1
|
Marte L, Boronat S, García-Santamarina S, Ayté J, Kitamura K, Hidalgo E. Identification of ubiquitin-proteasome system components affecting the degradation of the transcription factor Pap1. Redox Biol 2019; 28:101305. [PMID: 31514053 PMCID: PMC6742857 DOI: 10.1016/j.redox.2019.101305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/13/2019] [Accepted: 08/20/2019] [Indexed: 01/06/2023] Open
Abstract
Signaling cascades respond to specific inputs, but also require active interventions to be maintained in their basal/inactive levels in the absence of the activating signal(s). In a screen to search for protein quality control components required for wild-type tolerance to oxidative stress in fission yeast, we have isolated eight gene deletions conferring resistance not only to H2O2 but also to caffeine. We show that dual resistance acquisition is totally or partially dependent on the transcription factor Pap1. Some gene products, such as the ribosomal-ubiquitin fusion protein Ubi1, the E2 conjugating enzyme Ubc2 or the E3 ligase Ubr1, participate in basal ubiquitin labeling of Pap1, and others, such as Rpt4, are non-essential constituents of the proteasome. We demonstrate here that basal nucleo-cytoplasmic shuttling of Pap1, occurring even in the absence of stress, is sufficient for the interaction of the transcription factor with nuclear Ubr1, and we identify a 30 amino acids peptide in Pap1 as the degron for this important E3 ligase. The isolated gene deletions increase only moderately the concentration of the transcription factor, but it is sufficient to enhance basal tolerance to stress, probably by disturbing the inactive stage of this signaling cascade.
Collapse
Affiliation(s)
- Luis Marte
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Doctor Aiguader 88, 08003, Barcelona, Spain
| | - Susanna Boronat
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Doctor Aiguader 88, 08003, Barcelona, Spain
| | - Sarela García-Santamarina
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Doctor Aiguader 88, 08003, Barcelona, Spain
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Doctor Aiguader 88, 08003, Barcelona, Spain
| | - Kenji Kitamura
- Center for Gene Science, Hiroshima University, 1-4-2 Kagamiyama, Higashi-Hiroshima, 739-8527, Japan
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Doctor Aiguader 88, 08003, Barcelona, Spain.
| |
Collapse
|
2
|
Eldeeb MA, Leitao LCA, Fahlman RP. Emerging branches of the N-end rule pathways are revealing the sequence complexities of N-termini dependent protein degradation. Biochem Cell Biol 2017; 96:289-294. [PMID: 29253354 DOI: 10.1139/bcb-2017-0274] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The N-end rule links the identity of the N-terminal amino acid of a protein to its in vivo half-life, as some N-terminal residues confer metabolic instability to a protein via their recognition by the cellular machinery that targets them for degradation. Since its discovery, the N-end rule has generally been defined as set of rules of whether an N-terminal residue is stabilizing or not. However, recent studies are revealing that the N-terminal code of amino acids conferring protein instability is more complex than previously appreciated, as recent investigations are revealing that the identity of adjoining downstream residues can also influence the metabolic stability of N-end rule substrate. This is exemplified by the recent discovery of a new branch of N-end rule pathways that target proteins bearing N-terminal proline. In addition, recent investigations are demonstrating that the molecular machinery in N-termini dependent protein degradation may also target proteins for lysosomal degradation, in addition to proteasome-dependent degradation. Herein, we describe some of the recent advances in N-end rule pathways and discuss some of the implications regarding the emerging additional sequence requirements.
Collapse
Affiliation(s)
- Mohamed A Eldeeb
- a Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.,b Department of Chemistry, Faculty of Science, Cairo University, Giza, Cairo, Egypt
| | - Luana C A Leitao
- a Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Richard P Fahlman
- a Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.,c Department of Oncology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
3
|
Thakran P, Pandit PA, Datta S, Kolathur KK, Pleiss JA, Mishra SK. Sde2 is an intron-specific pre-mRNA splicing regulator activated by ubiquitin-like processing. EMBO J 2017; 37:89-101. [PMID: 28947618 DOI: 10.15252/embj.201796751] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 08/11/2017] [Accepted: 08/16/2017] [Indexed: 12/31/2022] Open
Abstract
The expression of intron-containing genes in eukaryotes requires generation of protein-coding messenger RNAs (mRNAs) via RNA splicing, whereby the spliceosome removes non-coding introns from pre-mRNAs and joins exons. Spliceosomes must ensure accurate removal of highly diverse introns. We show that Sde2 is a ubiquitin-fold-containing splicing regulator that supports splicing of selected pre-mRNAs in an intron-specific manner in Schizosaccharomyces pombe Both fission yeast and human Sde2 are translated as inactive precursor proteins harbouring the ubiquitin-fold domain linked through an invariant GGKGG motif to a C-terminal domain (referred to as Sde2-C). Precursor processing after the first di-glycine motif by the ubiquitin-specific proteases Ubp5 and Ubp15 generates a short-lived activated Sde2-C fragment with an N-terminal lysine residue, which subsequently gets incorporated into spliceosomes. Absence of Sde2 or defects in Sde2 activation both result in inefficient excision of selected introns from a subset of pre-mRNAs. Sde2 facilitates spliceosomal association of Cactin/Cay1, with a functional link between Sde2 and Cactin further supported by genetic interactions and pre-mRNA splicing assays. These findings suggest that ubiquitin-like processing of Sde2 into a short-lived activated form may function as a checkpoint to ensure proper splicing of certain pre-mRNAs in fission yeast.
Collapse
Affiliation(s)
- Poonam Thakran
- Max Planck - DST Partner Group, Department of Biological Sciences, Centre for Protein Science Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab, India
| | - Prashant Arun Pandit
- Max Planck - DST Partner Group, Department of Biological Sciences, Centre for Protein Science Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab, India
| | - Sumanjit Datta
- Max Planck - DST Partner Group, Department of Biological Sciences, Centre for Protein Science Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab, India
| | - Kiran Kumar Kolathur
- Max Planck - DST Partner Group, Department of Biological Sciences, Centre for Protein Science Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab, India
| | - Jeffrey A Pleiss
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Shravan Kumar Mishra
- Max Planck - DST Partner Group, Department of Biological Sciences, Centre for Protein Science Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab, India
| |
Collapse
|
4
|
Kitamura K. Inhibition of the Arg/N-end rule pathway-mediated proteolysis by dipeptide-mimetic molecules. Amino Acids 2015; 48:235-43. [PMID: 26334349 DOI: 10.1007/s00726-015-2083-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 08/21/2015] [Indexed: 11/30/2022]
Abstract
Ubr11 in the fission yeast Schizosaccharomyces pombe is an evolutionarily conserved ubiquitin ligase functioning in the Arg/N-end rule pathway, which promotes degradation of substrate proteins via the proteasome. Ubr11 recognizes the N-degron sequence in substrates. The primary N-degron contains a destabilization-inducing N-terminal amino acid, which is either a basic (type 1) or bulky hydrophobic (type 2) residue. Dipeptides are known to inhibit proteolytic degradation via the Arg/N-end rule pathway. Here, I examined the potency of some amino acid- or dipeptide-related molecules in their inhibition of Ubr11/N-end rule-mediated degradation. An amide form of L-arginine and L-tryptophan had weak inhibitory activity for type 1 and type 2 substrates, respectively, although the unmodified amino acid monomer and its carboxymethylated ester were ineffective. Among the naturally occurring dipeptides tested, Lys-Leu and Tyr-Leu showed potent inhibitory activity, but their effect was transient, especially at submillimolar concentrations. L-arginine-β-naphthylamide (Arg-βNA) showed stronger activity than several dipeptides for type 1 substrates, but all Lys-Leu, Tyr-Leu, and Arg-βNA caused growth retardation. The inhibitory activity of the L-phenylalanine carbobenzoxy-hydrazide for type 2 substrates was not very strong, but it prolonged the action of Tyr-Leu at low concentrations and, importantly, did not interfere with cell growth. Apart from their utility, these dipeptidomimetics provide a clue for understanding the determinants of recognition by Ubr ubiquitin ligase and further designing novel inhibitors of the Arg/N-end rule pathway.
Collapse
Affiliation(s)
- Kenji Kitamura
- Center for Gene Science, Hiroshima University, 1-4-2 Kagamiyama, Higashi-Hiroshima, 739-8527, Japan.
| |
Collapse
|
5
|
Park SE, Kim JM, Seok OH, Cho H, Wadas B, Kim SY, Varshavsky A, Hwang CS. Control of mammalian G protein signaling by N-terminal acetylation and the N-end rule pathway. Science 2015; 347:1249-1252. [PMID: 25766235 PMCID: PMC4748709 DOI: 10.1126/science.aaa3844] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Rgs2, a regulator of G proteins, lowers blood pressure by decreasing signaling through Gαq. Human patients expressing Met-Leu-Rgs2 (ML-Rgs2) or Met-Arg-Rgs2 (MR-Rgs2) are hypertensive relative to people expressing wild-type Met-Gln-Rgs2 (MQ-Rgs2). We found that wild-type MQ-Rgs2 and its mutant, MR-Rgs2, were destroyed by the Ac/N-end rule pathway, which recognizes N(α)-terminally acetylated (Nt-acetylated) proteins. The shortest-lived mutant, ML-Rgs2, was targeted by both the Ac/N-end rule and Arg/N-end rule pathways. The latter pathway recognizes unacetylated N-terminal residues. Thus, the Nt-acetylated Ac-MX-Rgs2 (X = Arg, Gln, Leu) proteins are specific substrates of the mammalian Ac/N-end rule pathway. Furthermore, the Ac/N-degron of Ac-MQ-Rgs2 was conditional, and Teb4, an endoplasmic reticulum (ER) membrane-embedded ubiquitin ligase, was able to regulate G protein signaling by targeting Ac-MX-Rgs2 proteins for degradation through their N(α)-terminal acetyl group.
Collapse
Affiliation(s)
- Sang-Eun Park
- Department of Life Sciences, Pohang University of Science and
Technology, Pohang, Gyeongbuk 790-784, South Korea
| | - Jeong-Mok Kim
- Department of Life Sciences, Pohang University of Science and
Technology, Pohang, Gyeongbuk 790-784, South Korea
| | - Ok-Hee Seok
- Department of Life Sciences, Pohang University of Science and
Technology, Pohang, Gyeongbuk 790-784, South Korea
| | - Hanna Cho
- Department of Life Sciences, Pohang University of Science and
Technology, Pohang, Gyeongbuk 790-784, South Korea
| | - Brandon Wadas
- Division of Biology and Biological Engineering, California Institute
of Technology, Pasadena, CA 91125, USA
| | - Seon-Young Kim
- Medical Genomics Research Center, KRIBB, Daejeon, South Korea
- Department of Functional Genomics, University of Science and
Technology, Daejeon, South Korea
| | - Alexander Varshavsky
- Division of Biology and Biological Engineering, California Institute
of Technology, Pasadena, CA 91125, USA
| | - Cheol-Sang Hwang
- Department of Life Sciences, Pohang University of Science and
Technology, Pohang, Gyeongbuk 790-784, South Korea
| |
Collapse
|
6
|
Kitamura K. The ClpS-like N-domain is essential for the functioning of Ubr11, an N-recognin in Schizosaccharomyces pombe. SPRINGERPLUS 2014; 3:257. [PMID: 26034658 PMCID: PMC4447728 DOI: 10.1186/2193-1801-3-257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/16/2014] [Indexed: 12/02/2022]
Abstract
Several Ubr ubiquitin ligases recognize the N-terminal amino acid of substrate proteins and promote their degradation via the Arg/N-end rule pathway. The primary destabilizing N-terminal amino acids in yeast are classified into type 1 (Arg, Lys, and His) and type 2 (Phe, Trp, Tyr, Leu, Ile, and Met-Ф) residues. The type 1 and type 2 residues bind to the UBR box and the ClpS/N-domain, respectively, in canonical Ubr ubiquitin ligases that act as N-recognins. In this study, the requirement for type 1 and type 2 amino acid recognition by Schizosaccharomyces pombe Ubr11 was examined in vivo. Consistent with the results of previous studies, the ubr11∆ null mutant was found to be defective in oligopeptide uptake and resistant to ergosterol synthesis inhibitors. Furthermore, the ubr11∆ mutant was also less sensitive to some protein synthesis inhibitors. A ubr11 ClpS/N-domain mutant, which retained ubiquitin ligase activity but could not recognize type 2 amino acids, phenocopied all known defects of the ubr11∆ mutant. However, the recognition of type 1 residues by Ubr11 was not required for its functioning, and no severe physiological abnormalities were observed in a ubr11 mutant defective in the recognition of type 1 residues. These results reinforce the fundamental importance of the ClpS/N-domain for the functioning of the N-recognin, Ubr11.
Collapse
|
7
|
Kitamura K, Fujiwara H. The type-2 N-end rule peptide recognition activity of Ubr11 ubiquitin ligase is required for the expression of peptide transporters. FEBS Lett 2012; 587:214-9. [PMID: 23219921 DOI: 10.1016/j.febslet.2012.11.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 11/28/2012] [Accepted: 11/28/2012] [Indexed: 10/27/2022]
Abstract
The Ubr1-like canonical N-recognins, widely conserved ubiquitin ligases in eukaryotes, play a role in the N-end rule pathway-mediated degradation of substrates harboring basic (type-1) or bulky hydrophobic (type-2) amino acids at the N-terminus. In this study, the roles of conserved domains were studied in the Schizosaccharomyces pombe Ubr11 protein. Mutations in the UBR box and the autoinhibitory domain blocked degradation of both type-1 and type-2 substrates, expression of peptide transporter genes, and the uptake of oligopeptides. An N-domain mutant was normal for the type-1-related function, but nevertheless failed to express peptide transporters. These data suggest the importance of the type-2-related activity of Ubr11 for its in vivo function.
Collapse
Affiliation(s)
- Kenji Kitamura
- Center for Gene Science, Hiroshima University, Kagamiyama 1-4-2, Higashi-Hiroshima 739-8527, Japan.
| | | |
Collapse
|