1
|
Wehrens M, Krah LHJ, Towbin BD, Hermsen R, Tans SJ. The interplay between metabolic stochasticity and cAMP-CRP regulation in single E. coli cells. Cell Rep 2023; 42:113284. [PMID: 37864793 DOI: 10.1016/j.celrep.2023.113284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 07/17/2023] [Accepted: 09/29/2023] [Indexed: 10/23/2023] Open
Abstract
The inherent stochasticity of metabolism raises a critical question for understanding homeostasis: are cellular processes regulated in response to internal fluctuations? Here, we show that, in E. coli cells under constant external conditions, catabolic enzyme expression continuously responds to metabolic fluctuations. The underlying regulatory feedback is enabled by the cyclic AMP (cAMP) and cAMP receptor protein (CRP) system, which controls catabolic enzyme expression based on metabolite concentrations. Using single-cell microscopy, genetic constructs in which this feedback is disabled, and mathematical modeling, we show how fluctuations circulate through the metabolic and genetic network at sub-cell-cycle timescales. Modeling identifies four noise propagation modes, including one specific to CRP regulation. Together, these modes correctly predict noise circulation at perturbed cAMP levels. The cAMP-CRP system may thus have evolved to control internal metabolic fluctuations in addition to external growth conditions. We conjecture that second messengers may more broadly function to achieve cellular homeostasis.
Collapse
Affiliation(s)
- Martijn Wehrens
- AMOLF, 1098 XG Amsterdam, the Netherlands; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center, 3584 CT Utrecht, the Netherlands
| | - Laurens H J Krah
- Theoretical Biology Group, Biology Department, Utrecht University, 3584 CH Utrecht, the Netherlands; Centre for Complex Systems Studies, Utrecht University, 3584 CE Utrecht, the Netherlands
| | - Benjamin D Towbin
- Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland
| | - Rutger Hermsen
- Theoretical Biology Group, Biology Department, Utrecht University, 3584 CH Utrecht, the Netherlands; Centre for Complex Systems Studies, Utrecht University, 3584 CE Utrecht, the Netherlands
| | - Sander J Tans
- AMOLF, 1098 XG Amsterdam, the Netherlands; Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands.
| |
Collapse
|
2
|
Dunn L, Luo H, Subedi NR, Kasu R, McDonald AG, Christodoulides DN, Vasdekis AE. Video-rate Raman-based metabolic imaging by Airy light-sheet illumination and photon-sparse detection. Proc Natl Acad Sci U S A 2023; 120:e2210037120. [PMID: 36812197 PMCID: PMC9992822 DOI: 10.1073/pnas.2210037120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/15/2022] [Indexed: 02/24/2023] Open
Abstract
Despite its massive potential, Raman imaging represents just a modest fraction of all research and clinical microscopy to date. This is due to the ultralow Raman scattering cross-sections of most biomolecules that impose low-light or photon-sparse conditions. Bioimaging under such conditions is suboptimal, as it either results in ultralow frame rates or requires increased levels of irradiance. Here, we overcome this tradeoff by introducing Raman imaging that operates at both video rates and 1,000-fold lower irradiance than state-of-the-art methods. To accomplish this, we deployed a judicially designed Airy light-sheet microscope to efficiently image large specimen regions. Further, we implemented subphoton per pixel image acquisition and reconstruction to confront issues arising from photon sparsity at just millisecond integrations. We demonstrate the versatility of our approach by imaging a variety of samples, including the three-dimensional (3D) metabolic activity of single microbial cells and the underlying cell-to-cell variability. To image such small-scale targets, we again harnessed photon sparsity to increase magnification without a field-of-view penalty, thus, overcoming another key limitation in modern light-sheet microscopy.
Collapse
Affiliation(s)
- Lochlann Dunn
- Department of Physics, University of Idaho, Moscow, ID83844-0903
| | - Haokun Luo
- The College of Optics and Photonics, University of Central Florida, Orlando, FL32816-2700
| | - Nava R. Subedi
- Department of Physics, University of Idaho, Moscow, ID83844-0903
| | | | - Armando G. McDonald
- Department of Forest, Rangeland, and Fire Sciences, University of Idaho, Moscow, ID83844-1132
| | | | | |
Collapse
|
3
|
Singh A, Saint-Antoine M. Probing transient memory of cellular states using single-cell lineages. Front Microbiol 2023; 13:1050516. [PMID: 36824587 PMCID: PMC9942930 DOI: 10.3389/fmicb.2022.1050516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/22/2022] [Indexed: 02/10/2023] Open
Abstract
The inherent stochasticity in the gene product levels can drive single cells within an isoclonal population to different phenotypic states. The dynamic nature of this intercellular variation, where individual cells can transition between different states over time, makes it a particularly hard phenomenon to characterize. We reviewed recent progress in leveraging the classical Luria-Delbrück experiment to infer the transient heritability of the cellular states. Similar to the original experiment, individual cells were first grown into cell colonies, and then, the fraction of cells residing in different states was assayed for each colony. We discuss modeling approaches for capturing dynamic state transitions in a growing cell population and highlight formulas that identify the kinetics of state switching from the extent of colony-to-colony fluctuations. The utility of this method in identifying multi-generational memory of the both expression and phenotypic states is illustrated across diverse biological systems from cancer drug resistance, reactivation of human viruses, and cellular immune responses. In summary, this fluctuation-based methodology provides a powerful approach for elucidating cell-state transitions from a single time point measurement, which is particularly relevant in situations where measurements lead to cell death (as in single-cell RNA-seq or drug treatment) or cause an irreversible change in cell physiology.
Collapse
Affiliation(s)
- Abhyudai Singh
- Departments of Electrical and Computer Engineering, Biomedical Engineering, Mathematical Sciences University of Delaware, Newark, DE, United States
| | | |
Collapse
|
4
|
Density fluctuations, homeostasis, and reproduction effects in bacteria. Commun Biol 2022; 5:397. [PMID: 35484403 PMCID: PMC9050864 DOI: 10.1038/s42003-022-03348-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 04/10/2022] [Indexed: 12/02/2022] Open
Abstract
Single-cells grow by increasing their biomass and size. Here, we report that while mass and size accumulation rates of single Escherichia coli cells are exponential, their density and, thus, the levels of macromolecular crowding fluctuate during growth. As such, the average rates of mass and size accumulation of a single cell are generally not the same, but rather cells differentiate into increasing one rate with respect to the other. This differentiation yields a density homeostasis mechanism that we support mathematically. Further, we observe that density fluctuations can affect the reproduction rates of single cells, suggesting a link between the levels of macromolecular crowding with metabolism and overall population fitness. We detail our experimental approach and the “invisible” microfluidic arrays that enabled increased precision and throughput. Infections and natural communities start from a few cells, thus, emphasizing the significance of density-fluctuations when taking non-genetic variability into consideration. Quantitative imaging, invisible microfluidics, and mathematical models demonstrate how the density of single E. coli cells fluctuates during the cell cycle, unmasking key homeostasis and population fitness effects.
Collapse
|
5
|
Osman S, Bendtsen C, Peel S, Yrlid L, Muthas D, Simpson J, Willison KR, Klug DR. Evaluation of FOXO1 Target Engagement Using a Single-Cell Microfluidic Platform. Anal Chem 2021; 93:14659-14666. [PMID: 34694778 DOI: 10.1021/acs.analchem.1c02808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The cellular thermal shift assay (CETSA) has been used extensively since its introduction to study drug-target engagement within both live cells and cellular lysate. This has proven to be a useful tool in early stage drug discovery and is used to study a wide range of protein classes. We describe the application of a single-cell CETSA workflow within a microfluidic affinity capture (MAC) chip. This has enabled us to quantitatively determine the active FOXO1 single-molecule count and observe FOXO1 stabilization and destabilization in the presence of three small molecule inhibitors, including demonstrating the determination of EC50. The successful use of the MAC chip for single-cell CETSA paves the way for the study of precious clinical samples owing to the low number of cells needed by the chip. It also provides a useful tool for studying any underlying population heterogeneity that exists within a cellular system, a feature that is usually masked when conducting ensemble measurements.
Collapse
Affiliation(s)
- Suhuur Osman
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 80 Wood Lane, London, W12 0BZ, United Kingdom
| | - Claus Bendtsen
- Discovery Sciences, R&D, AstraZeneca, 310 Milton Road, Cambridge, CB4 0WG, United Kingdom
| | - Samantha Peel
- Discovery Sciences, R&D, AstraZeneca, 310 Milton Road, Cambridge, CB4 0WG, United Kingdom
| | - Linda Yrlid
- Early Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43150 Gothenburg, Sweden
| | - Daniel Muthas
- Early Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43150 Gothenburg, Sweden
| | - John Simpson
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 80 Wood Lane, London, W12 0BZ, United Kingdom
| | - Keith R Willison
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 80 Wood Lane, London, W12 0BZ, United Kingdom
| | - David R Klug
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 80 Wood Lane, London, W12 0BZ, United Kingdom
| |
Collapse
|
6
|
The effect of natural selection on the propagation of protein expression noise to bacterial growth. PLoS Comput Biol 2021; 17:e1009208. [PMID: 34280182 PMCID: PMC8321134 DOI: 10.1371/journal.pcbi.1009208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 07/29/2021] [Accepted: 06/22/2021] [Indexed: 11/19/2022] Open
Abstract
In bacterial cells, protein expression is a highly stochastic process. Gene expression noise moreover propagates through the cell and adds to fluctuations in the cellular growth rate. A common intuition is that, due to their relatively high noise amplitudes, proteins with a low mean expression level are the most important drivers of fluctuations in physiological variables. In this work, we challenge this intuition by considering the effect of natural selection on noise propagation. Mathematically, the contribution of each protein species to the noise in the growth rate depends on two factors: the noise amplitude of the protein’s expression level, and the sensitivity of the growth rate to fluctuations in that protein’s concentration. We argue that natural selection, while shaping mean abundances to increase the mean growth rate, also affects cellular sensitivities. In the limit in which cells grow optimally fast, the growth rate becomes most sensitive to fluctuations in highly abundant proteins. This causes abundant proteins to overall contribute strongly to the noise in the growth rate, despite their low noise levels. We further explore this result in an experimental data set of protein abundances, and test key assumptions in an evolving, stochastic toy model of cellular growth. Gene expression in bacterial cells is intrinsically stochastic: copy numbers of all proteins vary between genetically identical cells, even in a homogeneous environment. Such noise in gene expression affects metabolic fluxes and even propagates to the cellular level. Indeed, also the growth rate of individual cells, an important proxy for fitness, fluctuates strongly. This beckons the question as to which protein species contribute most to the noise in the cell’s growth rate. We here derive general mathematical predictions stating that if cells have been optimised by evolution to grow fast, abundant protein species contribute most to the noise in the growth rate. This result is counter-intuitive, because the noise levels in the expression of those highly expressed proteins are small.
Collapse
|
7
|
Taylor M, Lukowski JK, Anderton CR. Spatially Resolved Mass Spectrometry at the Single Cell: Recent Innovations in Proteomics and Metabolomics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:872-894. [PMID: 33656885 PMCID: PMC8033567 DOI: 10.1021/jasms.0c00439] [Citation(s) in RCA: 150] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 05/02/2023]
Abstract
Biological systems are composed of heterogeneous populations of cells that intercommunicate to form a functional living tissue. Biological function varies greatly across populations of cells, as each single cell has a unique transcriptome, proteome, and metabolome that translates to functional differences within single species and across kingdoms. Over the past decade, substantial advancements in our ability to characterize omic profiles on a single cell level have occurred, including in multiple spectroscopic and mass spectrometry (MS)-based techniques. Of these technologies, spatially resolved mass spectrometry approaches, including mass spectrometry imaging (MSI), have shown the most progress for single cell proteomics and metabolomics. For example, reporter-based methods using heavy metal tags have allowed for targeted MS investigation of the proteome at the subcellular level, and development of technologies such as laser ablation electrospray ionization mass spectrometry (LAESI-MS) now mean that dynamic metabolomics can be performed in situ. In this Perspective, we showcase advancements in single cell spatial metabolomics and proteomics over the past decade and highlight important aspects related to high-throughput screening, data analysis, and more which are vital to the success of achieving proteomic and metabolomic profiling at the single cell scale. Finally, using this broad literature summary, we provide a perspective on how the next decade may unfold in the area of single cell MS-based proteomics and metabolomics.
Collapse
Affiliation(s)
- Michael
J. Taylor
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jessica K. Lukowski
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Christopher R. Anderton
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|