1
|
Lorzadeh A, Hammond C, Wang F, Knapp DJHF, Wong JC, Zhu JYA, Cao Q, Heravi-Moussavi A, Carles A, Wong M, Sharafian Z, Steif J, Moksa M, Bilenky M, Lavoie PM, Eaves CJ, Hirst M. Polycomb contraction differentially regulates terminal human hematopoietic differentiation programs. BMC Biol 2022; 20:104. [PMID: 35550087 PMCID: PMC9102747 DOI: 10.1186/s12915-022-01315-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/28/2022] [Indexed: 12/05/2022] Open
Abstract
Background Lifelong production of the many types of mature blood cells from less differentiated progenitors is a hierarchically ordered process that spans multiple cell divisions. The nature and timing of the molecular events required to integrate the environmental signals, transcription factor activity, epigenetic modifications, and changes in gene expression involved are thus complex and still poorly understood. To address this gap, we generated comprehensive reference epigenomes of 8 phenotypically defined subsets of normal human cord blood. Results We describe a striking contraction of H3K27me3 density in differentiated myelo-erythroid cells that resembles a punctate pattern previously ascribed to pluripotent embryonic stem cells. Phenotypically distinct progenitor cell types display a nearly identical repressive H3K27me3 signature characterized by large organized chromatin K27-modification domains that are retained by mature lymphoid cells but lost in terminally differentiated monocytes and erythroblasts. We demonstrate that inhibition of polycomb group members predicted to control large organized chromatin K27-modification domains influences lymphoid and myeloid fate decisions of primary neonatal hematopoietic progenitors in vitro. We further show that a majority of active enhancers appear in early progenitors, a subset of which are DNA hypermethylated and become hypomethylated and induced during terminal differentiation. Conclusion Primitive human hematopoietic cells display a unique repressive H3K27me3 signature that is retained by mature lymphoid cells but is lost in monocytes and erythroblasts. Intervention data implicate that control of this chromatin state change is a requisite part of the process whereby normal human hematopoietic progenitor cells make lymphoid and myeloid fate decisions. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01315-1.
Collapse
Affiliation(s)
- A Lorzadeh
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
| | - C Hammond
- Terry Fox Laboratory, BC Cancer, Vancouver, Canada.,Department of Medicine, UBC, Vancouver, Canada
| | - F Wang
- Terry Fox Laboratory, BC Cancer, Vancouver, Canada.,Department of Medical Genetics, UBC, Vancouver, Canada
| | - D J H F Knapp
- Terry Fox Laboratory, BC Cancer, Vancouver, Canada.,Department of Medicine, UBC, Vancouver, Canada
| | - J Ch Wong
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
| | - J Y A Zhu
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
| | - Q Cao
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
| | - A Heravi-Moussavi
- Canada's Michael Smith Genome Science Centre, BC Cancer, Vancouver, Canada
| | - A Carles
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
| | - M Wong
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
| | - Z Sharafian
- BC Children's Hospital Research Institute, Department of Pediatrics, UBC, Vancouver, Canada
| | - J Steif
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
| | - M Moksa
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
| | - M Bilenky
- Canada's Michael Smith Genome Science Centre, BC Cancer, Vancouver, Canada
| | - P M Lavoie
- BC Children's Hospital Research Institute, Department of Pediatrics, UBC, Vancouver, Canada
| | - C J Eaves
- Terry Fox Laboratory, BC Cancer, Vancouver, Canada.,Department of Medicine, UBC, Vancouver, Canada.,Department of Medical Genetics, UBC, Vancouver, Canada
| | - M Hirst
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada. .,Canada's Michael Smith Genome Science Centre, BC Cancer, Vancouver, Canada.
| |
Collapse
|
2
|
Lorzadeh A, Lopez Gutierrez R, Jackson L, Moksa M, Hirst M. Generation of Native Chromatin Immunoprecipitation Sequencing Libraries for Nucleosome Density Analysis. J Vis Exp 2017. [PMID: 29286469 PMCID: PMC5755553 DOI: 10.3791/56085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We present a modified native chromatin immunoprecipitation sequencing (ChIP-seq) experimental protocol compatible with a Gaussian mixture distribution based analysis methodology (nucleosome density ChIP-seq; ndChIP-seq) that enables the generation of combined measurements of micrococcal nuclease (MNase) accessibility with histone modification genome-wide. Nucleosome position and local density, and the posttranslational modification of their histone subunits, act in concert to regulate local transcription states. Combinatorial measurements of nucleosome accessibility with histone modification generated by ndChIP-seq allows for the simultaneous interrogation of these features. The ndChIP-seq methodology is applicable to small numbers of primary cells inaccessible to cross-linking based ChIP-seq protocols. Taken together, ndChIP-seq enables the measurement of histone modification in combination with local nucleosome density to obtain new insights into shared mechanisms that regulate RNA transcription within rare primary cell populations.
Collapse
Affiliation(s)
- Alireza Lorzadeh
- Department of Microbiology and Immunology, Michael Smith Laboratories Centre for High-Throughput Biology, University of British Columbia
| | - Rodrigo Lopez Gutierrez
- Department of Microbiology and Immunology, Michael Smith Laboratories Centre for High-Throughput Biology, University of British Columbia
| | - Linda Jackson
- Department of Microbiology and Immunology, Michael Smith Laboratories Centre for High-Throughput Biology, University of British Columbia
| | - Michelle Moksa
- Department of Microbiology and Immunology, Michael Smith Laboratories Centre for High-Throughput Biology, University of British Columbia
| | - Martin Hirst
- Department of Microbiology and Immunology, Michael Smith Laboratories Centre for High-Throughput Biology, University of British Columbia; Canada's Michael Smith Genome Science Center, BC Cancer Agency;
| |
Collapse
|
3
|
Lorzadeh A, Bilenky M, Hammond C, Knapp DJHF, Li L, Miller PH, Carles A, Heravi-Moussavi A, Gakkhar S, Moksa M, Eaves CJ, Hirst M. Nucleosome Density ChIP-Seq Identifies Distinct Chromatin Modification Signatures Associated with MNase Accessibility. Cell Rep 2017; 17:2112-2124. [PMID: 27851972 DOI: 10.1016/j.celrep.2016.10.055] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 07/05/2016] [Accepted: 09/12/2016] [Indexed: 12/22/2022] Open
Abstract
Nucleosome position, density, and post-translational modification are widely accepted components of mechanisms regulating DNA transcription but still incompletely understood. We present a modified native ChIP-seq method combined with an analytical framework that allows MNase accessibility to be integrated with histone modification profiles. Application of this methodology to the primitive (CD34+) subset of normal human cord blood cells enabled genomic regions enriched in one versus two nucleosomes marked by histone 3 lysine 4 trimethylation (H3K4me3) and/or histone 3 lysine 27 trimethylation (H3K27me3) to be associated with their transcriptional and DNA methylation states. From this analysis, we defined four classes of promoter-specific profiles and demonstrated that a majority of bivalent marked promoters are heterogeneously marked at a single-cell level in this primitive cell type. Interestingly, extension of this approach to human embryonic stem cells revealed an altered relationship between chromatin modification state and nucleosome content at promoters, suggesting developmental stage-specific organization of histone methylation states.
Collapse
Affiliation(s)
- Alireza Lorzadeh
- Department of Microbiology and Immunology, Michael Smith Laboratories Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Misha Bilenky
- Canada's Michael Smith Genome Science Center, BC Cancer Agency Vancouver, BC V5Z 4S6, Canada
| | - Colin Hammond
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - David J H F Knapp
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Luolan Li
- Department of Microbiology and Immunology, Michael Smith Laboratories Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Paul H Miller
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Annaick Carles
- Department of Microbiology and Immunology, Michael Smith Laboratories Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Alireza Heravi-Moussavi
- Canada's Michael Smith Genome Science Center, BC Cancer Agency Vancouver, BC V5Z 4S6, Canada
| | - Sitanshu Gakkhar
- Canada's Michael Smith Genome Science Center, BC Cancer Agency Vancouver, BC V5Z 4S6, Canada
| | - Michelle Moksa
- Department of Microbiology and Immunology, Michael Smith Laboratories Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Connie J Eaves
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Martin Hirst
- Department of Microbiology and Immunology, Michael Smith Laboratories Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Canada's Michael Smith Genome Science Center, BC Cancer Agency Vancouver, BC V5Z 4S6, Canada.
| |
Collapse
|
4
|
Roukos DH. Crossroad between linear and nonlinear transcription concepts in the discovery of next-generation sequencing systems-based anticancer therapies. Drug Discov Today 2016; 21:663-73. [PMID: 26912452 DOI: 10.1016/j.drudis.2016.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/20/2016] [Accepted: 02/11/2016] [Indexed: 01/06/2023]
Abstract
The unprecedented potential of standard and new next-generation sequencing applications and methods to explore cancer genome evolution and tumor heterogeneity as well as transcription networks in time and space shapes the development of next-generation therapeutics. However, biomedical and pharmaceutical research for overcoming heterogeneity-based therapeutic resistance is at an important crossroads. Focus on linear transcription-based drug development targeting dynamics of simple intrapatient structured genome diversity represents a realistic medium-term goal. By contrast, the discovery of nonlinear transcription drugs for targeting structural and functional genome and transcriptome heterogeneity represents a long-term rational strategy. This review compares effectiveness, challenges and expectations between linear and nonlinear drugs targeting simple intrapatient variation and aberrant transcriptional biocircuits, respectively.
Collapse
Affiliation(s)
- Dimitrios H Roukos
- Centre for Biosystems and Genomic Network Medicine and Research & Innovation Commission of Ioannina University, School of Medicine, Ioannina, Greece; Hellenic Genomic Center and Systems Biology Unit of Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece.
| |
Collapse
|