus, OH 43210-1267, USA;
| | - Ana Carolina Bontempi
- School of Dentistry, Health Science Institute, Paulista University, São Paulo 04026-002, SP, Brazil; (R.S.F.); (A.C.B.)
| | - Rodrigo A. da Silva
- Program in Environmental and Experimental Pathology, Paulista University, São Paulo 04026-002, SP, Brazil;
| | - Malgorzata Wiench
- School of Dentistry, Institute of Clinical Sciences, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B5 7EG, UK
| | - Denise C. Andia
- School of Dentistry, Health Science Institute, Paulista University, São Paulo 04026-002, SP, Brazil; (R.S.F.); (A.C.B.)
| |
Collapse
|
14
|
Chakrabarti AM, Iosub IA, Lee FCY, Ule J, Luscombe NM. A computationally-enhanced hiCLIP atlas reveals Staufen1-RNA binding features and links 3' UTR structure to RNA metabolism. Nucleic Acids Res 2023; 51:3573-3589. [PMID: 37013995 PMCID: PMC10164587 DOI: 10.1093/nar/gkad221] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 02/08/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
The structure of mRNA molecules plays an important role in its interactions with trans-acting factors, notably RNA binding proteins (RBPs), thus contributing to the functional consequences of this interplay. However, current transcriptome-wide experimental methods to chart these interactions are limited by their poor sensitivity. Here we extend the hiCLIP atlas of duplexes bound by Staufen1 (STAU1) ∼10-fold, through careful consideration of experimental assumptions, and the development of bespoke computational methods which we apply to existing data. We present Tosca, a Nextflow computational pipeline for the processing, analysis and visualisation of proximity ligation sequencing data generally. We use our extended duplex atlas to discover insights into the RNA selectivity of STAU1, revealing the importance of structural symmetry and duplex-span-dependent nucleotide composition. Furthermore, we identify heterogeneity in the relationship between transcripts with STAU1-bound 3' UTR duplexes and metabolism of the associated RNAs that we relate to RNA structure: transcripts with short-range proximal 3' UTR duplexes have high degradation rates, but those with long-range duplexes have low rates. Overall, our work enables the integrative analysis of proximity ligation data delivering insights into specific features and effects of RBP-RNA structure interactions.
Collapse
Affiliation(s)
| | - Ira A Iosub
- The Francis Crick Institute, London, NW1 4AT, UK
| | - Flora C Y Lee
- The Francis Crick Institute, London, NW1 4AT, UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Jernej Ule
- The Francis Crick Institute, London, NW1 4AT, UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- UK Dementia Research Institute at King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, SE5 9RX, UK
| | - Nicholas M Luscombe
- The Francis Crick Institute, London, NW1 4AT, UK
- Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa904-0495, Japan
| |
Collapse
|
15
|
Han X, Li B, Zhang S. MIR503HG: A potential diagnostic and therapeutic target in human diseases. Biomed Pharmacother 2023; 160:114314. [PMID: 36736276 DOI: 10.1016/j.biopha.2023.114314] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
LncRNAs are involved in many physiological and pathological processes, including chromatin remodeling, transcription, posttranscriptional gene expression, mRNA stability, translation, and posttranslational modification, and their functions depend on subcellular localization. MIR503HG is a lncRNA as well as a host gene for the miRNAs miR-503 and miR-424. MIR503HG functions independently or synergistically with miR-503. MIR503HG affects cell proliferation, invasion, metastasis, apoptosis, angiogenesis, and other biological behaviors. The mechanism of MIR503HG in disease includes interaction with protein, sponging miRNA to regulate downstream target gene, and participation in NF-κB, TGF-β, ERK/MAPK, and PI3K/AKT signaling pathways. In this review, we summarize the molecular mechanisms of MIR503HG in disease and its potential applications in diagnosis, prognosis, and treatment. We also raise some unanswered questions in this area, providing insights for future research.
Collapse
Affiliation(s)
- Xue Han
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Shenyang, Liaoning Province, China.
| | - Bo Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Shenyang, Liaoning Province, China. libo--
| | - Shitai Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Shenyang, Liaoning Province, China.
| |
Collapse
|
16
|
Li M, Huang C, Wu Y, Zhu L, Zhang Y, Zhou Y, Li H, Liu Z, Pan X, Wang X, Qiu J, Li F, Liao W. Long non-coding RNA CCL14-AS suppresses invasiveness and lymph node metastasis of colorectal cancer cells by regulating MEP1A. Cancer Cell Int 2023; 23:27. [PMID: 36793075 PMCID: PMC9933342 DOI: 10.1186/s12935-023-02866-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/03/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) play important roles in the biology of colorectal cancer (CRC). There are several lncRNAs associated with invasion and metastasis have been characterized in CRC. However, studies focusing on the precise molecular mechanisms by which lncRNAs function in lymph node (LN) metastasis in CRC are still limited. METHODS In this study, by analyzing TCGA dataset, we identified that AC244100.2 (termed CCL14-AS), a novel lncRNA enriched in the cytoplasm, was negatively correlated with LN metastasis and unfavorable prognosis of CRC. In situ hybridization was used to examine CCL14-AS expression in clinical CRC tissues. Various functional experiments including migration assay and wound-healing assay were used to investigate the effects of CCL14-AS on CRC cells migration. The nude mice popliteal lymph node metastasis model assay further confirmed the effects of CCL14-AS in vivo. RESULTS CCL14-AS expression was significantly downregulated in CRC tissues compared to adjacent normal tissues. In addition, low CCL14-AS expression was correlated with advanced T classification, LN metastasis, distant metastasis, and shorter disease-free survival of CRC patients. Functionally, CCL14-AS overexpression inhibited the invasiveness of CRC cells in vitro and LN metastasis in nude mice. On the contrary, knockdown of CCL14-AS promoted the invasiveness and LN metastasis abilities of CRC cells. Mechanistically, CCL14-AS downregulated the expression of MEP1A via interacting with MEP1A mRNA and reduced its stability. Overexpression of MEP1A rescued the invasiveness and LN metastasis abilities in CCL14-AS-overexpressing CRC cells. Moreover, the expression levels of CCL14-AS was negatively correlated with that of MEP1A in CRC tissues. CONCLUSIONS We identified a novel lncRNA, CCL14-AS, as a potential tumor suppressor in CRC. Our findings supported a model in which the CCL14-AS/MEP1A axis serves as critical regulator in CRC progression, suggesting a novel biomarker and therapeutic target in advanced CRC.
Collapse
Affiliation(s)
- Mingzhou Li
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China ,grid.284723.80000 0000 8877 7471Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China
| | - Chengmei Huang
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yuanyuan Wu
- grid.284723.80000 0000 8877 7471Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China
| | - Lina Zhu
- grid.35030.350000 0004 1792 6846Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Yaxin Zhang
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yi Zhou
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Huali Li
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China ,grid.284723.80000 0000 8877 7471Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China ,grid.35030.350000 0004 1792 6846Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Zhihao Liu
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China ,grid.284723.80000 0000 8877 7471Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China ,grid.35030.350000 0004 1792 6846Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Xinyan Pan
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xin Wang
- grid.35030.350000 0004 1792 6846Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Junfeng Qiu
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Fengtian Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Wenting Liao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
17
|
Paul S, Dansithong W, Gandelman M, Figueroa KP, Zu T, Ranum LPW, Scoles DR, Pulst SM. Staufen Impairs Autophagy in Neurodegeneration. Ann Neurol 2023; 93:398-416. [PMID: 36151701 PMCID: PMC9892312 DOI: 10.1002/ana.26515] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The mechanistic target of rapamycin (mTOR) kinase is one of the master coordinators of cellular stress responses, regulating metabolism, autophagy, and apoptosis. We recently reported that staufen1 (STAU1), a stress granule (SG) protein, was overabundant in fibroblast cell lines from patients with spinocerebellar ataxia type 2 (SCA2), amyotrophic lateral sclerosis, frontotemporal degeneration, Huntington's, Alzheimer's, and Parkinson's diseases as well as animal models, and patient tissues. STAU1 overabundance is associated with mTOR hyperactivation and links SG formation with autophagy. Our objective was to determine the mechanism of mTOR regulation by STAU1. METHODS We determined STAU1 abundance with disease- and chemical-induced cellular stressors in patient cells and animal models. We also used RNA-binding assays to contextualize STAU1 interaction with MTOR mRNA. RESULTS STAU1 and mTOR were overabundant in bacterial artificial chromosome (BAC)-C9ORF72, ATXN2Q127 , and Thy1-TDP-43 transgenic mouse models. Reducing STAU1 levels in these mice normalized mTOR levels and activity and autophagy-related marker proteins. We also saw increased STAU1 levels in HEK293 cells transfected to express C9ORF72-relevant dipeptide repeats (DPRs). Conversely, DPR accumulations were not observed in cells treated by STAU1 RNA interference (RNAi). Overexpression of STAU1 in HEK293 cells increased mTOR levels through direct MTOR mRNA interaction, activating downstream targets and impairing autophagic flux. Targeting mTOR by rapamycin or RNAi normalized STAU1 abundance in an SCA2 cellular model. INTERPRETATION STAU1 interaction with mTOR drives its hyperactivation and inhibits autophagic flux in multiple models of neurodegeneration. Staufen, therefore, constitutes a novel target to modulate mTOR activity and autophagy, and for the treatment of neurodegenerative diseases. ANN NEUROL 2023;93:398-416.
Collapse
Affiliation(s)
- Sharan Paul
- Department of Neurology, University of Utah, Salt Lake City, UT
| | | | - Mandi Gandelman
- Department of Neurology, University of Utah, Salt Lake City, UT
| | | | - Tao Zu
- Center for NeuroGenetics and Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL
| | - Laura P W Ranum
- Center for NeuroGenetics and Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL
| | - Daniel R Scoles
- Department of Neurology, University of Utah, Salt Lake City, UT
| | - Stefan M Pulst
- Department of Neurology, University of Utah, Salt Lake City, UT
| |
Collapse
|
18
|
Staszewski J, Lazarewicz N, Konczak J, Migdal I, Maciaszczyk-Dziubinska E. UPF1-From mRNA Degradation to Human Disorders. Cells 2023; 12:cells12030419. [PMID: 36766761 PMCID: PMC9914065 DOI: 10.3390/cells12030419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/07/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Up-frameshift protein 1 (UPF1) plays the role of a vital controller for transcripts, ready to react in the event of an incorrect translation mechanism. It is well known as one of the key elements involved in mRNA decay pathways and participates in transcript and protein quality control in several different aspects. Firstly, UPF1 specifically degrades premature termination codon (PTC)-containing products in a nonsense-mediated mRNA decay (NMD)-coupled manner. Additionally, UPF1 can potentially act as an E3 ligase and degrade target proteins independently from mRNA decay pathways. Thus, UPF1 protects cells against the accumulation of misfolded polypeptides. However, this multitasking protein may still hide many of its functions and abilities. In this article, we summarize important discoveries in the context of UPF1, its involvement in various cellular pathways, as well as its structural importance and mutational changes related to the emergence of various pathologies and disease states. Even though the state of knowledge about this protein has significantly increased over the years, there are still many intriguing aspects that remain unresolved.
Collapse
Affiliation(s)
- Jacek Staszewski
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland
- Correspondence: (J.S.); (E.M.-D.)
| | - Natalia Lazarewicz
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland
- Institute of Genetics and Development of Rennes, CNRS UMR 6290, University of Rennes 1, 35000 Rennes, France
| | - Julia Konczak
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland
| | - Iwona Migdal
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland
| | - Ewa Maciaszczyk-Dziubinska
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland
- Correspondence: (J.S.); (E.M.-D.)
| |
Collapse
|
19
|
Hu A, Wang Y, Tian J, Chen Z, Chen R, Han X, Chen Y, Liu T, Chen Q. Pan-cancer analysis reveals DDX21 as a potential biomarker for the prognosis of multiple tumor types. Front Oncol 2022; 12:947054. [PMID: 36505822 PMCID: PMC9730287 DOI: 10.3389/fonc.2022.947054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
Background DExD-box helicase 21 (DDX21) is an essential member of the RNA helicase family. DDX21 is involved in the carcinogenesis of various malignancies, but there has been no comprehensive research on its involvement in different types of cancer. Method This study used TCGA, CPTAC, GTEx, GEO, FANTOM5, BioGRID, TIMER2, GEPIA2, cBioPortal, STRING, and Metascape databases and Survival ROC software to evaluate DDX21 gene expression, protein expression, immunohistochemistry, gene mutation, immune infiltration, and protein phosphorylation in 33 TCGA tumor types, as well as the prognostic relationship between DDX21 and different tumors, by survival analysis and similar gene enrichment analysis. Furthermore, Cell Counting Kit-8 (CCK-8) and Transwell studies were employed to assess the effect of DDX21 expression on lung adenocarcinoma (LUAD) cell proliferation and migration. Result The DDX21 gene was highly expressed in most cancers, and overexpression was associated with poor overall survival (OS) and disease-free survival (DFS). DDX21 mutations were most common in uterine corpus endometrial carcinoma (UCEC; >5%), and DDX21 expression was positively correlated with the degree of infiltration of CAF and CD8+ cells in several tumor types. Numerous genes were co-expressed with DDX21. Gene enrichment analysis revealed close links between DDX21, RNA metabolism, and ribosomal protein production. In vitro analysis of LUAD cells showed that DDX21 expression was positively correlated with cell proliferation and migration capacity, consistent with prior bioinformatics studies. Conclusions DDX21 is overexpressed in a variety of cancers, and overexpression in some cancers is associated with poor prognosis. Immune infiltration and DDX21-related gene enrichment analyses indicated that DDX21 may affect cancer development through mechanisms that regulate tumor immunity, RNA metabolism, and ribosomal protein synthesis. This pan-cancer study revealed the prognostic value and the oncogenic role of DDX21.
Collapse
Affiliation(s)
- Ankang Hu
- Laboratory Animal Center, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yonghui Wang
- School of Life Science, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiahao Tian
- Clinical Medicine Science, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zihan Chen
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Renjin Chen
- School of Life Science, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xufeng Han
- School of Life Science, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yang Chen
- School of Life Science, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tingjun Liu
- Laboratory Animal Center, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Quangang Chen
- School of Life Science, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
20
|
Shaath H, Vishnubalaji R, Elango R, Kardousha A, Islam Z, Qureshi R, Alam T, Kolatkar PR, Alajez NM. Long non-coding RNA and RNA-binding protein interactions in cancer: Experimental and machine learning approaches. Semin Cancer Biol 2022; 86:325-345. [PMID: 35643221 DOI: 10.1016/j.semcancer.2022.05.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 01/27/2023]
Abstract
Understanding the complex and specific roles played by non-coding RNAs (ncRNAs), which comprise the bulk of the genome, is important for understanding virtually every hallmark of cancer. This large group of molecules plays pivotal roles in key regulatory mechanisms in various cellular processes. Regulatory mechanisms, mediated by long non-coding RNA (lncRNA) and RNA-binding protein (RBP) interactions, are well documented in several types of cancer. Their effects are enabled through networks affecting lncRNA and RBP stability, RNA metabolism including N6-methyladenosine (m6A) and alternative splicing, subcellular localization, and numerous other mechanisms involved in cancer. In this review, we discuss the reciprocal interplay between lncRNAs and RBPs and their involvement in epigenetic regulation via histone modifications, as well as their key role in resistance to cancer therapy. Other aspects of RBPs including their structural domains, provide a deeper knowledge on how lncRNAs and RBPs interact and exert their biological functions. In addition, current state-of-the-art knowledge, facilitated by machine and deep learning approaches, unravels such interactions in better details to further enhance our understanding of the field, and the potential to harness RNA-based therapeutics as an alternative treatment modality for cancer are discussed.
Collapse
Affiliation(s)
- Hibah Shaath
- Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Radhakrishnan Vishnubalaji
- Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Ramesh Elango
- Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Ahmed Kardousha
- College of Health & Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Zeyaul Islam
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, PO Box 34110, Doha, Qatar
| | - Rizwan Qureshi
- College of Science and Engineering, Hamad Bin Khalifa University (HBKU), Qatar Foundation, PO Box 34110, Doha, Qatar
| | - Tanvir Alam
- College of Science and Engineering, Hamad Bin Khalifa University (HBKU), Qatar Foundation, PO Box 34110, Doha, Qatar
| | - Prasanna R Kolatkar
- College of Health & Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar; Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, PO Box 34110, Doha, Qatar
| | - Nehad M Alajez
- Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar; College of Health & Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar.
| |
Collapse
|
21
|
Poetz F, Lebedeva S, Schott J, Lindner D, Ohler U, Stoecklin G. Control of immediate early gene expression by CPEB4-repressor complex-mediated mRNA degradation. Genome Biol 2022; 23:193. [PMID: 36096941 PMCID: PMC9465963 DOI: 10.1186/s13059-022-02760-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 08/23/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Cytoplasmic polyadenylation element-binding protein 4 (CPEB4) is known to associate with cytoplasmic polyadenylation elements (CPEs) located in the 3' untranslated region (UTR) of specific mRNAs and assemble an activator complex promoting the translation of target mRNAs through cytoplasmic polyadenylation. RESULTS Here, we find that CPEB4 is part of an alternative repressor complex that mediates mRNA degradation by associating with the evolutionarily conserved CCR4-NOT deadenylase complex. We identify human CPEB4 as an RNA-binding protein (RBP) with enhanced association to poly(A) RNA upon inhibition of class I histone deacetylases (HDACs), a condition known to cause widespread degradation of poly(A)-containing mRNA. Photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) analysis using endogenously tagged CPEB4 in HeLa cells reveals that CPEB4 preferentially binds to the 3'UTR of immediate early gene mRNAs, at G-containing variants of the canonical U- and A-rich CPE located in close proximity to poly(A) sites. By transcriptome-wide mRNA decay measurements, we find that the strength of CPEB4 binding correlates with short mRNA half-lives and that loss of CPEB4 expression leads to the stabilization of immediate early gene mRNAs. Akin to CPEB4, we demonstrate that CPEB1 and CPEB2 also confer mRNA instability by recruitment of the CCR4-NOT complex. CONCLUSIONS While CPEB4 was previously known for its ability to stimulate cytoplasmic polyadenylation, our findings establish an additional function for CPEB4 as the RNA adaptor of a repressor complex that enhances the degradation of short-lived immediate early gene mRNAs.
Collapse
Affiliation(s)
- Fabian Poetz
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), 69120, Heidelberg, Germany
| | - Svetlana Lebedeva
- Berlin Institute for Molecular Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, 10115, Berlin, Germany
| | - Johanna Schott
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), 69120, Heidelberg, Germany
| | - Doris Lindner
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), 69120, Heidelberg, Germany
| | - Uwe Ohler
- Berlin Institute for Molecular Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, 10115, Berlin, Germany
- Department of Biology, Humboldt Universität Berlin, 10099, Berlin, Germany
| | - Georg Stoecklin
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany.
- Center for Molecular Biology of Heidelberg University (ZMBH), 69120, Heidelberg, Germany.
| |
Collapse
|
22
|
Yeh SC, Diosa-Toro M, Tan WL, Rachenne F, Hain A, Yeo CPX, Bribes I, Xiang BWW, Sathiamoorthy Kannan G, Manuel MC, Missé D, Mok YK, Pompon J. Characterization of dengue virus 3'UTR RNA binding proteins in mosquitoes reveals that AeStaufen reduces subgenomic flaviviral RNA in saliva. PLoS Pathog 2022; 18:e1010427. [PMID: 36121894 PMCID: PMC9531803 DOI: 10.1371/journal.ppat.1010427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 10/04/2022] [Accepted: 09/09/2022] [Indexed: 11/27/2022] Open
Abstract
Dengue viruses (DENV) are expanding global pathogens that are transmitted through the bite of mosquitoes, mostly Aedes aegypti. As RNA viruses, DENV rely on RNA-binding proteins (RBPs) to complete their life cycle. Alternatively, RBPs can act as restriction factors that prevent DENV multiplication. While the importance of RBPs is well-supported in humans, there is a dearth of information about their influence on DENV transmission by mosquitoes. Such knowledge could be harnessed to design novel, effective interventions against DENV. Here, we successfully adapted RNA-affinity chromatography coupled with mass spectrometry-a technique initially developed in mammalian cells-to identify RBPs in Ae. aegypti cells. We identified fourteen RBPs interacting with DENV serotype 2 3'UTR, which is involved in the viral multiplication and produces subgenomic flaviviral RNA (sfRNA). We validated the RNA affinity results for two RBPs by confirming that AePur binds the 3'UTR, whereas AeStaufen interacts with both 3'UTR and sfRNA. Using in vivo functional evaluation, we determined that RBPs like AeRan, AeExoRNase, and AeRNase have pro-viral functions, whereas AeGTPase, AeAtu, and AePur have anti-viral functions in mosquitoes. Furthermore, we showed that human and mosquito Pur homologs have a shared affinity to DENV2 RNA, although the anti-viral effect is specific to the mosquito protein. Importantly, we revealed that AeStaufen mediates a reduction of gRNA and sfRNA copies in several mosquito tissues, including the salivary glands and that AeStaufen-mediated sfRNA reduction diminishes the concentration of transmission-enhancing sfRNA in saliva, thereby revealing AeStaufen's role in DENV transmission. By characterizing the first RBPs that associate with DENV2 3'UTR in mosquitoes, our study unravels new pro- and anti-viral targets for the design of novel therapeutic interventions as well as provides foundation for studying the role of RBPs in virus-vector interactions.
Collapse
Affiliation(s)
- Shih-Chia Yeh
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Republic of Singapore
| | - Mayra Diosa-Toro
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Republic of Singapore
| | - Wei-Lian Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Republic of Singapore
| | | | - Arthur Hain
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Republic of Singapore
| | - Celestia Pei Xuan Yeo
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Republic of Singapore
| | - Inès Bribes
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France
| | - Benjamin Wong Wei Xiang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Republic of Singapore
| | | | - Menchie Casayuran Manuel
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Republic of Singapore
| | - Dorothée Missé
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France
| | - Yu Keung Mok
- Department of Biological Sciences, National University of Singapore, Singapore, Republic of Singapore
| | - Julien Pompon
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Republic of Singapore
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France
| |
Collapse
|
23
|
Internal Ribosome Entry Site (IRES)-Mediated Translation and Its Potential for Novel mRNA-Based Therapy Development. Biomedicines 2022; 10:biomedicines10081865. [PMID: 36009412 PMCID: PMC9405587 DOI: 10.3390/biomedicines10081865] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022] Open
Abstract
Many conditions can benefit from RNA-based therapies, namely, those targeting internal ribosome entry sites (IRESs) and their regulatory proteins, the IRES trans-acting factors (ITAFs). IRES-mediated translation is an alternative mechanism of translation initiation, known for maintaining protein synthesis when canonical translation is impaired. During a stress response, it contributes to cell reprogramming and adaptation to the new environment. The relationship between IRESs and ITAFs with tumorigenesis and resistance to therapy has been studied in recent years, proposing new therapeutic targets and treatments. In addition, IRES-dependent translation initiation dysregulation is also related to neurological and cardiovascular diseases, muscular atrophies, or other syndromes. The participation of these structures in the development of such pathologies has been studied, yet to a far lesser extent than in cancer. Strategies involving the disruption of IRES–ITAF interactions or the modification of ITAF expression levels may be used with great impact in the development of new therapeutics. In this review, we aim to comprehend the current data on groups of human pathologies associated with IRES and/or ITAF dysregulation and their application in the designing of new therapeutic approaches using them as targets or tools. Thus, we wish to summarise the evidence in the field hoping to open new promising lines of investigation toward personalised treatments.
Collapse
|
24
|
Tan K, Stupack DG, Wilkinson MF. Nonsense-mediated RNA decay: an emerging modulator of malignancy. Nat Rev Cancer 2022; 22:437-451. [PMID: 35624152 PMCID: PMC11009036 DOI: 10.1038/s41568-022-00481-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/19/2022] [Indexed: 12/11/2022]
Abstract
Nonsense-mediated RNA decay (NMD) is a highly conserved RNA turnover pathway that selectively degrades RNAs harbouring truncating mutations that prematurely terminate translation, including nonsense, frameshift and some splice-site mutations. Recent studies show that NMD shapes the mutational landscape of tumours by selecting for mutations that tend to downregulate the expression of tumour suppressor genes but not oncogenes. This suggests that NMD can benefit tumours, a notion further supported by the finding that mRNAs encoding immunogenic neoantigen peptides are typically targeted for decay by NMD. Together, this raises the possibility that NMD-inhibitory therapy could be of therapeutic benefit against many tumour types, including those with a high load of neoantigen-generating mutations. Complicating this scenario is the evidence that NMD can also be detrimental for many tumour types, and consequently tumours often have perturbed NMD. NMD may suppress tumour generation and progression by degrading subsets of specific normal mRNAs, including those encoding stress-response proteins, signalling factors and other proteins beneficial for tumours, as well as pro-tumour non-coding RNAs. Together, these findings suggest that NMD-modulatory therapy has the potential to provide widespread therapeutic benefit against diverse tumour types. However, whether NMD should be stimulated or repressed requires careful analysis of the tumour to be treated.
Collapse
Affiliation(s)
- Kun Tan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Dwayne G Stupack
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA.
- UCSD Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA.
| | - Miles F Wilkinson
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA.
- Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
25
|
Abstract
In eukaryotic organisms, noncoding RNAs (ncRNAs) have been implicated as important regulators of multifaceted biological processes, including transcriptional, posttranscriptional, and epigenetic regulation of gene expression. In recent years, it is becoming clear that protozoan parasites encode diverse ncRNA transcripts; however, little is known about their cellular functions. Recent advances in high-throughput “omic” studies identified many novel long ncRNAs (lncRNAs) in apicomplexan parasites, some of which undergo splicing, polyadenylation, and encode small proteins. To date, only a few of them are characterized, leaving a big gap in our understanding regarding their origin, mode of action, and functions in parasite biology. In this review, we focus on lncRNAs of the human malaria parasite Plasmodium falciparum and highlight their cellular functions and possible mechanisms of action.
Collapse
Affiliation(s)
- Karina Simantov
- Department of Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Manish Goyal
- Department of Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ron Dzikowski
- Department of Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
26
|
Balakrishnan K, Munusami P, Mohareer K, Priyakumar UD, Banerjee A, Luedde T, Mande SC, Münk C, Banerjee S. Staufen‐2 functions as a cofactor for enhanced Rev‐mediated nucleocytoplasmic trafficking of
HIV
‐1 genomic
RNA
via the
CRM1
pathway. FEBS J 2022; 289:6731-6751. [DOI: 10.1111/febs.16546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/21/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Kannan Balakrishnan
- Department of Biochemistry, School of Life Sciences University of Hyderabad India
- Clinic for Gastroenterology, Hepatology, and Infectiology Medical Faculty, Heinrich Heine University Düsseldorf Germany
| | - Punnagai Munusami
- Center for Computational Natural Sciences and Bioinformatics International Institute of Information Technology Hyderabad India
- Department of Chemistry Arignar Anna Government Arts & Science College Karaikal Puducherry India
| | - Krishnaveni Mohareer
- Department of Biochemistry, School of Life Sciences University of Hyderabad India
| | - U. Deva Priyakumar
- Center for Computational Natural Sciences and Bioinformatics International Institute of Information Technology Hyderabad India
| | - Atoshi Banerjee
- Nevada Institute of Personalized Medicine University of Nevada Las Vegas NV USA
| | - Tom Luedde
- Clinic for Gastroenterology, Hepatology, and Infectiology Medical Faculty, Heinrich Heine University Düsseldorf Germany
| | - Shekhar C. Mande
- National Centre for Cell Science Pune India
- Council of Scientific and Industrial Research New Delhi India
| | - Carsten Münk
- Clinic for Gastroenterology, Hepatology, and Infectiology Medical Faculty, Heinrich Heine University Düsseldorf Germany
| | - Sharmistha Banerjee
- Department of Biochemistry, School of Life Sciences University of Hyderabad India
| |
Collapse
|
27
|
Wei XF, Fan SY, Wang YW, Li S, Long SY, Gan CY, Li J, Sun YX, Guo L, Wang PY, Yang X, Wang JL, Cui J, Zhang WL, Huang AL, Hu JL. Identification of STAU1 as a regulator of HBV replication by TurboID-based proximity labeling. iScience 2022; 25:104416. [PMID: 35663023 PMCID: PMC9156947 DOI: 10.1016/j.isci.2022.104416] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 04/21/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
The core promoter (CP) of hepatitis B virus (HBV) is critical for HBV replication by controlling the transcription of pregenomic RNA (pgRNA). Host factors regulating the activity of the CP can be identified by different methods. Biotin-based proximity labeling, a powerful method with the capability to capture weak or dynamic interactions, has not yet been used to map proteins interacting with the CP. Here, we established a strategy, based on the newly evolved promiscuous enzyme TurboID, for interrogating host factors regulating the activity of HBV CP. Using this strategy, we identified STAU1 as an important factor involved in the regulation of HBV CP. Mechanistically, STAU1 indirectly binds to CP mediated by TARDBP, and recruits the SAGA transcription coactivator complex to the CP to upregulate its activity. Moreover, STAU1 binds to HBx and enhances the level of HBx by stabilizing it in a ubiquitin-independent manner.
Collapse
Affiliation(s)
- Xia-Fei Wei
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Shu-Ying Fan
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yu-Wei Wang
- Department of Laboratory Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Shan Li
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Shao-Yuan Long
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Chun-Yang Gan
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Jie Li
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yu-Xue Sun
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Lin Guo
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Pei-Yun Wang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xue Yang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Jin-Lan Wang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Jing Cui
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Wen-Lu Zhang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Ai-Long Huang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Jie-Li Hu
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| |
Collapse
|
28
|
Emerging Roles of RNA-Binding Proteins in Neurodevelopment. J Dev Biol 2022; 10:jdb10020023. [PMID: 35735914 PMCID: PMC9224834 DOI: 10.3390/jdb10020023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023] Open
Abstract
Diverse cell types in the central nervous system (CNS) are generated by a relatively small pool of neural stem cells during early development. Spatial and temporal regulation of stem cell behavior relies on precise coordination of gene expression. Well-studied mechanisms include hormone signaling, transcription factor activity, and chromatin remodeling processes. Much less is known about downstream RNA-dependent mechanisms including posttranscriptional regulation, nuclear export, alternative splicing, and transcript stability. These important functions are carried out by RNA-binding proteins (RBPs). Recent work has begun to explore how RBPs contribute to stem cell function and homeostasis, including their role in metabolism, transport, epigenetic regulation, and turnover of target transcripts. Additional layers of complexity are provided by the different target recognition mechanisms of each RBP as well as the posttranslational modifications of the RBPs themselves that alter function. Altogether, these functions allow RBPs to influence various aspects of RNA metabolism to regulate numerous cellular processes. Here we compile advances in RNA biology that have added to our still limited understanding of the role of RBPs in neurodevelopment.
Collapse
|
29
|
Guvenek A, Shin J, De Filippis L, Zheng D, Wang W, Pang ZP, Tian B. Neuronal Cells Display Distinct Stability Controls of Alternative Polyadenylation mRNA Isoforms, Long Non-Coding RNAs, and Mitochondrial RNAs. Front Genet 2022; 13:840369. [PMID: 35664307 PMCID: PMC9159357 DOI: 10.3389/fgene.2022.840369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/28/2022] [Indexed: 11/25/2022] Open
Abstract
RNA stability plays an important role in gene expression. Here, using 3' end sequencing of newly made and pre-existing poly(A)+ RNAs, we compare transcript stability in multiple human cell lines, including HEK293T, HepG2, and SH-SY5Y. We show that while mRNA stability is generally conserved across the cell lines, specific transcripts having a high GC content and possibly more stable secondary RNA structures are relatively more stable in SH-SY5Y cells compared to the other 2 cell lines. These features also differentiate stability levels of alternative polyadenylation (APA) 3'UTR isoforms in a cell type-specific manner. Using differentiation of a neural stem cell line as a model, we show that mRNA stability difference could contribute to gene expression changes in neurogenesis and confirm the neuronal identity of SH-SY5Y cells at both gene expression and APA levels. In addition, compared to transcripts using 3'-most exon cleavage/polyadenylation sites (PASs), those using intronic PASs are generally less stable, especially when the PAS-containing intron is large and has a strong 5' splice site, suggesting that intronic polyadenylation mostly plays a negative role in gene expression. Interestingly, the differential mRNA stability among APA isoforms appears to buffer PAS choice in these cell lines. Moreover, we found that several other poly(A)+ RNA species, including promoter-associated long noncoding RNAs and transcripts encoded by the mitochondrial genome, are more stable in SH-SY5Y cells than the other 2 cell lines, further highlighting distinct RNA metabolism in neuronal cells. Together, our results indicate that distinct RNA stability control in neuronal cells may contribute to the gene expression and APA programs that define their cell identity.
Collapse
Affiliation(s)
- Aysegul Guvenek
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
- Rutgers School of Graduate Studies, Newark, NJ, United States
| | - Jihae Shin
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Lidia De Filippis
- Department of Neuroscience and Cell Biology, Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Dinghai Zheng
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Wei Wang
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Zhiping P. Pang
- Department of Neuroscience and Cell Biology, Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Bin Tian
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
- Program in Gene Expression and Regulation, Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA, United States
| |
Collapse
|
30
|
Song C, Leahy SN, Rushton EM, Broadie K. RNA-binding FMRP and Staufen sequentially regulate the Coracle scaffold to control synaptic glutamate receptor and bouton development. Development 2022; 149:274991. [PMID: 35394012 PMCID: PMC9148565 DOI: 10.1242/dev.200045] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 03/23/2022] [Indexed: 12/16/2022]
Abstract
Both mRNA-binding Fragile X mental retardation protein (FMRP; Fmr1) and mRNA-binding Staufen regulate synaptic bouton formation and glutamate receptor (GluR) levels at the Drosophila neuromuscular junction (NMJ) glutamatergic synapse. Here, we tested whether these RNA-binding proteins act jointly in a common mechanism. We found that both dfmr1 and staufen mutants, and trans-heterozygous double mutants, displayed increased synaptic bouton formation and GluRIIA accumulation. With cell-targeted RNA interference, we showed a downstream Staufen role within postsynaptic muscle. With immunoprecipitation, we showed that FMRP binds staufen mRNA to stabilize postsynaptic transcripts. Staufen is known to target actin-binding, GluRIIA anchor Coracle, and we confirmed that Staufen binds to coracle mRNA. We found that FMRP and Staufen act sequentially to co-regulate postsynaptic Coracle expression, and showed that Coracle, in turn, controls GluRIIA levels and synaptic bouton development. Consistently, we found that dfmr1, staufen and coracle mutants elevate neurotransmission strength. We also identified that FMRP, Staufen and Coracle all suppress pMad activation, providing a trans-synaptic signaling linkage between postsynaptic GluRIIA levels and presynaptic bouton development. This work supports an FMRP-Staufen-Coracle-GluRIIA-pMad pathway regulating structural and functional synapse development.
Collapse
Affiliation(s)
- Chunzhu Song
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - Shannon N. Leahy
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - Emma M. Rushton
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA,Kennedy Center for Research on Human Development, Vanderbilt University and Medical Center, Nashville, TN 37235, USA,Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, TN 37235, USA,Author for correspondence ()
| |
Collapse
|
31
|
Fang J, Pietzsch C, Tsaprailis G, Crynen G, Cho KF, Ting AY, Bukreyev A, de la Torre JC, Saphire EO. Functional interactomes of the Ebola virus polymerase identified by proximity proteomics in the context of viral replication. Cell Rep 2022; 38:110544. [PMID: 35320713 PMCID: PMC10496643 DOI: 10.1016/j.celrep.2022.110544] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/26/2021] [Accepted: 03/01/2022] [Indexed: 11/21/2022] Open
Abstract
Ebola virus (EBOV) critically depends on the viral polymerase to replicate and transcribe the viral RNA genome in the cytoplasm of host cells, where cellular factors can antagonize or facilitate the virus life cycle. Here we leverage proximity proteomics and conduct a small interfering RNA (siRNA) screen to define the functional interactome of EBOV polymerase. As a proof of principle, we validate two cellular mRNA decay factors from 35 identified host factors: eukaryotic peptide chain release factor subunit 3a (eRF3a/GSPT1) and up-frameshift protein 1 (UPF1). Our data suggest that EBOV can subvert restrictions of cellular mRNA decay and repurpose GSPT1 and UPF1 to promote viral replication. Treating EBOV-infected human hepatocytes with a drug candidate that targets GSPT1 for degradation significantly reduces viral RNA load and particle production. Our work demonstrates the utility of proximity proteomics to capture the functional host interactome of the EBOV polymerase and to illuminate host-dependent regulation of viral RNA synthesis.
Collapse
Affiliation(s)
- Jingru Fang
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Colette Pietzsch
- Department of Pathology and Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | - Gogce Crynen
- Bioinformatics and Statistics Core, Scripps Research, Jupiter, FL 33458, USA
| | - Kelvin Frank Cho
- Cancer Biology Program, Stanford University, Stanford, CA 94305, USA
| | - Alice Y Ting
- Department of Genetics, Department of Biology, and Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Alexander Bukreyev
- Department of Pathology and Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77550, USA.
| | | | | |
Collapse
|
32
|
Ning H, Zhang T, Zhou X, Liu L, Shang C, Qi R, Ma T. PART1 destabilized by NOVA2 regulates blood-brain barrier permeability in endothelial cells via STAU1-mediated mRNA degradation. Gene X 2022; 815:146164. [PMID: 34990795 DOI: 10.1016/j.gene.2021.146164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/16/2021] [Accepted: 12/06/2021] [Indexed: 12/26/2022] Open
Abstract
Blood-brain barrier dysfunction is recognized as a precursor of Alzheimer's disease development. Endothelial cells as structural basis of blood-brain barrier were observed tight junction failure in amyloid-β(1-42)-stimulated environment. In this study, we found NOVA2, PPP2R3A were down-regulated while PART1, p-NFκB-p65 were up-regulated in amyloid-β(1-42)-incubated endothelial cells. Knockdown of either NOVA2 or PPP2R3A and overexpression of PART1 all increased blood-brain barrier permeability. Lower blood-brain barrier permeability was observed in overexpression of NOVA2 and PPP2R3A and knockdown of PART1 and NFκB-p65. Same tendencies were found in the tight junction-related proteins expressions. Furthermore, overexpression and knockdown of NOVA2 and PART1 had no effect on cell viability. Mechanistically, NOVA2 overexpression was confirmed to reduce half-life of PART1. PART1 could destabilize PPP2R3A messenger RNA (mRNA) by interacting with STAU1. In addition, p-NFκB-p65 functioning as transcription factor reduced the expression of tight junction-related proteins, which was prompted by low protein level of PPP2R3A. Our study highlights the crucial role of NOVA2/PART1/PPP2R3A/p-NFκB-p65 pathway in amyloid-β(1-42)-incubated endothelial cells to modulating blood-brain barrier permeability through STAU1-mediated messenger RNA degradation, implying a potential mechanism of lncRNA and protein interaction in pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- Hao Ning
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China
| | - Tianyuan Zhang
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China
| | - Xinxin Zhou
- Liaoning University of Traditional Chinese Medicine, Shenyang 110034, China
| | - Libo Liu
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China
| | - Chao Shang
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China
| | - Ruiqun Qi
- Department of Dermatology, The First Hospital of China Medical University, Shenyang 110122, China
| | - Teng Ma
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China.
| |
Collapse
|
33
|
Zhu YS, Zhu J. Molecular and cellular functions of long non-coding RNAs in prostate and breast cancer. Adv Clin Chem 2022; 106:91-179. [PMID: 35152976 DOI: 10.1016/bs.acc.2021.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Long noncoding RNAs (lncRNAs) are defined as noncoding RNA transcripts with a length greater than 200 nucleotides. Research over the last decade has made great strides in our understanding of lncRNAs, especially in the biology of their role in cancer. In this article, we will briefly discuss the biogenesis and characteristics of lncRNAs, then review their molecular and cellular functions in cancer by using prostate and breast cancer as examples. LncRNAs are abundant, diverse, and evolutionarily, less conserved than protein-coding genes. They are often expressed in a tumor and cell-specific manner. As a key epigenetic factor, lncRNAs can use a wide variety of molecular mechanisms to regulate gene expression at each step of the genetic information flow pathway. LncRNAs display widespread effects on cell behavior, tumor growth, and metastasis. They act intracellularly and extracellularly in an autocrine, paracrine and endocrine fashion. Increased understanding of lncRNA's role in cancer has facilitated the development of novel biomarkers for cancer diagnosis, led to greater understanding of cancer prognosis, enabled better prediction of therapeutic responses, and promoted identification of potential targets for cancer therapy.
Collapse
Affiliation(s)
- Yuan-Shan Zhu
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Clinical and Translational Science Center, Weill Cornell Medicine, New York, NY, United States.
| | - Jifeng Zhu
- Clinical and Translational Science Center, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
34
|
Han X, Zhang S. Role of Long Non-Coding RNA LINC00641 in Cancer. Front Oncol 2022; 11:829137. [PMID: 35155216 PMCID: PMC8828736 DOI: 10.3389/fonc.2021.829137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are non-protein coding RNAs with more than 200 nucleic acids in length. When lncRNAs are located in the nucleus, they regulate chromosome structure, participate in chromatin remodeling, and act as transcription regulators. When lncRNAs are exported to the cytoplasm, they regulate mRNA stability, regulate translation, and interfere with post-translational modification. In recent years, more and more evidences have shown that lncRNA can regulate the biological processes of tumor proliferation, apoptosis, invasion and metastasis, and can participate in a variety of tumor signaling pathways. Long-gene non-protein coding RNA641 (LINC00641), located on human chromosome 14q11.2, is differentially expressed in a variety of tumors and is related to overall survival and prognosis, etc. Interfering the expression of LINC00641 can lead to changes in tumor cell proliferation, invasion, metastasis, apoptosis and other biological behaviors. Therefore, LINC00641 is a promising new biomarker and potential clinical therapeutic target. In this review, the biological functions, related mechanisms and clinical significance of LINC00641 in many human cancers are described in detail.
Collapse
Affiliation(s)
- Xue Han
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shitai Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
35
|
Bonnet-Magnaval F, Diallo LH, Brunchault V, Laugero N, Morfoisse F, David F, Roussel E, Nougue M, Zamora A, Marchaud E, Tatin F, Prats AC, Garmy-Susini B, DesGroseillers L, Lacazette E. High Level of Staufen1 Expression Confers Longer Recurrence Free Survival to Non-Small Cell Lung Cancer Patients by Promoting THBS1 mRNA Degradation. Int J Mol Sci 2021; 23:215. [PMID: 35008641 PMCID: PMC8745428 DOI: 10.3390/ijms23010215] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Stau1 is a pluripotent RNA-binding protein that is responsible for the post-transcriptional regulation of a multitude of transcripts. Here, we observed that lung cancer patients with a high Stau1 expression have a longer recurrence free survival. Strikingly, Stau1 did not impair cell proliferation in vitro, but rather cell migration and cell adhesion. In vivo, Stau1 depletion favored tumor progression and metastases development. In addition, Stau1 depletion strongly impaired vessel maturation. Among a panel of candidate genes, we specifically identified the mRNA encoding the cell adhesion molecule Thrombospondin 1 (THBS1) as a new target for Staufen-mediated mRNA decay. Altogether, our results suggest that regulation of THBS1 expression by Stau1 may be a key process involved in lung cancer progression.
Collapse
Affiliation(s)
- Florence Bonnet-Magnaval
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
- Département de Biochimie Et Médecine Moléculaire, Faculté de Médecine, Université de Montréal, 2900 Édouard Montpetit Montréal, Montreal, QC H3T 1J4, Canada;
| | - Leïla Halidou Diallo
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Valérie Brunchault
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Nathalie Laugero
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Florent Morfoisse
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Florian David
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Emilie Roussel
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Manon Nougue
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Audrey Zamora
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Emmanuelle Marchaud
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Florence Tatin
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Anne-Catherine Prats
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Barbara Garmy-Susini
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Luc DesGroseillers
- Département de Biochimie Et Médecine Moléculaire, Faculté de Médecine, Université de Montréal, 2900 Édouard Montpetit Montréal, Montreal, QC H3T 1J4, Canada;
| | - Eric Lacazette
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| |
Collapse
|
36
|
Kuc CA, Brott JT, Thorpe HHA, Smart A, Vessey JP. Staufen 1 is expressed by neural precursor cells in the developing murine cortex but is dispensable for NPC self-renewal and neuronal differentiation in vitro. Brain Res 2021; 1773:147700. [PMID: 34678304 DOI: 10.1016/j.brainres.2021.147700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/14/2021] [Accepted: 10/17/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Proper development of the cerebral cortex relies on asymmetric divisions of neural precursor cells (NPCs) to produce a recurring NPC and a differentiated neuron. Asymmetric divisions are promoted by the differential localization of cell-fate determinants, such as mRNA, between daughter cells. Staufen 1 (Stau1) is an RNA-binding protein known to localize mRNA in mature hippocampal neurons. Its expression pattern and role in the developing mammalian cortex remains unknown. RESULTS Both stau1 mRNA and Stau1 protein were found to be expressed in all cells of the developing murine cortex. Stau1 protein expression was characterized spatially and temporally throughout cortical development and found to be present in all stages investigated. We observed expression in the nucleus, cytoplasm and distal processes of both NPCs and newly born neurons and found it to shuttle between the nucleus and the cytoplasm. Upon shRNA-mediated knock-down of Stau1 in primary cultures of the developing cortex, we did not observe any phenotype in NPCs. They were able to both self-renew and generate neurons in the absence of Stau1 expression. CONCLUSIONS We propose that Stau1 is either dispensable for the development of the cerebral cortex or that its paralogue, Stau2, is able to compensate for its loss.
Collapse
Affiliation(s)
- C A Kuc
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Guelph, ON, Canada
| | - J T Brott
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Guelph, ON, Canada
| | - H H A Thorpe
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Guelph, ON, Canada
| | - A Smart
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Guelph, ON, Canada
| | - J P Vessey
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
37
|
Balakrishnan K, Jaguva Vasudevan AA, Mohareer K, Luedde T, Münk C, Banerjee S. Encapsidation of Staufen-2 Enhances Infectivity of HIV-1. Viruses 2021; 13:v13122459. [PMID: 34960728 PMCID: PMC8703407 DOI: 10.3390/v13122459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/26/2021] [Accepted: 12/02/2021] [Indexed: 11/20/2022] Open
Abstract
Staufen, the RNA-binding family of proteins, affects various steps in the Human Immuno-Deficiency Virus (HIV-1) replication cycle. While our previous study established Staufen-2–HIV-1 Rev interaction and its role in augmenting nucleocytoplasmic export of RRE-containing viral RNA, viral incorporation of Staufen-2 and its effect on viral propagation were unknown. Here, we report that Staufen-2 interacts with HIV-1 Gag and is incorporated into virions and that encapsidated Staufen-2 boosted viral infectivity. Further, Staufen-2 gets co-packaged into virions, possibly by interacting with host factors Staufen-1 or antiviral protein APOBEC3G, which resulted in different outcomes on the infectivity of Staufen-2-encapsidated virions. These observations suggest that encapsidated host factors influence viral population dynamics and infectivity. With the explicit identification of the incorporation of Staufen proteins into HIV-1 and other retroviruses, such as Simian Immunodeficiency Virus (SIV), we propose that packaging of RNA binding proteins, such as Staufen, in budding virions of retroviruses is probably a general phenomenon that can drive or impact the viral population dynamics, infectivity, and evolution.
Collapse
Affiliation(s)
- Kannan Balakrishnan
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, India; (K.B.); (K.M.)
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany; (A.A.J.V.); (T.L.)
| | - Ananda Ayyappan Jaguva Vasudevan
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany; (A.A.J.V.); (T.L.)
| | - Krishnaveni Mohareer
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, India; (K.B.); (K.M.)
| | - Tom Luedde
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany; (A.A.J.V.); (T.L.)
| | - Carsten Münk
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany; (A.A.J.V.); (T.L.)
- Correspondence: (C.M.); (S.B.); Tel.: +49-021-1811-0887 (C.M.); +91-40-2313-4573 (S.B.)
| | - Sharmistha Banerjee
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, India; (K.B.); (K.M.)
- Correspondence: (C.M.); (S.B.); Tel.: +49-021-1811-0887 (C.M.); +91-40-2313-4573 (S.B.)
| |
Collapse
|
38
|
Ding Y, Yin R, Zhang S, Xiao Q, Zhao H, Pan X, Zhu X. The Combined Regulation of Long Non-coding RNA and RNA-Binding Proteins in Atherosclerosis. Front Cardiovasc Med 2021; 8:731958. [PMID: 34796209 PMCID: PMC8592911 DOI: 10.3389/fcvm.2021.731958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/07/2021] [Indexed: 12/31/2022] Open
Abstract
Atherosclerosis is a complex disease closely related to the function of endothelial cells (ECs), monocytes/macrophages, and vascular smooth muscle cells (VSMCs). Despite a good understanding of the pathogenesis of atherosclerosis, the underlying molecular mechanisms are still only poorly understood. Therefore, atherosclerosis continues to be an important clinical issue worthy of further research. Recent evidence has shown that long non-coding RNAs (lncRNAs) and RNA-binding proteins (RBPs) can serve as important regulators of cellular function in atherosclerosis. Besides, several studies have shown that lncRNAs are partly dependent on the specific interaction with RBPs to exert their function. This review summarizes the important contributions of lncRNAs and RBPs in atherosclerosis and provides novel and comprehensible interaction models of lncRNAs and RBPs.
Collapse
Affiliation(s)
- Yuanyuan Ding
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ruihua Yin
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shuai Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qi Xiao
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongqin Zhao
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xudong Pan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoyan Zhu
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
39
|
Rotaviral nonstructural protein 5 (NSP5) promotes proteasomal degradation of up-frameshift protein 1 (UPF1), a principal mediator of nonsense-mediated mRNA decay (NMD) pathway, to facilitate infection. Cell Signal 2021; 89:110180. [PMID: 34718106 DOI: 10.1016/j.cellsig.2021.110180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/23/2022]
Abstract
Nonsense-mediated mRNA decay (NMD), a cellular RNA quality system, has been shown to be an ancestral form of cellular antiviral response that can restrict viral infection by targeting viral RNA for degradation or other various mechanisms. In support to this hypothesis, emerging evidences unraveled that viruses have evolved numerous mechanisms to circumvent or modulate the NMD pathway to ensure unhindered replication within the host cell. In this study, we investigated the potential interplay between the cellular NMD pathway and rotavirus (RV). Our data suggested that rotavirus infection resulted in global inhibition of NMD pathway by downregulating the expression of UPF1 in a strain independent manner. UPF1 expression was found to be regulated at the post-transcriptional level by ubiquitin-proteasome mediated degradation pathway. Subsequent studies revealed rotaviral non-structural protein 5 (NSP5) associates with UPF1 and promotes its cullin-dependent proteasome mediated degradation. Furthermore, ectopic expression of UPF1 during RV infection resulted in reduced expression of viral proteins and viral RNAs leading to diminished production of infective rotavirus particles, suggesting the anti-rotaviral role of UPF1. Finally, the delayed degradation kinetics of transfected rotaviral RNA in UPF1 and UPF2 depleted cells and the association of UPF1 and UPF2 with viral RNAs suggested that NMD targets rotaviral RNAs for degradation. Collectively, the present study demonstrates the antiviral role of NMD pathway during rotavirus infection and also reveals the underlying mechanism by which rotavirus overwhelms NMD pathway to establish successful replication.
Collapse
|
40
|
Morris C, Cluet D, Ricci EP. Ribosome dynamics and mRNA turnover, a complex relationship under constant cellular scrutiny. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 12:e1658. [PMID: 33949788 PMCID: PMC8519046 DOI: 10.1002/wrna.1658] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 12/01/2022]
Abstract
Eukaryotic gene expression is closely regulated by translation and turnover of mRNAs. Recent advances highlight the importance of translation in the control of mRNA degradation, both for aberrant and apparently normal mRNAs. During translation, the information contained in mRNAs is decoded by ribosomes, one codon at a time, and tRNAs, by specifically recognizing codons, translate the nucleotide code into amino acids. Such a decoding step does not process regularly, with various obstacles that can hinder ribosome progression, then leading to ribosome stalling or collisions. The progression of ribosomes is constantly monitored by the cell which has evolved several translation-dependent mRNA surveillance pathways, including nonsense-mediated decay (NMD), no-go decay (NGD), and non-stop decay (NSD), to degrade certain problematic mRNAs and the incomplete protein products. Recent progress in sequencing and ribosome profiling has made it possible to discover new mechanisms controlling ribosome dynamics, with numerous crosstalks between translation and mRNA decay. We discuss here various translation features critical for mRNA decay, with particular focus on current insights from the complexity of the genetic code and also the emerging role for the ribosome as a regulatory hub orchestrating mRNA decay, quality control, and stress signaling. Even if the interplay between mRNA translation and degradation is no longer to be demonstrated, a better understanding of their precise coordination is worthy of further investigation. This article is categorized under: RNA Turnover and Surveillance > Regulation of RNA Stability Translation > Translation Regulation RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Christelle Morris
- Laboratory of Biology and Modeling of the CellUniversité de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1293LyonFrance
| | - David Cluet
- Laboratory of Biology and Modeling of the CellUniversité de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1293LyonFrance
| | - Emiliano P. Ricci
- Laboratory of Biology and Modeling of the CellUniversité de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1293LyonFrance
| |
Collapse
|
41
|
Dynamic Variations of 3'UTR Length Reprogram the mRNA Regulatory Landscape. Biomedicines 2021; 9:biomedicines9111560. [PMID: 34829789 PMCID: PMC8615635 DOI: 10.3390/biomedicines9111560] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/10/2021] [Accepted: 10/15/2021] [Indexed: 12/16/2022] Open
Abstract
This paper concerns 3′-untranslated regions (3′UTRs) of mRNAs, which are non-coding regulatory platforms that control stability, fate and the correct spatiotemporal translation of mRNAs. Many mRNAs have polymorphic 3′UTR regions. Controlling 3′UTR length and sequence facilitates the regulation of the accessibility of functional effectors (RNA binding proteins, miRNAs or other ncRNAs) to 3′UTR functional boxes and motifs and the establishment of different regulatory landscapes for mRNA function. In this context, shortening of 3′UTRs would loosen miRNA or protein-based mechanisms of mRNA degradation, while 3′UTR lengthening would strengthen accessibility to these effectors. Alterations in the mechanisms regulating 3′UTR length would result in widespread deregulation of gene expression that could eventually lead to diseases likely linked to the loss (or acquisition) of specific miRNA binding sites. Here, we will review the mechanisms that control 3′UTR length dynamics and their alterations in human disorders. We will discuss, from a mechanistic point of view centered on the molecular machineries involved, the generation of 3′UTR variability by the use of alternative polyadenylation and cleavage sites, of mutually exclusive terminal alternative exons (exon skipping) as well as by the process of exonization of Alu cassettes to generate new 3′UTRs with differential functional features.
Collapse
|
42
|
Abstract
Alu RNA are implicated in the poor prognosis of several human disease states. These RNA are transcription products of primate specific transposable elements called Alu elements. These elements are extremely abundant, comprising over 10% of the human genome, and 100 to 1000 cytoplasmic copies of Alu RNA per cell. Alu RNA do not have a single universal functional role aside from selfish self-propagation. Despite this, Alu RNA have been found to operate in a diverse set of translational and transcriptional mechanisms. This review will focus on the current knowledge of Alu RNA involved in human disease states and known mechanisms of action. Examples of Alu RNA that are transcribed in a variety of contexts such as introns, mature mRNA, and non-coding transcripts will be discussed. Past and present challenges in studying Alu RNA, and the future directions of Alu RNA in basic and clinical research will also be examined.
Collapse
Affiliation(s)
| | - Sean A McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
43
|
Li G, Gong J, Cao S, Wu Z, Cheng D, Zhu J, Huang X, Tang J, Yuan Y, Cai W, Zhang H. The Non-Coding RNAs Inducing Drug Resistance in Ovarian Cancer: A New Perspective for Understanding Drug Resistance. Front Oncol 2021; 11:742149. [PMID: 34660304 PMCID: PMC8514763 DOI: 10.3389/fonc.2021.742149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/10/2021] [Indexed: 12/30/2022] Open
Abstract
Ovarian cancer, a common malignant tumor, is one of the primary causes of cancer-related deaths in women. Systemic chemotherapy with platinum-based compounds or taxanes is the first-line treatment for ovarian cancer. However, resistance to these chemotherapeutic drugs worsens the prognosis. The underlying mechanism of chemotherapeutic resistance in ovarian cancer remains unclear. Non-coding RNAs, including long non-coding RNAs, microRNAs, and circular RNAs, have been implicated in the development of drug resistance. Abnormally expressed non-coding RNAs can promote ovarian cancer resistance by inducing apoptosis inhibition, protective autophagy, abnormal tumor cell proliferation, epithelial-mesenchymal transition, abnormal glycolysis, drug efflux, and cancer cell stemness. This review summarizes the role of non-coding RNAs in the development of chemotherapeutic resistance in ovarian cancer, including their mechanisms, targets, and potential signaling pathways. This will facilitate the development of novel chemotherapeutic agents that can target these non-coding RNAs and improve ovarian cancer treatment.
Collapse
Affiliation(s)
- Gaofeng Li
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Jun Gong
- Department of Abdominal and Pelvic Medical Oncology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, China
| | - Shulong Cao
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Zhaoyang Wu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Dong Cheng
- Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Zhu
- Hubei Enshi College, Enshi, China
| | - Xuqun Huang
- Department of Thoracic Medical Oncology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, China
| | - Jingyi Tang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Yuning Yuan
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Wenqi Cai
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Haiyuan Zhang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| |
Collapse
|
44
|
Function of Host Protein Staufen1 in Rabies Virus Replication. Viruses 2021; 13:v13081426. [PMID: 34452292 PMCID: PMC8402631 DOI: 10.3390/v13081426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 12/14/2022] Open
Abstract
Rabies virus is a highly neurophilic negative-strand RNA virus with high lethality and remains a huge public health problem in developing countries to date. The double-stranded RNA-binding protein Staufen1 (STAU1) has multiple functions in RNA virus replication, transcription, and translation. However, its function in RABV infection and its mechanism of action are not clear. In this study, we investigated the role of host factor STAU1 in RABV infection of SH-SY-5Y cells. Immunofluorescence, TCID50 titers, confocal microscopy, quantitative real-time PCR and Western blotting were carried out to determine the molecular function and subcellular distribution of STAU1 in these cell lines. Expression of STAU1 in SH-SY-5Y cells was down-regulated by RNA interference or up-regulated by transfection of eukaryotic expression vectors. The results showed that N proficiently colocalized with STAU1 in SH-SY-5Y at 36 h post-infection, and the expression level of STAU1 was also proportional to the time of infection. Down-regulation of STAU1 expression increased the number of Negri body-like structures, enhanced viral replication, and a caused 10-fold increase in viral titers. Meanwhile, N protein and G protein mRNA levels also accumulated gradually with increasing infection time, which implied that STAU1 inhibited rabies virus infection of SH-SY-5Y cells in vitro. In conclusion, our results provide important clues for the detailed replication mechanism of rabies virus and the discovery of therapeutic targets.
Collapse
|
45
|
Zhao L, Jiang L, Zhang M, Zhang Q, Guan Q, Li Y, He M, Zhang J, Wei M. NF-κB-activated SPRY4-IT1 promotes cancer cell metastasis by downregulating TCEB1 mRNA via Staufen1-mediated mRNA decay. Oncogene 2021; 40:4919-4929. [PMID: 34163032 PMCID: PMC8321898 DOI: 10.1038/s41388-021-01900-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 05/10/2021] [Accepted: 06/08/2021] [Indexed: 01/09/2023]
Abstract
Previous study demonstrated that most long non-coding RNAs (lncRNAs) function as competing endogenous RNAs or molecular sponges to negatively modulate miRNA and regulate tumor development. However, the molecular mechanisms of lncRNAs in cancer are not fully understood. Our study describes the role of the lncRNA SPRY4 intronic transcript 1 (SPRY4-IT1) in cancer metastasis by mechanisms related to Staufen1 (STAU1)-mediated mRNA decay (SMD). Briefly, we found that, high SPRY4-IT1 expression was associated with aggressiveness and poor outcome in human colorectal, breast and ovarian cancer tissues. In addition, functional assays revealed that SPRY4-IT1 significantly promoted colorectal, breast and ovarian cancer metastasis in vitro and in vivo. Mechanistically, microarray analyses identified several differentially-expressed genes upon SPRY4-IT1 overexpression in HCT 116 colorectal cancer cells. Among them, the 3'-UTR of transcription elongation factor B subunit 1 (TCEB1) mRNA can base-pair with the Alu element in the 3'-UTR of SPRY4-IT1. Moreover, SPRY4-IT1 was found to bind STAU1, promote STAU1 recruitment to the 3'-UTR of TCEB1 mRNA, and affect TCEB1 mRNA stability and expression, resulting in hypoxia-inducible factor 1α (HIF-1α) upregulation, and thereby affecting cancer cell metastasis. In addition, STAU1 depletion abrogated TCEB1 SMD and alleviated the pro-metastatic effect of SPRY4-IT1 overexpression. Significantly, we revealed that SPRY4-IT1 is also transactivated by NF-κB/p65, which activates SPRY4-IT1 to inhibit TCEB1 expression, and subsequently upregulate HIF-1α. In conclusion, our results highlight a novel mechanism of cytoplasmic lncRNA SPRY4-IT1 in which SPRY4-IT1 affecting TCEB1 mRNA stability via STAU1-mediated degradation during cancer metastasis.
Collapse
Affiliation(s)
- Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Longyang Jiang
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Ming Zhang
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Qiang Zhang
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Qiutong Guan
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Yalun Li
- Department of Anorectal Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Jingdong Zhang
- Medical Oncology Department of Gastrointestinal Cancer, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, China.
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.
| |
Collapse
|
46
|
Alluri RK, Li Z, McCrae KR. Stress Granule-Mediated Oxidized RNA Decay in P-Body: Hypothetical Role of ADAR1, Tudor-SN, and STAU1. Front Mol Biosci 2021; 8:672988. [PMID: 34150849 PMCID: PMC8211916 DOI: 10.3389/fmolb.2021.672988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/11/2021] [Indexed: 12/26/2022] Open
Abstract
Reactive oxygen species (ROS) generated under oxidative stress (OS) cause oxidative damage to RNA. Recent studies have suggested a role for oxidized RNA in several human disorders. Under the conditions of oxidative stress, mRNAs released from polysome dissociation accumulate and initiate stress granule (SG) assembly. SGs are highly enriched in mRNAs, containing inverted repeat (IR) Alus in 3′ UTRs, AU-rich elements, and RNA-binding proteins. SGs and processing bodies (P-bodies) transiently interact through a docking mechanism to allow the exchange of RNA species. However, the types of RNA species exchanged, and the mechanisms and outcomes of exchange are still unknown. Specialized RNA-binding proteins, including adenosine deaminase acting on RNA (ADAR1-p150), with an affinity toward inverted repeat Alus, and Tudor staphylococcal nuclease (Tudor-SN) are specifically recruited to SGs under OS along with an RNA transport protein, Staufen1 (STAU1), but their precise biochemical roles in SGs and SG/P-body docking are uncertain. Here, we critically review relevant literature and propose a hypothetical mechanism for the processing and decay of oxidized-RNA in SGs/P-bodies, as well as the role of ADAR1-p150, Tudor-SN, and STAU1.
Collapse
Affiliation(s)
- Ravi Kumar Alluri
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Zhongwei Li
- Biomedical Science Department, College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Keith R McCrae
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States.,Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
47
|
Nourreddine S, Lavoie G, Paradis J, Ben El Kadhi K, Méant A, Aubert L, Grondin B, Gendron P, Chabot B, Bouvier M, Carreno S, Roux PP. NF45 and NF90 Regulate Mitotic Gene Expression by Competing with Staufen-Mediated mRNA Decay. Cell Rep 2021; 31:107660. [PMID: 32433969 DOI: 10.1016/j.celrep.2020.107660] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 01/16/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
In human cells, the expression of ∼1,000 genes is modulated throughout the cell cycle. Although some of these genes are controlled by specific transcriptional programs, very little is known about their post-transcriptional regulation. Here, we analyze the expression signature associated with all 687 RNA-binding proteins (RBPs) and identify 39 that significantly correlate with cell cycle mRNAs. We find that NF45 and NF90 play essential roles in mitosis, and transcriptome analysis reveals that they are necessary for the expression of a subset of mitotic mRNAs. Using proteomics, we identify protein clusters associated with the NF45-NF90 complex, including components of Staufen-mediated mRNA decay (SMD). We show that depletion of SMD components increases the binding of mitotic mRNAs to the NF45-NF90 complex and rescues cells from mitotic defects. Together, our results indicate that the NF45-NF90 complex plays essential roles in mitosis by competing with the SMD machinery for a common set of mRNAs.
Collapse
Affiliation(s)
- Sami Nourreddine
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Geneviève Lavoie
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Justine Paradis
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA
| | | | - Antoine Méant
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Léo Aubert
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Benoit Grondin
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Patrick Gendron
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Benoit Chabot
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Michel Bouvier
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3T 1J4, Canada; Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Sébastien Carreno
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3T 1J4, Canada; Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Philippe P Roux
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3T 1J4, Canada; Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada.
| |
Collapse
|
48
|
Bonnet-Magnaval F, DesGroseillers L. The Staufen1-dependent cell cycle regulon or how a misregulated RNA-binding protein leads to cancer. Biol Rev Camb Philos Soc 2021; 96:2192-2208. [PMID: 34018319 DOI: 10.1111/brv.12749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022]
Abstract
In recent years, an increasing number of reports have linked the RNA-binding protein Staufen1 (STAU1) to the control of cell decision making. In non-transformed cells, STAU1 balances the expression of messenger RNA (mRNA) regulons that regulate differentiation and well-ordered cell division. Misregulation of STAU1 expression and/or functions changes the fragile balance in the expression of pro- and anti-proliferative and apoptotic genes and favours a novel equilibrium that supports cell proliferation and cancer development. The misregulation of STAU1 functions causes multiple coordinated modest effects in the post-transcriptional regulation of many RNA targets that code for cell cycle regulators, leading to dramatic consequences at the cellular level. The new tumorigenic equilibrium in STAU1-mediated gene regulation observed in cancer cells can be further altered by a slight increase in STAU1 expression that favours expression of pro-apoptotic genes and cell death. The STAU1-dependent cell cycle regulon is a good model to study how abnormal expression of an RNA-binding protein promotes cell growth and provides an advantageous selection of malignant cells in the first step of cancer development.
Collapse
Affiliation(s)
- Florence Bonnet-Magnaval
- Département de biochimie et médecine moléculaire, Faculté de médecine, Université de Montréal, 2900 Édouard Montpetit, Montréal, QC, H3T 1J4, Canada
| | - Luc DesGroseillers
- Département de biochimie et médecine moléculaire, Faculté de médecine, Université de Montréal, 2900 Édouard Montpetit, Montréal, QC, H3T 1J4, Canada
| |
Collapse
|
49
|
Shi K, Liu T, Fu H, Li W, Zheng X. Genome-wide analysis of lncRNA stability in human. PLoS Comput Biol 2021; 17:e1008918. [PMID: 33861746 PMCID: PMC8081339 DOI: 10.1371/journal.pcbi.1008918] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 04/28/2021] [Accepted: 03/26/2021] [Indexed: 12/18/2022] Open
Abstract
Transcript stability is associated with many biological processes, and the factors affecting mRNA stability have been extensively studied. However, little is known about the features related to human long noncoding RNA (lncRNA) stability. By inhibiting transcription and collecting samples in 10 time points, genome-wide RNA-seq studies was performed in human lung adenocarcinoma cells (A549) and RNA half-life datasets were constructed. The following observations were obtained. First, the half-life distributions of both lncRNAs and messanger RNAs (mRNAs) with one exon (lnc-human1 and m-human1) were significantly different from those of both lncRNAs and mRNAs with more than one exon (lnc-human2 and m-human2). Furthermore, some factors such as full-length transcript secondary structures played a contrary role in lnc-human1 and m-human2. Second, through the half-life comparisons of nucleus- and cytoplasm-specific and common lncRNAs and mRNAs, lncRNAs (mRNAs) in the nucleus were found to be less stable than those in the cytoplasm, which was derived from transcripts themselves rather than cellular location. Third, kmers-based protein−RNA or RNA−RNA interactions promoted lncRNA stability from lnc-human1 and decreased mRNA stability from m-human2 with high probability. Finally, through applying deep learning−based regression, a non-linear relationship was found to exist between the half-lives of lncRNAs (mRNAs) and related factors. The present study established lncRNA and mRNA half-life regulation networks in the A549 cell line and shed new light on the degradation behaviors of both lncRNAs and mRNAs. Transcript stability is important for many biological processes. However, little is known about the features related to human lncRNA stability. Through quantitative analysis between the half-lives of lncRNAs (mRNAs) and various factors, we found a nonlinear relationship between the half-lives of lncRNAs (mRNAs) and the related factors and their combinations. Our research provided a comprehensive understanding of lncRNA stability. Further efforts are needed to develop an accurate quantitative prediction model for the half-lives of lncRNA (mRNA).
Collapse
Affiliation(s)
- Kaiwen Shi
- Institute of Military Cognition and Brain Sciences, Academy of Military Medicine, Beijing, China
| | - Tao Liu
- Institute of Military Cognition and Brain Sciences, Academy of Military Medicine, Beijing, China
| | - Hanjiang Fu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Wuju Li
- Institute of Military Cognition and Brain Sciences, Academy of Military Medicine, Beijing, China
- * E-mail: (WL); (XZ)
| | - Xiaofei Zheng
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
- * E-mail: (WL); (XZ)
| |
Collapse
|
50
|
Fernandes N, Buchan JR. RNAs as Regulators of Cellular Matchmaking. Front Mol Biosci 2021; 8:634146. [PMID: 33898516 PMCID: PMC8062979 DOI: 10.3389/fmolb.2021.634146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/22/2021] [Indexed: 12/30/2022] Open
Abstract
RNA molecules are increasingly being identified as facilitating or impeding the interaction of proteins and nucleic acids, serving as so-called scaffolds or decoys. Long non-coding RNAs have been commonly implicated in such roles, particularly in the regulation of nuclear processes including chromosome topology, regulation of chromatin state and gene transcription, and assembly of nuclear biomolecular condensates such as paraspeckles. Recently, an increased awareness of cytoplasmic RNA scaffolds and decoys has begun to emerge, including the identification of non-coding regions of mRNAs that can also function in a scaffold-like manner to regulate interactions of nascently translated proteins. Collectively, cytoplasmic RNA scaffolds and decoys are now implicated in processes such as mRNA translation, decay, protein localization, protein degradation and assembly of cytoplasmic biomolecular condensates such as P-bodies. Here, we review examples of RNA scaffolds and decoys in both the nucleus and cytoplasm, illustrating common themes, the suitability of RNA to such roles, and future challenges in identifying and better understanding RNA scaffolding and decoy functions.
Collapse
Affiliation(s)
| | - J. Ross Buchan
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, United States
| |
Collapse
|