1
|
Hedwig V, Spöring M, Ottlinger J, Köse S, Nar H, Schnapp G, Gottschling D, Klein H, Aspnes G, Klugmann M, Hartig J. Engineering oxypurinol-responsive riboswitches based on bacterial xanthine aptamers for gene expression control in mammalian cell culture. Nucleic Acids Res 2025; 53:gkae1189. [PMID: 40087885 PMCID: PMC11904786 DOI: 10.1093/nar/gkae1189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/24/2024] [Accepted: 02/19/2025] [Indexed: 03/17/2025] Open
Abstract
Riboswitch-mediated control of gene expression without the interference of potentially immunogenic proteins is a promising approach for the development of tailor-made tools for biological research and the advancement of gene therapies. However, the current selection of applicable ligands for synthetic riboswitches is limited and strategies have mostly relied on de novo selection of aptamers. Here, we show that the bacterial xanthine I riboswitch aptamer recognizes oxypurinol, the active metabolite of the widely prescribed anti-gout drug allopurinol (Zyloprim®). We have characterized the aptamer/oxypurinol interaction and present a crystal structure of the oxypurinol-bound aptamer, revealing a binding mode similar to that of the cognate ligand xanthine. We then constructed artificial oxypurinol-responsive riboswitches that showed functionality in human cells. By optimizing splicing-based oxypurinol riboswitches using three different strategies, transgene expression could be induced by >100-fold. In summary, we have developed recombinant RNA switches enabling on-demand regulation of gene expression in response to an established and safe drug.
Collapse
Affiliation(s)
- Vera Hedwig
- Department of Chemistry, University of Konstanz, Konstanz, Germany
- Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany
| | - Maike Spöring
- Department of Chemistry, University of Konstanz, Konstanz, Germany
- Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany
| | - Julia Ottlinger
- Department of Chemistry, University of Konstanz, Konstanz, Germany
| | - Sila Köse
- Department of Chemistry, University of Konstanz, Konstanz, Germany
- Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany
| | - Herbert Nar
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Gisela Schnapp
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Dirk Gottschling
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Holger Klein
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Gary Aspnes
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Matthias Klugmann
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Jörg S Hartig
- Department of Chemistry, University of Konstanz, Konstanz, Germany
- Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany
| |
Collapse
|
2
|
Prajapati C, Rai SN, Singh AK, Chopade BA, Singh Y, Singh SK, Haque S, Prieto MA, Ashraf GM. An Update of Fungal Endophyte Diversity and Strategies for Augmenting Therapeutic Potential of their Potent Metabolites: Recent Advancement. Appl Biochem Biotechnol 2025:10.1007/s12010-024-05098-9. [PMID: 39907846 DOI: 10.1007/s12010-024-05098-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2024] [Indexed: 02/06/2025]
Abstract
Endophytic fungi represent a significant renewable resource for the discovery of pharmaceutically important compounds, offering substantial potential for new drug development. Their ability to address the growing issue of drug resistance has drawn attention from researchers seeking novel, nature-derived lead molecules that can be produced on a large scale to meet global demand. Recent advancements in genomics, metabolomics, bioinformatics, and improved cultivation techniques have significantly aided the identification and characterization of fungal endophytes and their metabolites. Current estimates suggest there are approximately 1.20 million fungal endophytes globally, yet only around 16% (190,000) have been identified and studied in detail. This underscores the vast untapped potential of fungal endophytes in pharmaceutical research. Research has increasingly focused on the transformation of bioactive compounds by fungal endophytes through chemical and enzymatic processes. A notable example is the anthraquinone derivative 6-O-methylalaternin, whose cytotoxic potential is enhanced by the addition of a hydroxyl group, sharing structural similarities with its parent compound macrosporin. These structure-bioactivity studies open up new avenues for developing safer and more effective therapeutic agents by synthesizing targeted derivatives. Despite the immense promise, challenges remain, particularly in the large-scale cultivation of fungal endophytes and in understanding the complexities of their biosynthetic pathways. Additionally, the genetic manipulation of endophytes for optimized metabolite production is still in its infancy. Future research should aim to overcome these limitations by focusing on more efficient cultivation methods and deeper exploration of fungal endophytes' genetic and metabolic capabilities to fully harness their therapeutic potential.
Collapse
Affiliation(s)
- Chandrabhan Prajapati
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Sachchida Nand Rai
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Anurag Kumar Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | | | - Yashveer Singh
- Department of Statistics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Santosh Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, 45142, Jazan, Saudi Arabia
| | - Miguel Angel Prieto
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department. Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004, Ourense, Spain.
| | - Ghulam Md Ashraf
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, 111 Ren'ai road, SIP, Jiangsu Province, Suzhou, 215123, P. R. China.
| |
Collapse
|
3
|
Muniz Seif EJ, Icimoto MY, da Silva Junior PI. In silico bioprospecting of receptors for Doderlin: an antimicrobial peptide isolated from Lactobacillus acidophilus. In Silico Pharmacol 2023; 11:11. [PMID: 37113323 PMCID: PMC10126193 DOI: 10.1007/s40203-023-00149-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
The emergence of resistant bacteria strains against traditional antibiotics and treatments increases each year. Doderlin is a cationic and amphiphilic peptide active against gram-positive, negative and yeast stains. The aim of the present work was prospect potentials receptors associated of antimicrobial activity of Doderlin using in silico bioinformatics tools. To search for potential targets of Doderlin, PharmMapper software was used. Molecular docking between Doderlin and the receptor was performed by PatchDock. Additional interaction and ligand site prediction for each receptor was performed by I-TASSER software. Those PDB Id, 1XDJ (score: 11,746), 1JMH (score: 11,046), 1YR3 (score: 10,578), 1NG3 (score: 10,082) showed highest dock score. Doderlin was found to predicted/real sites co-localize with 1XDJ and 1JMH, enzymes accountable for nitrogenic bases synthesis. The resulting receptor bioprospecting is highly correlated and suggests that Doderlin might act by interfering with DNA metabolism/production of bacteria, altering microorganism homeostasis and growth impairment. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-023-00149-1.
Collapse
Affiliation(s)
- Elias Jorge Muniz Seif
- Postgraduate Program in Molecular Biology, Federal University of São Paulo, São Paulo, Brazil
- Laboratory for Applied Toxinology (LETA), Center of Toxins, Immune-Response and Cell Signaling (CETICS/CEPID), Butantan Institute, São Paulo, Brazil
| | | | - Pedro Ismael da Silva Junior
- Postgraduate Program in Molecular Biology, Federal University of São Paulo, São Paulo, Brazil
- Laboratory for Applied Toxinology (LETA), Center of Toxins, Immune-Response and Cell Signaling (CETICS/CEPID), Butantan Institute, São Paulo, Brazil
| |
Collapse
|