1
|
Adhikari S, Moscatelli J, Puchner EM. Quantitative live-cell PALM reveals nanoscopic Faa4 redistributions and dynamics on lipid droplets during metabolic transitions of yeast. Mol Biol Cell 2021; 32:1565-1578. [PMID: 34161133 PMCID: PMC8351750 DOI: 10.1091/mbc.e20-11-0695] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Lipid droplets (LDs) are dynamic organelles for lipid storage and homeostasis. Cells respond to metabolic changes by regulating the spatial distribution of LDs and enzymes required for LD growth and turnover. The small size of LDs precludes the observation of their associated enzyme densities and dynamics with conventional fluorescence microscopy. Here we employ quantitative photo-activated localization microscopy to study the density of the fatty acid (FA) activating enzyme Faa4 on LDs in live yeast cells with single-molecule sensitivity and 30 nm resolution. During the log phase LDs colocalize with the endoplasmic reticulum (ER) where their emergence and expansion are mediated by the highest observed Faa4 densities. During transition to the stationary phase, LDs with a ∼2-fold increased surface area translocate to the vacuolar surface and lumen and exhibit a ∼2.5-fold increase in Faa4 density. The increased Faa4 density on LDs further suggests its role in LD expansion, is caused by its ∼5-fold increased expression level, and is specific to exogenous FA chain-lengths. When lipolysis is induced by refreshed medium, Faa4 shuttles through ER- and lipophagy to the vacuole, where it may activate FAs for membrane expansion and degrade Faa4 to reset its cellular abundance to levels in the log phase.
Collapse
Affiliation(s)
- Santosh Adhikari
- School of Physics and Astronomy, University of Minnesota, Twin Cities, Physics and Nanotechnology (PAN), Minneapolis, MN 55455
| | - Joe Moscatelli
- School of Physics and Astronomy, University of Minnesota, Twin Cities, Physics and Nanotechnology (PAN), Minneapolis, MN 55455
| | - Elias M Puchner
- School of Physics and Astronomy, University of Minnesota, Twin Cities, Physics and Nanotechnology (PAN), Minneapolis, MN 55455
| |
Collapse
|
2
|
|
3
|
Attempts at the Characterization of In-Cell Biophysical Processes Non-Invasively-Quantitative NMR Diffusometry of a Model Cellular System. Cells 2020; 9:cells9092124. [PMID: 32961701 PMCID: PMC7565294 DOI: 10.3390/cells9092124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
In the literature, diffusion studies of cell systems are usually limited to two water pools that are associated with the extracellular space and the entire interior of the cell. Therefore, the time-dependent diffusion coefficient contains information about the geometry of these two water regions and the water exchange through their boundary. This approach is due to the fact that most of these studies use pulse techniques and relatively low gradients, which prevents the achievement of high b-values. As a consequence, it is not possible to register the signal coming from proton populations with a very low bulk or apparent self-diffusion coefficient, such as cell organelles. The purpose of this work was to obtain information on the geometry and dynamics of water at a level lower than the cell size, i.e., in cellular structures, using the time-dependent diffusion coefficient method. The model of the cell system was made of baker’s yeast (Saccharomyces cerevisiae) since that is commonly available and well-characterized. We measured characteristic fresh yeast properties with the application of a compact Nuclear Magnetic Resonance (NMR)-Magritek Mobile Universal Surface Explorer (MoUSE) device with a very high, constant gradient (~24 T/m), which enabled us to obtain a sufficient stimulated echo attenuation even for very short diffusion times (0.2–40 ms) and to apply very short diffusion encoding times. In this work, due to a very large diffusion weighting (b-values), splitting the signal into three components was possible, among which one was associated only with cellular structures. Time-dependent diffusion coefficient analysis allowed us to determine the self-diffusion coefficients of extracellular fluid, cytoplasm and cellular organelles, as well as compartment sizes. Cellular organelles contributing to each compartment were identified based on the random walk simulations and approximate volumes of water pools calculated using theoretical sizes or molar fractions. Information about different cell structures is contained in different compartments depending on the diffusion regime, which is inherent in studies applying extremely high gradients.
Collapse
|
4
|
Zhu J, Loubéry S, Broger L, Zhang Y, Lorenzo-Orts L, Utz-Pugin A, Fernie AR, Young-Tae C, Hothorn M. A genetically validated approach for detecting inorganic polyphosphates in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:507-516. [PMID: 31816134 DOI: 10.1111/tpj.14642] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 11/08/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Inorganic polyphosphates (polyPs) are linear polymers of orthophosphate units linked by phosphoanhydride bonds. Polyphosphates represent important stores of phosphate and energy, and are abundant in many pro- and eukaryotic organisms. In plants, the existence of polyPs has been established using microscopy and biochemical extraction methods that are now known to produce artifacts. Here we use a polyP-specific dye and a polyP-binding domain to detect polyPs in plant and algal cells. To develop the staining protocol, we induced polyP granules in Nicotiana benthamiana and Arabidopsis cells by heterologous expression of Escherichia coli polyphosphate kinase 1 (PPK1). Over-expression of PPK1 but not of a catalytically impaired version of the enzyme leads to severe growth phenotypes, suggesting that ATP-dependent synthesis and accumulation of polyPs in the plant cytosol is toxic. We next crossed stable PPK1-expressing Arabidopsis lines with plants expressing the polyP-binding domain of E. coli exopolyphosphatase (PPX1c), which co-localized with PPK1-generated polyP granules. These granules were stained by the polyP-specific dye JC-D7 and appeared as electron-dense structures in transmission electron microscopy sections. Using the polyP staining protocol derived from these experiments, we screened for polyP stores in different organs and tissues of both mono- and dicotyledonous plants. While we could not detect polyP granules in higher plants, we could visualize the polyP-rich acidocalcisomes in the green alga Chlamydomonas reinhardtii.
Collapse
Affiliation(s)
- Jinsheng Zhu
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 30 Quai E. Ansermet, Geneva, 1211, Switzerland
| | - Sylvain Loubéry
- Department of Botany and Plant Biology, University of Geneva, 30 Quai E. Ansermet, Geneva, 1211, Switzerland
| | - Larissa Broger
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 30 Quai E. Ansermet, Geneva, 1211, Switzerland
| | - Youjun Zhang
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
- Center of Plant System Biology and Biotechnology, Ruski Blvd. 139, Plovdiv, 4000, Bulgaria
| | - Laura Lorenzo-Orts
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 30 Quai E. Ansermet, Geneva, 1211, Switzerland
| | - Anne Utz-Pugin
- Department of Botany and Plant Biology, University of Geneva, 30 Quai E. Ansermet, Geneva, 1211, Switzerland
| | - Alisdair R Fernie
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Chang Young-Tae
- Center for Self-assembly and Complexity, IBS and Department of Chemistry, POSTECH, 50, Jigok-ro 127beon-gil, Nam-gu, Pohang-si, Gyeongsangbuk-do, Pohang, 37673, Republic of Korea
| | - Michael Hothorn
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 30 Quai E. Ansermet, Geneva, 1211, Switzerland
| |
Collapse
|
5
|
Lee Y, Kim H, Hong N, Ahn J, Kang HW. Combined treatment of low‐level laser therapy and phloroglucinol for inhibition of fibrosis. Lasers Surg Med 2019; 52:276-285. [DOI: 10.1002/lsm.23131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Yeachan Lee
- Interdisciplinary Program of Biomedical Mechanical & Electrical EngineeringPukyong National UniversityBusan 48513 South Korea
| | - Hyejin Kim
- Interdisciplinary Program of Biomedical Mechanical & Electrical EngineeringPukyong National UniversityBusan 48513 South Korea
| | - Namgue Hong
- Department of Biomedical Science, College of MedicineDankook UniversityCheonan 31116 Republic of Korea
| | - Jin‐Chul Ahn
- Department of Biomedical Science, College of MedicineDankook UniversityCheonan 31116 Republic of Korea
| | - Hyun Wook Kang
- Interdisciplinary Program of Biomedical Mechanical & Electrical EngineeringPukyong National UniversityBusan 48513 South Korea
- Department of Biomedical Engineering and Center for Marine‐Integrated Biomedical TechnologyPukyong National UniversityBusan 48513 South Korea
| |
Collapse
|
6
|
Kharchuk MS, Glushenkov AN, Gromozova EN. Analysis of the motion of vacuolar volutin granules in Saccharomyces cerevisiae. Folia Microbiol (Praha) 2018; 64:207-213. [PMID: 30206767 DOI: 10.1007/s12223-018-0646-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 09/04/2018] [Indexed: 11/25/2022]
Abstract
The moving volutin (polyphosphate) granules known as "dancing bodies" can be observed in the vacuoles of the yeast cells. The aim of work was to study the effects of cultivation conditions and influences of physico-chemical factors on the motion of vacuolar volutin granules in Saccharomyces cerevisiae cells. The motion of granules is a non-Markovian process. It does not depend on the cell cycle phase, but depends on the growth stage. The maximal number of cells with "dancing bodies" was observed under cultivation of yeast at 25-28 °C and pH 5.4-5.8. Irradiation by non-ionizing electromagnetic radiation (EMR) of extremely high frequency (61.22 GHz, 100 μW, 30 min) had no effect on granule motion. After irradiation by non-ionizing EMR of very high frequency (40.68 MHz, 30 W, 30 min) the number of cells with "dancing bodies" decreased significantly and in 2 h restored almost to the control value. The possible nature of the moving volutin granules phenomenon due to metabolic processes is discussed.
Collapse
Affiliation(s)
- Maxim S Kharchuk
- Department of Physiology of Industrial Microorganisms, Danylo Zabolotny Institute of Microbiology and Virology, NAS of Ukraine, 154 Acad. Zabolotny Str., Kyiv, Ukraine.
| | - Andrey N Glushenkov
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, NAS of Ukraine, 150 Acad. Zabolotny Str., Kyiv, Ukraine
| | - Elena N Gromozova
- Department of Physiology of Industrial Microorganisms, Danylo Zabolotny Institute of Microbiology and Virology, NAS of Ukraine, 154 Acad. Zabolotny Str., Kyiv, Ukraine
| |
Collapse
|
7
|
Park JS, Lee IB, Moon HM, Joo JH, Kim KH, Hong SC, Cho M. Label-free and live cell imaging by interferometric scattering microscopy. Chem Sci 2018; 9:2690-2697. [PMID: 29732052 PMCID: PMC5914294 DOI: 10.1039/c7sc04733a] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/08/2018] [Indexed: 11/21/2022] Open
Abstract
Despite recent remarkable advances in microscopic techniques, it still remains very challenging to directly observe the complex structure of cytoplasmic organelles in live cells without a fluorescent label.
Despite recent remarkable advances in microscopic techniques, it still remains very challenging to directly observe the complex structure of cytoplasmic organelles in live cells without a fluorescent label. Here we report label-free and live-cell imaging of mammalian cell, Escherischia coli, and yeast, using interferometric scattering microscopy, which reveals the underlying structures of a variety of cytoplasmic organelles as well as the underside structure of the cells. The contact areas of the cells attached onto a glass substrate, e.g., focal adhesions and filopodia, are clearly discernible. We also found a variety of fringe-like features in the cytoplasmic area, which may reflect the folded structures of cytoplasmic organelles. We thus anticipate that the label-free interferometric scattering microscopy can be used as a powerful tool to shed interferometric light on in vivo structures and dynamics of various intracellular phenomena.
Collapse
Affiliation(s)
- Jin-Sung Park
- Center for Molecular Spectroscopy and Dynamics , Institute for Basic Science , Seoul 02841 , Korea
| | - Il-Buem Lee
- Center for Molecular Spectroscopy and Dynamics , Institute for Basic Science , Seoul 02841 , Korea.,Department of Physics , Korea University , Seoul 02841 , Korea .
| | - Hyeon-Min Moon
- Center for Molecular Spectroscopy and Dynamics , Institute for Basic Science , Seoul 02841 , Korea.,Department of Physics , Korea University , Seoul 02841 , Korea .
| | - Jong-Hyeon Joo
- Center for Molecular Spectroscopy and Dynamics , Institute for Basic Science , Seoul 02841 , Korea.,Department of Chemistry , Korea University , Seoul 02841 , Korea .
| | - Kyoung-Hoon Kim
- Center for Molecular Spectroscopy and Dynamics , Institute for Basic Science , Seoul 02841 , Korea.,Department of Physics , Korea University , Seoul 02841 , Korea .
| | - Seok-Cheol Hong
- Center for Molecular Spectroscopy and Dynamics , Institute for Basic Science , Seoul 02841 , Korea.,Department of Physics , Korea University , Seoul 02841 , Korea .
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics , Institute for Basic Science , Seoul 02841 , Korea.,Department of Chemistry , Korea University , Seoul 02841 , Korea .
| |
Collapse
|
8
|
|
9
|
Cytoplasmic inorganic polyphosphate participates in the heavy metal tolerance of Cryptococcus humicola. Folia Microbiol (Praha) 2014; 59:381-9. [PMID: 24531869 DOI: 10.1007/s12223-014-0310-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 01/30/2014] [Indexed: 10/25/2022]
Abstract
The basidiomycetous yeast Cryptococcus humicola was shown to be tolerant to manganese, cobalt, nickel, zinc, lanthanum, and cadmium cations at a concentration of 2.5 mmol/L, which is toxic for many yeasts. The basidiomycetous yeast Cryptococcus terreus was sensitive to all these ions and did not grow at the above concentration. In the presence of heavy metal cations, С. humicola, as opposed to C. terreus, was characterized by the higher content of acid-soluble inorganic polyphosphates. In vivo 4',6'-diamino-2-phenylindole dihydrochloride staining revealed polyphosphate accumulation in the cell wall and cytoplasmic inclusions of С. humicola in the presence of heavy metals. In C. terreus, polyphosphates in the presence of heavy metals accumulate mainly in vacuoles, which results in morphological changes in these organelles and, probably, disturbance of their function. The role of polyphosphate accumulation and cellular localization as factors of heavy metal tolerance of Cryptococcus humicola is discussed.
Collapse
|
10
|
Rauwerdink AM, Weaver JB. Concurrent quantification of multiple nanoparticle bound states. Med Phys 2011; 38:1136-40. [PMID: 21520825 DOI: 10.1118/1.3549762] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The binding of nanoparticles to in vivo targets impacts their use for medical imaging, therapy, and the study of diseases and disease biomarkers. Though an array of techniques can detect binding in vitro, the search for a robust in vivo method continues. The spectral response of magnetic nanoparticles can be influenced by a variety of changes in their physical environment including viscosity and binding. Here, the authors show that nanoparticles in these different environmental states produce spectral responses, which are sufficiently unique to allow for simultaneous quantification of the proportion of nanoparticles within each state. METHODS The authors measured the response to restricted Brownian motion using an array of magnetic nanoparticle designs. With a chosen optimal particle type, the authors prepared particle samples in three distinct environmental states. Various combinations of particles within these three states were measured concurrently and the authors attempted to solve for the quantity of particles within each physical state. RESULTS The authors found the spectral response of the nanoparticles to be sufficiently unique to allow for accurate quantification of up to three bound states with errors on the order of 1.5%. Furthermore, the authors discuss numerous paths for translating these measurements to in vivo applications. CONCLUSIONS Multiple nanoparticle environmental states can be concurrently quantified using the spectral response of the particles. Such an ability, if translated to the in vivo realm, could provide valuable information about the fate of nanoparticles in vivo or improve the efficacy of nanoparticle based treatments.
Collapse
Affiliation(s)
- Adam M Rauwerdink
- Thayer School of Engineering, Dartmouth College, 8000 Cummings Hall, Hanover, New Hampshire 03755, USA.
| | | |
Collapse
|
11
|
Dziedzic SA, Caplan AB. Identification of autophagy genes participating in zinc-induced necrotic cell death in Saccharomyces cerevisiae. Autophagy 2011; 7:490-500. [PMID: 21317551 DOI: 10.4161/auto.7.5.14872] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Eukaryotes use a common set of genes to perform two mechanistically similar autophagic processes. Bulk autophagy harvests proteins nonselectively and reuses their constitutents when nutrients are scarce. In contrast, different forms of selective autophagy target protein aggregates or damaged organelles that threaten to interfere with growth. Yeast uses one form of selective autophagy, called cytoplasm-to-vacuole targeting (Cvt), to engulf two vacuolar enzymes in Cvt vesicles ("CVT-somes") within which they are transported to vacuoles for maturation. While both are dispensable normally, bulk and selective autophagy help sustain life under stressful conditions. Consistent with this view, knocking out several genes participating in Cvt and specialized autophagic pathways heightened the sensitivity of Saccharomyces cerevisiae to inhibitory levels of Zn(2+). The loss of other autophagic genes, and genes responsible for apoptotic cell death, had no such effect. Unexpectedly, the loss of members of a third set of autophagy genes heightened cellular resistance to zinc as if they encoded proteins that actively contributed to zinc-induced cell death. Further studies showed that both sensitive and resistant strains accumulated similar amounts of H2O2 during zinc treatments, but that more sensitive strains showed signs of necrosis sooner. Although zinc lethality depended on autophagic proteins, studies with several reporter genes failed to reveal increased autophagic activity. In fact, microscopy analysis indicated that Zn(2+) partially inhibited fusion of Cvt vesicles with vacuoles. Further studies into how the loss of autophagic processes suppressed necrosis in yeast might reveal whether a similar process could occur in plants and animals.
Collapse
Affiliation(s)
- Slawomir A Dziedzic
- Department of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, ID, USA
| | | |
Collapse
|