1
|
Deru LS, Gipson EZ, Hales KE, Bikman BT, Davidson LE, Horne BD, LeCheminant JD, Tucker LA, Bailey BW. The Effects of a High-Carbohydrate versus a High-Fat Shake on Biomarkers of Metabolism and Glycemic Control When Used to Interrupt a 38-h Fast: A Randomized Crossover Study. Nutrients 2024; 16:164. [PMID: 38201992 PMCID: PMC10780935 DOI: 10.3390/nu16010164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
This study aimed to determine the impact of various fast-interrupting shakes on markers of glycemic control including glucose, β-hydroxybutyrate (BHB), insulin, glucagon, GLP-1, and GIP. Twenty-seven sedentary adults (twelve female, fifteen male) with overweight or obesity completed this study. One condition consisted of a 38-h water-only fast, and the other two conditions repeated this, but the fasts were interrupted at 24 h by either a high carbohydrate/low fat (HC/LF) shake or an isovolumetric and isocaloric low carbohydrate/high fat (LC/HF) shake. The water-only fast resulted in 135.3% more BHB compared to the HC/LF condition (p < 0.01) and 69.6% more compared to the LC/HF condition (p < 0.01). The LC/HF condition exhibited a 38.8% higher BHB level than the HC/LF condition (p < 0.01). The area under the curve for glucose was 14.2% higher in the HC/LF condition than in the water condition (p < 0.01) and 6.9% higher compared to the LC/HF condition (p < 0.01), with the LC/HF condition yielding 7.8% more glucose than the water condition (p < 0.01). At the 25-h mark, insulin and glucose-dependent insulinotropic polypeptide (GIP) were significantly elevated in the HC/LF condition compared to the LC/HF condition (p < 0.01 and p = 0.02, respectively) and compared to the water condition (p < 0.01). Furthermore, insulin, GLP-1, and GIP were increased in the LC/HF condition compared to the water condition at 25 h (p < 0.01, p = 0.015, and p < 0.01, respectively). By the 38-h time point, no differences were observed among the conditions for any of the analyzed hormones. While a LC/HF shake does not mimic a fast completely, it does preserve some of the metabolic changes including elevated BHB and glucagon, and decreased glucose and insulin compared to a HC/LF shake, implying a potential for improved metabolic health.
Collapse
Affiliation(s)
- Landon S. Deru
- Department of Exercise Science, Brigham Young University, Provo, UT 84602, USA
- Division of Physical Activity and Weight Management, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Elizabeth Z. Gipson
- Department of Exercise Science, Brigham Young University, Provo, UT 84602, USA
| | - Katelynn E. Hales
- Department of Exercise Science, Brigham Young University, Provo, UT 84602, USA
| | - Benjamin T. Bikman
- Department of Cellular Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Lance E. Davidson
- Department of Exercise Science, Brigham Young University, Provo, UT 84602, USA
| | - Benjamin D. Horne
- Intermountain Heart Institute, Intermountain Medical Center, Salt Lake City, UT 84107, USA;
| | - James D. LeCheminant
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA;
| | - Larry A. Tucker
- Department of Exercise Science, Brigham Young University, Provo, UT 84602, USA
| | - Bruce W. Bailey
- Department of Exercise Science, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
2
|
Onuzulu CD, Lee S, Basu S, Comte J, Hai Y, Hizon N, Chadha S, Fauni MS, Kahnamoui S, Xiang B, Halayko AJ, Dolinsky VW, Pascoe CD, Jones MJ. Early-life exposure to cigarette smoke primes lung function and DNA methylation changes at Cyp1a1 upon exposure later in life. Am J Physiol Lung Cell Mol Physiol 2023; 325:L552-L567. [PMID: 37642652 PMCID: PMC11068412 DOI: 10.1152/ajplung.00192.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023] Open
Abstract
Prenatal and early-life exposure to cigarette smoke (CS) has repeatedly been shown to induce stable, long-term changes in DNA methylation (DNAm) in offspring. It has been hypothesized that these changes might be functionally related to the known outcomes of prenatal and early-life CS exposure, which include impaired lung development, altered lung function, and increased risk of asthma and wheeze. However, to date, few studies have examined DNAm changes induced by prenatal CS in tissues of the lung, and even fewer have attempted to examine the specific influences of prenatal versus early postnatal exposures. Here, we have established a mouse model of CS exposure which isolates the effects of prenatal and early postnatal CS exposures in early life. We have used this model to measure the effects of prenatal and/or postnatal CS exposures on lung function and immune cell infiltration as well as DNAm and expression of Cyp1a1, a candidate gene previously observed to demonstrate DNAm differences on CS exposure in humans. Our study revealed that exposure to CS prenatally and in the early postnatal period causes long-lasting differences in offspring lung function, gene expression, and lung Cyp1a1 DNAm, which wane over time but are reestablished on reexposure to CS in adulthood. This study creates a testable mouse model that can be used to investigate the effects of prenatal and early postnatal CS exposures and will contribute to the design of intervention strategies to mediate these detrimental effects.NEW & NOTEWORTHY Here, we isolated effects of prenatal from early postnatal cigarette smoke and showed that exposure to cigarette smoke early in life causes changes in offspring DNA methylation at Cyp1a1 that last through early adulthood but not into late adulthood. We also showed that smoking in adulthood reestablished these DNA methylation patterns at Cyp1a1, suggesting that a mechanism other than DNA methylation results in long-term memory associated with early-life cigarette smoke exposures at this gene.
Collapse
Affiliation(s)
- Chinonye Doris Onuzulu
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Samantha Lee
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sujata Basu
- Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Jeannette Comte
- Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Yan Hai
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nikho Hizon
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shivam Chadha
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Maria Shenna Fauni
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shana Kahnamoui
- Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Bo Xiang
- Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Andrew J Halayko
- Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Vernon W Dolinsky
- Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Christopher D Pascoe
- Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Meaghan J Jones
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
- Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
3
|
Lerin C, Collado MC, Isganaitis E, Arning E, Wasek B, Demerath EW, Fields DA, Bottiglieri T. Revisiting One-Carbon Metabolites in Human Breast Milk: Focus on S-Adenosylmethionine. Nutrients 2023; 15:282. [PMID: 36678154 PMCID: PMC9863976 DOI: 10.3390/nu15020282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/09/2023] Open
Abstract
Breastfeeding is the gold standard for early nutrition. Metabolites from the one-carbon metabolism pool are crucial for infant development. The aim of this study is to compare the breast-milk one-carbon metabolic profile to other biofluids where these metabolites are present, including cord and adult blood plasma as well as cerebrospinal fluid. Breast milk (n = 142), cord blood plasma (n = 23), maternal plasma (n = 28), aging adult plasma (n = 91), cerebrospinal fluid (n = 92), and infant milk formula (n = 11) samples were analyzed by LC-MS/MS to quantify choline, betaine, methionine, S-adenosylmethionine, S-adenosylhomocysteine, total homocysteine, and cystathionine. Differences between groups were visualized by principal component analysis and analyzed by Kruskal-Wallis test. Correlation analysis was performed between one-carbon metabolites in human breast milk. Principal component analysis based on these metabolites separated breast milk samples from other biofluids. The S-adenosylmethionine (SAM) concentration was significantly higher in breast milk compared to the other biofluids and was absent in infant milk formulas. Despite many significant correlations between metabolites in one-carbon metabolism, there were no significant correlations between SAM and methionine or total homocysteine. Together, our data indicate a high concentration of SAM in breast milk, which may suggest a strong demand for this metabolite during infant early growth while its absence in infant milk formulas may indicate the inadequacy of this vital metabolic nutrient.
Collapse
Affiliation(s)
- Carles Lerin
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, 08950 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), 46980 Valencia, Spain
| | - Elvira Isganaitis
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Erland Arning
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott and White Research Institute, Dallas, TX 75204, USA
| | - Brandi Wasek
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott and White Research Institute, Dallas, TX 75204, USA
| | - Ellen W. Demerath
- Division of Epidemiology and Community Health, The University of Minnesota School of Public Health, Minneapolis, MN 55455, USA
| | - David A. Fields
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Teodoro Bottiglieri
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott and White Research Institute, Dallas, TX 75204, USA
| |
Collapse
|
4
|
Lin Y, Jiang Y, Du J, Ma H, Shen H, Hu Z. The continuing evolution of birth cohort studies: achievements and challenges. Biol Reprod 2022; 107:358-367. [PMID: 35686808 DOI: 10.1093/biolre/ioac117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/02/2022] [Accepted: 06/09/2022] [Indexed: 11/14/2022] Open
Abstract
Well-designed birth cohorts are able to estimate prevalence/distribution of various health events/outcomes, and to link early-life origins with adult health and function. The past two decades have seen a surge in the establishment of new birth cohorts and their accompanying research. We discussed distinct designs of current birth cohort studies, reviewed their achievements, and highlighted insights obtained from birth cohort studies, as well as challenges we are facing. Birth cohort studies are providing increasing opportunities to identify determining factors for short- and long-term health, yielding substantial evidence to uncover biological mechanisms of diseases and phenotypes, and providing further insights for public health. Dynamic monitoring, accurate measurements, long-term follow-ups and collaborative efforts are warranted in new birth cohorts to elucidate the nature of life course relationships in contemporary generation.
Collapse
Affiliation(s)
- Yuan Lin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China.,Department of Maternal, Child and Adolescent Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yangqian Jiang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiangbo Du
- State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China.,Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongxia Ma
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China.,Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongbing Shen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China.,Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Martin CL, Ghastine L, Lodge EK, Dhingra R, Ward-Caviness CK. Understanding Health Inequalities Through the Lens of Social Epigenetics. Annu Rev Public Health 2022; 43:235-254. [PMID: 35380065 PMCID: PMC9584166 DOI: 10.1146/annurev-publhealth-052020-105613] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Longstanding racial/ethnic inequalities in morbidity and mortality persist in the United States. Although the determinants of health inequalities are complex, social and structural factors produced by inequitable and racialized systems are recognized as contributing sources. Social epigenetics is an emerging area of research that aims to uncover biological pathways through which social experiences affect health outcomes. A growing body of literature links adverse social exposures to epigenetic mechanisms, namely DNA methylation, offering a plausible pathway through which health inequalities may arise. This review provides an overview of social epigenetics and highlights existing literature linking social exposures-i.e., psychosocial stressors, racism, discrimination, socioeconomic position, and neighborhood social environment-to DNA methylation in humans. We conclude with a discussion of social epigenetics as a mechanistic link to health inequalities and provide suggestions for future social epigenetics research on health inequalities.
Collapse
Affiliation(s)
- Chantel L Martin
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA;
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Lea Ghastine
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA;
| | - Evans K Lodge
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA;
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Radhika Dhingra
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Institute of Environmental Health Solutions, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Cavin K Ward-Caviness
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Chapel Hill, North Carolina, USA
| |
Collapse
|
6
|
Metabolic limits on classical information processing by biological cells. Biosystems 2021; 209:104513. [PMID: 34450208 DOI: 10.1016/j.biosystems.2021.104513] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/14/2021] [Accepted: 08/14/2021] [Indexed: 01/16/2023]
Abstract
Biological information processing is generally assumed to be classical. Measured cellular energy budgets of both prokaryotes and eukaryotes, however, fall orders of magnitude short of the power required to maintain classical states of protein conformation and localization at the Å, fs scales predicted by single-molecule decoherence calculations and assumed by classical molecular dynamics models. We suggest that decoherence is limited to the immediate surroundings of the cell membrane and of intercompartmental boundaries within the cell, and that bulk cellular biochemistry implements quantum information processing. Detection of Bell-inequality violations in responses to perturbation of recently-separated sister cells would provide a sensitive test of this prediction. If it is correct, modeling both intra- and intercellular communication requires quantum theory.
Collapse
|
7
|
Fields C, Levin M. Scale-Free Biology: Integrating Evolutionary and Developmental Thinking. Bioessays 2020; 42:e1900228. [PMID: 32537770 DOI: 10.1002/bies.201900228] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/24/2020] [Indexed: 12/16/2022]
Abstract
When the history of life on earth is viewed as a history of cell division, all of life becomes a single cell lineage. The growth and differentiation of this lineage in reciprocal interaction with its environment can be viewed as a developmental process; hence the evolution of life on earth can also be seen as the development of life on earth. Here, in reviewing this field, some potentially fruitful research directions suggested by this change in perspective are highlighted. Variation and selection become, for example, bidirectional information flows between scales, while the notions of "cooperation" and "competition" become scale relative. The language of communication, inference, and information processing becomes more useful than the language of causation to describe the interactions of both homogeneous and heterogeneous living systems at any scale. Emerging scale-free theoretical frameworks such as predictive coding and active inference provide conceptual tools for reconceptualizing biology as the study of a unified, multiscale dynamical system.
Collapse
Affiliation(s)
- Chris Fields
- 23 Rue des Lavandieres, 11160 Caunes Minervois, France
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
8
|
Abstract
Research in the field of gerontology has traditionally focused on later life stages. There is increasing evidence, however, that both the rate of age-related functional decline and the later-life health status can be programmed during early development. The central role of epigenetic mechanisms (methylation of DNA, histone modifications and regulation by non-coding RNAs) in mediating these long-term effects has been elucidated. Both rate and direction of age-associated change of epigenetic patterns (“epigenetic drift”) were shown to be largely dependent on early-life environmental conditions. Inter-individual divergences in epigenetic profiles may arise following the stochastic errors in maintaining epigenetic marks, but they may also be adaptively mediated by specific environmental cues. Recent cohort studies indicate that ticking rate of epigenetic clock, estimated by a DNA methylation-based methods, may be developmentally adjusted, and that individual’s discrepancies among epigenetic and chronological age would be likely programmed early in development. In this Perspective article, recent findings suggesting the importance of early-life determinants for life-course dynamics of epigenetic drift are summarized and discussed.
Collapse
|
9
|
Hao G, Youssef NA, Davis CL, Su S. The role of DNA methylation in the association between childhood adversity and cardiometabolic disease. Int J Cardiol 2017; 255:168-174. [PMID: 29288057 DOI: 10.1016/j.ijcard.2017.12.063] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/17/2017] [Accepted: 12/16/2017] [Indexed: 02/07/2023]
Abstract
Growing evidence suggests that adverse environmental stimuli, especially during sensitive periods in early life, may lead to cardiometabolic disease in later life. However, the underlying biological mechanisms remain a mystery. Recent studies inferred that epigenetic modifications are likely involved. We review recent studies, primarily focused on the findings from human studies, to indicate the role of DNA methylation in the associations between childhood adversity and cardiometabolic disease in adulthood. In particular, we focused on DNA methylation modifications in genes regulating the hypothalamus-pituitary-adrenal axis as well as the immune system.
Collapse
Affiliation(s)
- Guang Hao
- Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, GA, United States.
| | - Nagy A Youssef
- Department of Psychiatry & Health Behavior, Medical College of Georgia, Augusta University, Augusta, GA, United States.
| | - Catherine L Davis
- Department of Population Health Sciences, Georgia Prevention Institute, Medical College of Georgia, Augusta University, Augusta, GA, United States.
| | - Shaoyong Su
- Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, GA, United States.
| |
Collapse
|
10
|
Fields C, Levin M. Multiscale memory and bioelectric error correction in the cytoplasm-cytoskeleton-membrane system. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2017; 10. [DOI: 10.1002/wsbm.1410] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/19/2017] [Accepted: 10/04/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Chris Fields
- 21 Rue des Lavandiéres, 11160 Caunes Minervois; France
| | - Michael Levin
- Allen Discovery Center at Tufts University; Medford MA USA
| |
Collapse
|
11
|
Lix LM, Leslie WD, Yang S, Yan L, Walld R, Morin SN, Majumdar SR, Roos LL. Accuracy of Offspring-Reported Parental Hip Fractures: A Novel Population-Based Parent-Offspring Record Linkage Study. Am J Epidemiol 2017; 185:974-981. [PMID: 28430851 DOI: 10.1093/aje/kww197] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 04/18/2016] [Indexed: 12/18/2022] Open
Abstract
The objective of this study was to test the validity of offspring-reported parental hip fracture in a unique bone mineral density (BMD) registry linked to administrative databases spanning 4 decades. Population-based data were from Manitoba, Canada, and included hospital abstracts, health insurance registrations, and the provincewide BMD registry. The cohort included individuals aged ≥40 years with BMD tests and self-reports of parental hip fracture between 2006 and 2014. Population registry data for 1966-2014 were used to link offspring with their parents, and hospital records were used to ascertain parental fractures. Overall, 8,112 offspring met the inclusion criteria; 13.6% had a parental hip fracture diagnosis in administrative data during an average of 32.9 years of follow-up. Agreement between parental hip fracture from offspring reports and diagnoses in administrative data was good (κ = 0.68). The sensitivity of offspring reports was 0.70 (95% confidence interval: 0.67, 0.73), and specificity was 0.96 (95% confidence interval: 0.96, 0.97). Offspring characteristics associated with disagreement included male sex, northern rural residence, early BMD test year, and longer interval between BMD test and parental hip fracture diagnosis. This proof-of-concept study focused on hip fractures, but use of record linkage techniques to validate offspring-reported parental information can be extended to other conditions.
Collapse
|
12
|
Nist MD. Biological embedding: evaluation and analysis of an emerging concept for nursing scholarship. J Adv Nurs 2016; 73:349-360. [PMID: 27682606 DOI: 10.1111/jan.13168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2016] [Indexed: 11/28/2022]
Abstract
AIM The purpose of this paper was to report the analysis of the concept of biological embedding. BACKGROUND Research that incorporates a life course perspective is becoming increasingly prominent in the health sciences. Biological embedding is a central concept in life course theory and may be important for nursing theories to enhance our understanding of health states in individuals and populations. Before the concept of biological embedding can be used in nursing theory and research, an analysis of the concept is required to advance it towards full maturity. DESIGN Concept analysis. DATA SOURCES PubMed, CINAHL and PsycINFO were searched for publications using the term 'biological embedding' or 'biological programming' and published through 2015. METHODS An evaluation of the concept was first conducted to determine the concept's level of maturity and was followed by a concept comparison, using the methods for concept evaluation and comparison described by Morse. RESULTS A consistent definition of biological embedding - the process by which early life experience alters biological processes to affect adult health outcomes - was found throughout the literature. The concept has been used in several theories that describe the mechanisms through which biological embedding might occur and highlight its role in the development of health trajectories. Biological embedding is a partially mature concept, requiring concept comparison with an overlapping concept - biological programming - to more clearly establish the boundaries of biological embedding. CONCLUSIONS Biological embedding has significant potential for theory development and application in multiple academic disciplines, including nursing.
Collapse
|
13
|
Abstract
Although 'exposome' research has started to appear, and the concept is fascinating, we still have little proof-of-principle. This issue of Mutagenesis reports a few examples of exposome research, showing that the approach is providing the first results. In this Commentary, I develop the example of epigenome-wide methylation studies related to smoking as a success story, that fits well with previous research in humans and in vitro on mechanisms of carcinogenesis, and also with conceptual models such as Cairns' model based on asymmetric division of stem cells. The field of exposomics merges different disciplines, notably biology and mathematics, but also the evolutionary theory, and can possibly lead to interesting breakthroughs in the next years.
Collapse
Affiliation(s)
- Paolo Vineis
- MRC/PHE Centre for Environment and Health, School of Public Health, Imperial College London, Room 511 (5th floor), St Mary's Campus, Norfolk Place, London W2 1PG, UK
| |
Collapse
|
14
|
Vaiserman A. Epidemiologic evidence for association between adverse environmental exposures in early life and epigenetic variation: a potential link to disease susceptibility? Clin Epigenetics 2015; 7:96. [PMID: 26366233 PMCID: PMC4567831 DOI: 10.1186/s13148-015-0130-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/01/2015] [Indexed: 12/21/2022] Open
Abstract
A growing body of evidence suggests that the risk of development and progression of a variety of human chronic diseases depends on epigenetic modifications triggered by environmental cues during early life sensitive stages. Exposures to environmental factors such as adverse nutritional, psychological, and social conditions, as well as pollutants and substance abuse in early life, have been shown to be important determinants of epigenetic programming of chronic pathological conditions in human populations. Over the past years, it has become increasingly clear due to the epigenome-wide association studies (EWASs) that early life adverse environmental events may trigger widespread and persistent alterations in transcriptional profiling. Several candidate genes have been identified underlying these associations. In this context, DNA methylation is the most intensively studied epigenetic phenomenon. In this review, the clinical and epidemiological evidence for the role of epigenetic factors in mediating the link between early life experiences and long-term health outcomes are summarized.
Collapse
|