1
|
Shao Z, Hu J, Jandura A, Wilk R, Jachimowicz M, Ma L, Hu C, Sundquist A, Das I, Samuel-Larbi P, Brill JA, Krause HM. Spatially revealed roles for lncRNAs in Drosophila spermatogenesis, Y chromosome function and evolution. Nat Commun 2024; 15:3806. [PMID: 38714658 PMCID: PMC11076287 DOI: 10.1038/s41467-024-47346-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/25/2024] [Indexed: 05/10/2024] Open
Abstract
Unlike coding genes, the number of lncRNA genes in organism genomes is relatively proportional to organism complexity. From plants to humans, the tissues with highest numbers and levels of lncRNA gene expression are the male reproductive organs. To learn why, we initiated a genome-wide analysis of Drosophila lncRNA spatial expression patterns in these tissues. The numbers of genes and levels of expression observed greatly exceed those previously reported, due largely to a preponderance of non-polyadenylated transcripts. In stark contrast to coding genes, the highest numbers of lncRNAs expressed are in post-meiotic spermatids. Correlations between expression levels, localization and previously performed genetic analyses indicate high levels of function and requirement. More focused analyses indicate that lncRNAs play major roles in evolution by controlling transposable element activities, Y chromosome gene expression and sperm construction. A new type of lncRNA-based particle found in seminal fluid may also contribute to reproductive outcomes.
Collapse
Affiliation(s)
- Zhantao Shao
- Donnelly Ctr., 160 College St., University of Toronto, Toronto, ON, Canada
| | - Jack Hu
- Donnelly Ctr., 160 College St., University of Toronto, Toronto, ON, Canada
| | - Allison Jandura
- Donnelly Ctr., 160 College St., University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ronit Wilk
- Donnelly Ctr., 160 College St., University of Toronto, Toronto, ON, Canada
| | - Matthew Jachimowicz
- Donnelly Ctr., 160 College St., University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Lingfeng Ma
- Donnelly Ctr., 160 College St., University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Chun Hu
- Donnelly Ctr., 160 College St., University of Toronto, Toronto, ON, Canada
| | - Abby Sundquist
- Donnelly Ctr., 160 College St., University of Toronto, Toronto, ON, Canada
| | - Indrani Das
- Donnelly Ctr., 160 College St., University of Toronto, Toronto, ON, Canada
| | | | - Julie A Brill
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.
| | - Henry M Krause
- Donnelly Ctr., 160 College St., University of Toronto, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Hannan AJ. Expanding horizons of tandem repeats in biology and medicine: Why 'genomic dark matter' matters. Emerg Top Life Sci 2023; 7:ETLS20230075. [PMID: 38088823 PMCID: PMC10754335 DOI: 10.1042/etls20230075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023]
Abstract
Approximately half of the human genome includes repetitive sequences, and these DNA sequences (as well as their transcribed repetitive RNA and translated amino-acid repeat sequences) are known as the repeatome. Within this repeatome there are a couple of million tandem repeats, dispersed throughout the genome. These tandem repeats have been estimated to constitute ∼8% of the entire human genome. These tandem repeats can be located throughout exons, introns and intergenic regions, thus potentially affecting the structure and function of tandemly repetitive DNA, RNA and protein sequences. Over more than three decades, more than 60 monogenic human disorders have been found to be caused by tandem-repeat mutations. These monogenic tandem-repeat disorders include Huntington's disease, a variety of ataxias, amyotrophic lateral sclerosis and frontotemporal dementia, as well as many other neurodegenerative diseases. Furthermore, tandem-repeat disorders can include fragile X syndrome, related fragile X disorders, as well as other neurological and psychiatric disorders. However, these monogenic tandem-repeat disorders, which were discovered via their dominant or recessive modes of inheritance, may represent the 'tip of the iceberg' with respect to tandem-repeat contributions to human disorders. A previous proposal that tandem repeats may contribute to the 'missing heritability' of various common polygenic human disorders has recently been supported by a variety of new evidence. This includes genome-wide studies that associate tandem-repeat mutations with autism, schizophrenia, Parkinson's disease and various types of cancers. In this article, I will discuss how tandem-repeat mutations and polymorphisms could contribute to a wide range of common disorders, along with some of the many major challenges of tandem-repeat biology and medicine. Finally, I will discuss the potential of tandem repeats to be therapeutically targeted, so as to prevent and treat an expanding range of human disorders.
Collapse
Affiliation(s)
- Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
3
|
The Function and Therapeutic Potential of lncRNAs in Cardiac Fibrosis. BIOLOGY 2023; 12:biology12020154. [PMID: 36829433 PMCID: PMC9952806 DOI: 10.3390/biology12020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023]
Abstract
Cardiac fibrosis remains an unresolved problem in cardiovascular diseases. Fibrosis of the myocardium plays a key role in the clinical outcomes of patients with heart injuries. Moderate fibrosis is favorable for cardiac structure maintaining and contractile force transmission, whereas adverse fibrosis generally progresses to ventricular remodeling and cardiac systolic or diastolic dysfunction. The molecular mechanisms involved in these processes are multifactorial and complex. Several molecular mechanisms, such as TGF-β signaling pathway, extracellular matrix (ECM) synthesis and degradation, and non-coding RNAs, positively or negatively regulate myocardial fibrosis. Long noncoding RNAs (lncRNAs) have emerged as significant mediators in gene regulation in cardiovascular diseases. Recent studies have demonstrated that lncRNAs are crucial in genetic programming and gene expression during myocardial fibrosis. We summarize the function of lncRNAs in cardiac fibrosis and their contributions to miRNA expression, TGF-β signaling, and ECMs synthesis, with a particular attention on the exosome-derived lncRNAs in the regulation of adverse fibrosis as well as the mode of action of lncRNAs secreted into exosomes. We also discuss how the current knowledge on lncRNAs can be applied to develop novel therapeutic strategies to prevent or reverse cardiac fibrosis.
Collapse
|
4
|
The Clinical Value of Long Noncoding RNA DDX11-AS1 as a Biomarker for the Diagnosis and Prognosis of Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:5735462. [PMID: 36072974 PMCID: PMC9444391 DOI: 10.1155/2022/5735462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022]
Abstract
Hepatocellular carcinoma (HCC) is a high-mortality malignant tumor with genetic and phenotypic heterogeneity, making predicting clinical outcomes challenging. The purpose of this investigation was to examine the potential usefulness of lncRNA DDX11 antisense RNA 1 (DDX11-AS1) as a biomarker for diagnosis and prognosis in hepatocellular carcinoma (HCC). The TCGA-LIHC datasets were searched for patients’ clinical information and RNA-seq data, which were then collected. Relative expression levels of DDX11-AS1 in HCC tissues were determined by qRT-PCR. In order to test the sensitivity and specificity of the DDX11-AS1 receiver, receiver operating characteristic curves were utilized. The association of DDX11-AS1 expression with clinicopathological factors or prognosis was statistically analyzed. We found that the levels of DDX11-AS1 were higher in HCC specimens than in normal specimens. ROC analysis showed that DDX11-AS1 was a useful marker for discriminating HCC tissues from normal nontumor specimens. According to the results of clinical tests, a high level of DDX11-AS1 expressions was significantly related to the pathologic stage (
) and the histologic grade (
). Survival studies indicated that patients with higher DDX11-AS1 expression had a significantly poorer overall survival (
) and progression-free interval (
) than those with lower DDX11-AS1 expression. Multivariate survival analysis verified that DDX11-AS1 expression level was an independent predictor for HCC patients. Overall, DDX11-AS1 may serve as a tumor promotor during HCC progression, and its high level may be a potential marker for HCC patients.
Collapse
|
5
|
PRR7-AS1 Correlates with Immune Cell Infiltration and Is a Diagnostic and Prognostic Marker for Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:1939368. [PMID: 36059812 PMCID: PMC9439911 DOI: 10.1155/2022/1939368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/04/2022] [Accepted: 08/11/2022] [Indexed: 01/27/2023]
Abstract
Hepatocellular carcinoma (HCC) is a highly aggressive malignant disease, and numerous studies have shown that certain functional long noncoding RNAs (lncRNAs) are implicated in the progression of several cancers. The purpose of the research was to determine, using a database, bioinformatics, and statistical analysis, whether or not lncRNA PRR7-AS1 (PRR7-AS1) was related to HCC. TCGA datasets were used to conduct research on the PRR7-AS1 expression pattern in HCC. In order to evaluate the efficacy of GIHCG as a prognostic tool, both survival and Cox regression analyses were carried out. Furthermore, an investigation of the connection between the expression of PRR7-AS1 and immune infiltration in HCC was carried out. In this study, we identified 125 lncRNAs that were significantly dysregulated in HCC and were associated with long-term survival. Among the above 125 lncRNAs, our attention focused on PRR7-AS1. We found that PRR7-AS1 expressions were distinctly overexpressed in HCC samples compared with nontumor samples. ROC assays revealed that PRR7-AS1 effectively differentiated HCC specimens from normal tissues with an AUC of 0.875 (95% CI: 0.840 to 0.911). Moreover, the high PRR7-AS1 expression was associated with advanced clinical stage and poor prognosis of HCC patients. Importantly, the multivariate Cox proportional hazards model suggested that up-expression of PRR7-AS1 was an independent prognostic marker indicating shorter overall survival and disease-specific survival for HCC patients. Finally, we found that PRR7-AS1 expression was associated with the expression of NK CD56bright cells, Th2 cells, TFH, macrophages, Th1 cells, aDC, T helper cells, cytotoxic cells, DC, Tgd, neutrophils, and Th17 cells. Overall, the results of our study show that PRR7-AS1 was a biomarker that could be utilized to predict the prognosis of HCC patients and was linked to the infiltration of immune cells in HCC.
Collapse
|
6
|
Yang F, Bian Z, Xu P, Sun S, Huang Z. MicroRNA-204-5p: A pivotal tumor suppressor. Cancer Med 2022; 12:3185-3200. [PMID: 35908280 PMCID: PMC9939231 DOI: 10.1002/cam4.5077] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/08/2022] [Accepted: 07/03/2022] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of non-coding single-stranded RNA molecules with a length of approximately 18-25 nt nucleotides that regulate gene expression post-transcriptionally. MiR-204-5p originates from the sixth intron of the transient receptor potential cation channel subfamily M member 3 (TRPM3) gene. MiR-204-5p is frequently downregulated in various cancer types and is related to the clinicopathological characteristics and prognosis of cancer patients. So far, many studies have determined that miR-204-5p functions as a tumor suppressor for its extensive and powerful capacity to inhibit tumor proliferation, metastasis, autophagy, and chemoresistance in multiple cancer types. MiR-204-5p appears to be a promising prognostic biomarker and a therapeutic target for human cancers. This review summarized the latest advances on the role of miR-204-5p in human cancers.
Collapse
Affiliation(s)
- Fan Yang
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
- Laboratory of Cancer Epigenetics, Wuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Zehua Bian
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
- Laboratory of Cancer Epigenetics, Wuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Peiwen Xu
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
- Laboratory of Cancer Epigenetics, Wuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Shengbai Sun
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
- Laboratory of Cancer Epigenetics, Wuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Zhaohui Huang
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
- Laboratory of Cancer Epigenetics, Wuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| |
Collapse
|
7
|
Koscianska E, Kozlowska E, Fiszer A. Regulatory Potential of Competing Endogenous RNAs in Myotonic Dystrophies. Int J Mol Sci 2021; 22:6089. [PMID: 34200099 PMCID: PMC8201210 DOI: 10.3390/ijms22116089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Non-coding RNAs (ncRNAs) have been reported to be implicated in cell fate determination and various human diseases. All ncRNA molecules are emerging as key regulators of diverse cellular processes; however, little is known about the regulatory interaction among these various classes of RNAs. It has been proposed that the large-scale regulatory network across the whole transcriptome is mediated by competing endogenous RNA (ceRNA) activity attributed to both protein-coding and ncRNAs. ceRNAs are considered to be natural sponges of miRNAs that can influence the expression and availability of multiple miRNAs and, consequently, the global mRNA and protein levels. In this review, we summarize the current understanding of the role of ncRNAs in two neuromuscular diseases, myotonic dystrophy type 1 and 2 (DM1 and DM2), and the involvement of expanded CUG and CCUG repeat-containing transcripts in miRNA-mediated RNA crosstalk. More specifically, we discuss the possibility that long repeat tracts present in mutant transcripts can be potent miRNA sponges and may affect ceRNA crosstalk in these diseases. Moreover, we highlight practical information related to innovative disease modelling and studying RNA regulatory networks in cells. Extending knowledge of gene regulation by ncRNAs, and of complex regulatory ceRNA networks in DM1 and DM2, will help to address many questions pertinent to pathogenesis and treatment of these disorders; it may also help to better understand general rules of gene expression and to discover new rules of gene control.
Collapse
Affiliation(s)
- Edyta Koscianska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland; (E.K.); (A.F.)
| | | | | |
Collapse
|
8
|
Glineburg MR, Zhang Y, Krans A, Tank EM, Barmada SJ, Todd PK. Enhanced detection of expanded repeat mRNA foci with hybridization chain reaction. Acta Neuropathol Commun 2021; 9:73. [PMID: 33892814 PMCID: PMC8063431 DOI: 10.1186/s40478-021-01169-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/27/2021] [Indexed: 12/17/2022] Open
Abstract
Transcribed nucleotide repeat expansions form detectable RNA foci in patient cells that contribute to disease pathogenesis. The most widely used method for detecting RNA foci, fluorescence in situ hybridization (FISH), is powerful but can suffer from issues related to signal above background. Here we developed a repeat-specific form of hybridization chain reaction (R-HCR) as an alternative method for detection of repeat RNA foci in two neurodegenerative disorders: C9orf72 associated ALS and frontotemporal dementia (C9 ALS/FTD) and Fragile X-associated tremor/ataxia syndrome. R-HCR to both G4C2 and CGG repeats exhibited comparable specificity but > 40 × sensitivity compared to FISH, with better detection of both nuclear and cytoplasmic foci in human C9 ALS/FTD fibroblasts, patient iPSC derived neurons, and patient brain samples. Using R-HCR, we observed that integrated stress response (ISR) activation significantly increased the number of endogenous G4C2 repeat RNA foci and triggered their selective nuclear accumulation without evidence of stress granule co-localization in patient fibroblasts and patient derived neurons. These data suggest that R-HCR can be a useful tool for tracking the behavior of repeat expansion mRNA in C9 ALS/FTD and other repeat expansion disorders.
Collapse
|