1
|
Guan G, Tao L, Yue H, Liang W, Gong J, Bing J, Zheng Q, Veri AO, Fan S, Robbins N, Cowen LE, Huang G. Environment-induced same-sex mating in the yeast Candida albicans through the Hsf1-Hsp90 pathway. PLoS Biol 2019; 17:e2006966. [PMID: 30865631 PMCID: PMC6415874 DOI: 10.1371/journal.pbio.2006966] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 02/13/2019] [Indexed: 12/14/2022] Open
Abstract
While sexual reproduction is pervasive in eukaryotic cells, the strategies employed by fungal species to achieve and complete sexual cycles is highly diverse and complex. Many fungi, including Saccharomyces cerevisiae and Schizosaccharomyces pombe, are homothallic (able to mate with their own mitotic descendants) because of homothallic switching (HO) endonuclease-mediated mating-type switching. Under laboratory conditions, the human fungal pathogen Candida albicans can undergo both heterothallic and homothallic (opposite- and same-sex) mating. However, both mating modes require the presence of cells with two opposite mating types (MTLa/a and α/α) in close proximity. Given the predominant clonal feature of this yeast in the human host, both opposite- and same-sex mating would be rare in nature. In this study, we report that glucose starvation and oxidative stress, common environmental stresses encountered by the pathogen, induce the development of mating projections and efficiently permit same-sex mating in C. albicans with an "a" mating type (MTLa/a). This induction bypasses the requirement for the presence of cells with an opposite mating type and allows efficient sexual mating between cells derived from a single progenitor. Glucose starvation causes an increase in intracellular oxidative species, overwhelming the Heat Shock transcription Factor 1 (Hsf1)- and Heat shock protein (Hsp)90-mediated stress-response pathway. We further demonstrate that Candida TransActivating protein 4 (Cta4) and Cell Wall Transcription factor 1 (Cwt1), downstream effectors of the Hsf1-Hsp90 pathway, regulate same-sex mating in C. albicans through the transcriptional control of the master regulator of a-type mating, MTLa2, and the pheromone precursor-encoding gene Mating α factor precursor (MFα). Our results suggest that mating could occur much more frequently in nature than was originally appreciated and that same-sex mating could be an important mode of sexual reproduction in C. albicans.
Collapse
Affiliation(s)
- Guobo Guan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Li Tao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Huizhen Yue
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Weihong Liang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiao Gong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jian Bing
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Qiushi Zheng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Amanda O Veri
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Shuru Fan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Guanghua Huang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Liu H, Gravelat FN, Chiang LY, Chen D, Vanier G, Ejzykowicz DE, Ibrahim AS, Nierman WC, Sheppard DC, Filler SG. Aspergillus fumigatus AcuM regulates both iron acquisition and gluconeogenesis. Mol Microbiol 2010; 78:1038-54. [PMID: 21062375 DOI: 10.1111/j.1365-2958.2010.07389.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Relatively few transcription factors that govern the virulence of Aspergillus fumigatus are known. We constructed 11 A. fumigatus transcription factor mutants and screened them for altered virulence in Galleria mellonella larvae. We discovered that the zinc cluster transcription factor, AcuM, is essential for maximal virulence in this model, as well as in murine models of haematogenously disseminated and invasive pulmonary aspergillosis. Transcriptional profiling experiments suggested that AcuM suppresses sreA and induces hapX to stimulate expression of genes involved in both reductive iron assimilation and siderophore-mediated iron uptake. Consistent with these results, a ΔacuM mutant had reduced iron incorporation, decreased extracellular siderophore production and impaired capacity to grow under iron-limited conditions. Interestingly, an Aspergillus nidulansΔacuM mutant had normal extracellular siderophore production and growth under iron-limited conditions, indicating that AcuM does not govern iron acquisition in this organism. A. fumigatus AcuM also regulated genes involved in gluconeogenesis, and the ΔacuM mutant had impaired growth on gluconeogenic carbon sources. Deletion of sreA in the ΔacuM mutant restored iron uptake, extracellular siderophore production and virulence, but not the defect in gluconeogenesis. Thus, AcuM represses SreA and thereby induces iron acquisition, a process that is essential for the maximal virulence of A. fumigatus.
Collapse
Affiliation(s)
- Hong Liu
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Moreno I, Martinez-Esparza M, Laforet LC, Sentandreu R, Ernst JF, Valentin E. Dosage-dependent roles of the Cwt1 transcription factor for cell wall architecture, morphogenesis, drug sensitivity and virulence in Candida albicans. Yeast 2010; 27:77-87. [PMID: 19908200 DOI: 10.1002/yea.1733] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Cwt1 transcription factor is involved in cell wall architecture of the human fungal pathogen Candida albicans. We demonstrate here that deficiency of Cwt1 leads to decreased beta1,6-glucan in the cell wall, while mannoproteins are increased in the cell wall of exponentially growing cells and are released into the medium of stationary phase cells. Hyphal morphogenesis of cwt1 mutants is reduced on the surfaces of some inducing media. Unexpectedly, the CWT1/cwt1 heterozygous strains shows some stronger in vitro phenotypes compared to the homozygous mutant. The heterozygous but not the homozygous strain is also strongly impaired for its virulence in a mouse model of systemic infection. We suggest that an intermediate dosage of Cwt1 affects phenotypes profoundly, while its complete absence may elicit compensatory responses of C. albicans.
Collapse
Affiliation(s)
- Inmaculada Moreno
- GMCA Research Group, Departamento de Microbiología y Ecología, Facultad de Farmacia, Universidad de Valencia, Avenida Vicente Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | | | | | | | | | | |
Collapse
|
4
|
Bader O, Krauke Y, Hube B. Processing of predicted substrates of fungal Kex2 proteinases from Candida albicans, C. glabrata, Saccharomyces cerevisiae and Pichia pastoris. BMC Microbiol 2008; 8:116. [PMID: 18625069 PMCID: PMC2515848 DOI: 10.1186/1471-2180-8-116] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Accepted: 07/14/2008] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Kexin-like proteinases are a subfamily of the subtilisin-like serine proteinases with multiple regulatory functions in eukaryotes. In the yeast Saccharomyces cerevisiae the Kex2 protein is biochemically well investigated, however, with the exception of a few well known proteins such as the alpha-pheromone precursors, killer toxin precursors and aspartic proteinase propeptides, very few substrates are known. Fungal kex2 deletion mutants display pleiotropic phenotypes that are thought to result from the failure to proteolytically activate such substrates. RESULTS In this study we have aimed at providing an improved assembly of Kex2 target proteins to explain the phenotypes observed in fungal kex2 deletion mutants by in vitro digestion of recombinant substrates from Candida albicans and C. glabrata. We identified CaEce1, CA0365, one member of the Pry protein family and CaOps4-homolog proteins as novel Kex2 substrates. CONCLUSION Statistical analysis of the cleavage sites revealed extended subsite recognition of negatively charged residues in the P1', P2' and P4' positions, which is also reflected in construction of the respective binding pockets in the ScKex2 enzyme. Additionally, we provide evidence for the existence of structural constrains in potential substrates prohibiting proteolysis. Furthermore, by using purified Kex2 proteinases from S. cerevisiae, P. pastoris, C. albicans and C. glabrata, we show that while the substrate specificity is generally conserved between organisms, the proteinases are still distinct from each other and are likely to have additional unique substrate recognition.
Collapse
Affiliation(s)
- Oliver Bader
- FG16, Robert Koch-Institut, Nordufer 20, D-13353 Berlin, Germany
- Institut für Medizinische Mikrobiologie, Universität Göttingen, Kreuzbergring 57, D-37075 Göttingen, Germany
| | - Yannick Krauke
- FG16, Robert Koch-Institut, Nordufer 20, D-13353 Berlin, Germany
- Dept. Membrane Transport, Institute of Physiology AS CR v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Bernhard Hube
- FG16, Robert Koch-Institut, Nordufer 20, D-13353 Berlin, Germany
- Department of Microbial Pathogenicity, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute, Beutenbergstrasse 11a, D-07745 Jena, and Friedrich-Schiller-University Jena, Germany
| |
Collapse
|