1
|
Kimura-Ishimaru C, Liang S, Matsuse K, Iwama R, Sato K, Watanabe N, Tezaki S, Horiuchi H, Fukuda R. Mar1, a high mobility group box protein, regulates n-alkane adsorption and cell morphology of the dimorphic yeast Yarrowia lipolytica. Appl Environ Microbiol 2024; 90:e0054624. [PMID: 39058021 PMCID: PMC11337826 DOI: 10.1128/aem.00546-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
The dimorphic yeast Yarrowia lipolytica possesses an excellent ability to utilize n-alkane as a sole carbon and energy source. Although there are detailed studies on the enzymes that catalyze the reactions in the metabolic processes of n-alkane in Y. lipolytica, the molecular mechanism underlying the incorporation of n-alkane into the cells remains to be elucidated. Because Y. lipolytica adsorbs n-alkane, we postulated that Y. lipolytica incorporates n-alkane through direct interaction with it. We isolated and characterized mutants defective in adsorption to n-hexadecane. One of the mutants harbored a nonsense mutation in MAR1 (Morphology and n-alkane Adsorption Regulator 1) encoding a protein containing a high mobility group box. The deletion mutant of MAR1 exhibited defects in adsorption to n-hexadecane and filamentous growth on solid media, whereas the strain that overexpressed MAR1 exhibited hyperfilamentous growth. Fluorescence microscopic observations suggested that Mar1 localizes in the nucleus. RNA-sequencing analysis revealed the alteration of the transcript levels of several genes, including those encoding transcription factors and cell surface proteins, by the deletion of MAR1. These findings suggest that MAR1 is involved in the transcriptional regulation of the genes required for n-alkane adsorption and cell morphology transition.IMPORTANCEYarrowia lipolytica, a dimorphic yeast capable of assimilating n-alkane as a carbon and energy source, has been extensively studied as a promising host for bioconversion of n-alkane into useful chemicals and bioremediation of soil and water contaminated by petroleum. While the metabolic pathway of n-alkane in this yeast and the enzymes involved in this pathway have been well characterized, the molecular mechanism to incorporate n-alkane into the cells is yet to be fully understood. Due to the ability of Y. lipolytica to adsorb n-alkane, it has been hypothesized that Y. lipolytica incorporates n-alkane through direct interaction with it. In this study, we identified a gene, MAR1, which plays a crucial role in the transcriptional regulation of the genes necessary for the adsorption to n-alkane and the transition of the cell morphology in Y. lipolytica. Our findings provide valuable insights that could lead to advanced applications of Y. lipolytica in n-alkane bioconversion and bioremediation.
Collapse
Affiliation(s)
| | - Simiao Liang
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Katsuro Matsuse
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ryo Iwama
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kenta Sato
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Wako, Saitama, Japan
| | - Natsuhito Watanabe
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Satoshi Tezaki
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroyuki Horiuchi
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ryouichi Fukuda
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
2
|
Mitropoulou G, Kompoura V, Nelios G, Kourkoutas Y. Pathogenic Biofilm Removal Potential of Wild-Type Lacticaseibacillus rhamnosus Strains. Pathogens 2023; 12:1449. [PMID: 38133332 PMCID: PMC10748307 DOI: 10.3390/pathogens12121449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
The emergence of antimicrobial resistance remains one of the greatest public health concerns. Biofilm formation has been postulated as a mechanism of microbial pathogens to resist antimicrobial agents. Lactic Acid Bacteria (LAB) and their metabolites have been proposed to combat bacterial biofilms due to their antimicrobial activity. In this vein, the aim of the present study was to investigate the biofilm removal potential of cell-free supernatants (CFSs) of five wild-type Lacticaseibacillus rhamnosus strains, isolated from Greek natural products, in comparison to the commercially available L. rhamnosus GG strain, against biofilms formed by common foodborne pathogens (Salmonella Enteritidis, Salmonella Typhimurium, Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus). The biofilm removal activity of LAB was assessed on a two-day-old mature biofilm using a microtiter plate-based procedure. Both non-neutralized and neutralized CFSs removed biofilms in a concentration-dependent manner. The biofilm removal activity of the non-neutralized CFSs was significantly higher compared to the neutralized CFSs, as expected, with ranges of 60-89% and 30-80%, respectively. The biofilm removal efficiency of L. rhamnosus OLXAL-3 was significantly higher among the wild-type L. rhamnosus strains tested (20-100% v/v). In conclusion, our results suggest the great potential of the application of wild-type L. rhamnosus strain' CFSs as effective natural agents against pathogenic bacterial biofilms.
Collapse
Affiliation(s)
| | | | | | - Yiannis Kourkoutas
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (G.M.); (V.K.); (G.N.)
| |
Collapse
|
3
|
Characterization of Virulence Factors in Candida Species Causing Candidemia in a Tertiary Care Hospital in Bangkok, Thailand. J Fungi (Basel) 2023; 9:jof9030353. [PMID: 36983521 PMCID: PMC10059995 DOI: 10.3390/jof9030353] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/26/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
Candidemia is often associated with high mortality, and Candida albicans, Candida tropicalis, Candida glabrata, and Candida parapsilosis are common causes of this disease. The pathogenicity characteristics of specific Candida spp. that cause candidemia in Thailand are poorly understood. This study aimed to characterize the virulence factors of Candida spp. Thirty-eight isolates of different Candida species from blood cultures were evaluated for their virulence properties, including exoenzyme and biofilm production, cell surface hydrophobicity, tissue invasion, epithelial cell damage, morphogenesis, and phagocytosis resistance; the identity and frequency of mutations in ERG11 contributing to azole-resistance were also determined. C. albicans had the highest epithelial cell invasion rate and phospholipase activity, with true hyphae formation, whereas C. tropicalis produced the most biofilm, hydrophobicity, protease activity, and host cell damage and true hyphae formation. ERG11 mutations Y132F and S154F were observed in all azole-resistant C. tropicalis. C. glabrata had the most hemolytic activity while cell invasion was low with no morphologic transition. C. glabrata was more easily phagocytosed than other species. C. parapsilosis generated pseudohyphae but not hyphae and did not exhibit any trends in exoenzyme production. This knowledge will be crucial for understanding the pathogenicity of Candida spp. and will help to explore antivirulence-based treatment.
Collapse
|
4
|
Cho JA, Roh YJ, Son HR, Choi H, Lee JW, Kim SJ, Lee CH. Assessment of the biofilm-forming ability on solid surfaces of periprosthetic infection-associated pathogens. Sci Rep 2022; 12:18669. [PMID: 36333517 PMCID: PMC9636376 DOI: 10.1038/s41598-022-22929-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Biofilm formation is one of the leading causes of complications after surgery in clinical settings. In this study, we profiled the biofilm-forming ability of various periprosthetic infection-associated pathogens on medically relevant surfaces, polystyrene (PS) and titanium (Ti). We also explored how a specific environmental stressor, epigallocatechin gallate (EGCG), affected biofilm formation. First, Congo red tests revealed that all microorganisms formed biofilms within 72 h. Then, the amounts of biofilm formation on PS at 24, 48 and 72 h and also on a Ti plate for 72 h were determined. Some microbes preferred one surface over the other, whereas other microbes formed consistent levels of biofilm regardless of the surface material. Staphylococcus lugdunenensis was the most potent, while Enterococcus faecalis and Staphylococcus aureus were the weakest. Bacterial adhesion to hydrocarbon (BATH) tests indicated that the biofilm-forming abilities were not directly correlated with cell surface hydrophobicity (CSH). Finally, an external signal, EGCG, was applied to challenge the biofilm formation of each microorganism. EGCG regulated each microorganism's ability differently, though the change was consistent across surfaces for most pathogens. This study can help a better understanding of a broad spectrum of periprosthetic infection-associated pathogens by relative comparison of their biofilm-forming abilities.
Collapse
Affiliation(s)
- Jung-Ah Cho
- grid.417736.00000 0004 0438 6721School of Undergraduate Studies, College of Transdisciplinary Studies, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988 Republic of Korea ,grid.256753.00000 0004 0470 5964Department of Orthopedic Surgery, Dongtan Sacred Hospital, Hallym University, Hwasung, 18450 Republic of Korea
| | - Yoo Jin Roh
- grid.417736.00000 0004 0438 6721Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988 Republic of Korea
| | - Hye Rim Son
- grid.256753.00000 0004 0470 5964Department of Orthopedic Surgery, Dongtan Sacred Hospital, Hallym University, Hwasung, 18450 Republic of Korea ,grid.417736.00000 0004 0438 6721Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988 Republic of Korea
| | - Hojung Choi
- grid.417736.00000 0004 0438 6721Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988 Republic of Korea ,grid.49606.3d0000 0001 1364 9317Department of Chemistry, Hanyang University, Seoul, 04762 Republic of Korea
| | - Jeong-Won Lee
- grid.254187.d0000 0000 9475 8840Department of Mechanical Engineering, Chosun University, Gwangju, 61452 Republic of Korea
| | - Sung Jae Kim
- grid.256753.00000 0004 0470 5964Department of Orthopedic Surgery, Dongtan Sacred Hospital, Hallym University, Hwasung, 18450 Republic of Korea
| | - Chang-Hun Lee
- grid.417736.00000 0004 0438 6721Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988 Republic of Korea ,grid.417736.00000 0004 0438 6721New Biology Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988 Republic of Korea
| |
Collapse
|
5
|
Lai WC, Hsu HC, Cheng CW, Wang SH, Li WC, Hsieh PS, Tseng TL, Lin TH, Shieh JC. Filament Negative Regulator CDC4 Suppresses Glycogen Phosphorylase Encoded GPH1 that Impacts the Cell Wall-Associated Features in Candida albicans. J Fungi (Basel) 2022; 8:jof8030233. [PMID: 35330235 PMCID: PMC8949380 DOI: 10.3390/jof8030233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
We have previously identified Candida albicans GPH1 (orf19.7021) whose protein product was associated with C. albicans Cdc4. The GPH1 gene is a putative glycogen phosphorylase because its Saccharomyces cerevisiae homolog participates in glycogen catabolism, which involves the synthesis of β-glucan of the fungal cell wall. We made a strain whose CaCDC4 expression is repressed, and GPH1 is constitutively expressed. We established a GPH1 null mutant strain and used it to conduct the in vitro virulence assays that detect cell wall function. The in vitro virulence assay is centered on biofilm formation in which analytic procedures are implemented to evaluate cell surface hydrophobicity; competence, either in stress resistance, germ tube formation, or fibronection association; and the XTT-based adhesion and biofilm formation. We showed that the constitutively expressed GPH1 partially suppresses filamentation when the CaCDC4 expression is repressed. The C. albicans Gph1 protein is reduced in the presence of CaCdc4 in comparison with the absence of CaCdc4. Compared with the wild-type strain, the gph1Δ/gph1Δ mutant displayed a reduction in the capability to form germ tubes and the cell surface hydrophobicity but an increase in binding with fibronectin. Compared with the wild-type strain, the gph1Δ/gph1Δ mutant showed a rise in adhesion, the initial stage of biofilm formation, but displayed a similar capacity to form a mature biofilm. There was no major impact on the gph1Δ/gph1Δ mutant regarding the conditions of cell wall damaging and TOR pathway-associated nutrient depletion. We conclude that GPH1, adversely regulated by the filament suppressor CDC4, contributes to cell wall function in C. albicans.
Collapse
Affiliation(s)
- Wei-Chung Lai
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan; (W.-C.L.); (H.-C.H.); (W.C.L.); (P.-S.H.); (T.-L.T.); (T.-H.L.)
| | - Hsiao-Chi Hsu
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan; (W.-C.L.); (H.-C.H.); (W.C.L.); (P.-S.H.); (T.-L.T.); (T.-H.L.)
| | - Chun-Wen Cheng
- Institute of Medicine, Chung Shan Medical University, Taichung City 40201, Taiwan;
| | - Shao-Hung Wang
- Department of Microbiology, Immunology and Biopharmaceuticals, National Chiayi University, Chiayi 60004, Taiwan;
| | - Wan Chen Li
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan; (W.-C.L.); (H.-C.H.); (W.C.L.); (P.-S.H.); (T.-L.T.); (T.-H.L.)
| | - Po-Szu Hsieh
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan; (W.-C.L.); (H.-C.H.); (W.C.L.); (P.-S.H.); (T.-L.T.); (T.-H.L.)
| | - Tzu-Ling Tseng
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan; (W.-C.L.); (H.-C.H.); (W.C.L.); (P.-S.H.); (T.-L.T.); (T.-H.L.)
| | - Ting-Hui Lin
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan; (W.-C.L.); (H.-C.H.); (W.C.L.); (P.-S.H.); (T.-L.T.); (T.-H.L.)
| | - Jia-Ching Shieh
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan; (W.-C.L.); (H.-C.H.); (W.C.L.); (P.-S.H.); (T.-L.T.); (T.-H.L.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City 40201, Taiwan
- Immunology Research Center, Chung Shan Medical University, Taichung City 40201, Taiwan
- Correspondence: ; Tel.: +886-424-730-022 (ext. 11806); Fax: +886-424-757-412
| |
Collapse
|
6
|
Wei MP, Yu H, Guo YH, Cheng YL, Xie YF, Yao WR. Synergistic combination of Sapindoside A and B: A novel antibiofilm agent against Cutibacterium acnes. Microbiol Res 2021; 254:126912. [PMID: 34742105 DOI: 10.1016/j.micres.2021.126912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/17/2021] [Accepted: 10/29/2021] [Indexed: 11/17/2022]
Abstract
Sapindus saponins extracted from Sapindus mukorossi Gaertn. have been reported to exert antibacterial activity against Cutibacterium acnes (C. acnes). However, there are no reports about their potentials against its biofilm, which is a major contributor to the antibiotic resistance of C. acnes. This study aimed to investigate the synergistic antibiofilm activity and action of the combination of Sapindoside A and B (SAB) against C. acnes. SAB with sub-MICs significantly inhibited the early-formed and mature biofilm of C. acnes and decreased the adhesion and cell surface hydrophobicity (p < 0.05). Also, SAB greatly reduced the production of exopolysaccharide and lipase (p < 0.05), and the binding mode of SAB and lipase was predicted by molecular docking, via hydrogen bonds and hydrophobic interactions. Biofilm observed with electron microscopies further confirmed the high antibiofilm activity of SAB against C. acnes. Furthermore, a significant down-regulation of biofilm biosynthesis-associated genes was observed. The combination index explained the synergistic effects of SAB leading to the above results, and the contribution of SA was greater than that of SB. The current results showed that SAB had synergistic antibiofilm activity against C. acnes, and the Sapindoside A played a major role, indicating that SAB could be a natural antiacne additive against C. acnes biofilm-associated infections.
Collapse
Affiliation(s)
- Min-Ping Wei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Ya-Hui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Yu-Liang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Yun-Fei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Wei-Rong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China.
| |
Collapse
|
7
|
Antifungal and anti-biofilm activity of a new Spanish extract of propolis against Candida glabrata. BMC Complement Med Ther 2021; 21:147. [PMID: 34020643 PMCID: PMC8140450 DOI: 10.1186/s12906-021-03323-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/13/2021] [Indexed: 11/11/2022] Open
Abstract
Background Resistance to traditional antifungal agents is a considerable health problem nowadays, aggravated by infectious processes related to biofilm formation, usually on implantable devices. Therefore, it is necessary to identify new antimicrobial molecules, such as natural products, to develop new therapeutic strategies to prevent and eradicate these infections. One promising product is propolis, a natural resin produced by honeybees with substances from various botanical sources, beeswax and salivary enzymes. The aim of this work was to study the effect of a new Spanish ethanolic extract of propolis (SEEP) on growth, cell surface hydrophobicity, adherence and biofilm formation of Candida glabrata, a yeast capable of achieving high levels of resistance to available anti-fungal agents. Methods The antifungal activity of SEEP was evaluated in the planktonic cells of 12 clinical isolates of C. glabrata. The minimum inhibitory concentration (MIC) of propolis was determined by quantifying visible growth inhibition by serial plate dilutions. The minimum fungicide concentration (MFC) was evaluated as the lowest concentration of propolis that produced a 95% decrease in cfu/mL, and is presented as MFC50 and MFC90, which corresponds to the minimum concentrations at which 50 and 90% of the C. glabrata isolates were inhibited, respectively. Influence on cell surface hydrophobicity (CSH) was determined by the method of microbial adhesion to hydrocarbons (MATH). The propolis effect on adhesion and biofilm formation was determined in microtiter plates by measurement of optical density (OD) and metabolic activity (XTT-assay) in the presence of sub-MIC concentrations of SEEP. Results SEEP had antifungal capacity against C. glabrata isolates, with a MIC50 of 0.2% (v/v) and an MFC50 of 0.4%, even in azole-resistant strains. SEEP did not have a clear effect on surface hydrophobicity and adhesion, but an inhibitory effect on biofilm formation was observed at subinhibitory concentrations (0.1 and 0.05%) with a significant decrease in biofilm metabolism. Conclusions The novel Spanish ethanolic extract of propolis shows antifungal activity against C. glabrata, and decreases biofilm formation. These results suggest its possible use in the control of fungal infections associated with biofilms.
Collapse
|
8
|
Shi T, Guo X, Zhu J, Hu L, He Z, Jiang D. Inhibitory Effects of Carbazomycin B Produced by Streptomyces roseoverticillatus 63 Against Xanthomonas oryzae pv. oryzae. Front Microbiol 2021; 12:616937. [PMID: 33841348 PMCID: PMC8024497 DOI: 10.3389/fmicb.2021.616937] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/02/2021] [Indexed: 11/13/2022] Open
Abstract
The present manuscript highlights the potential role of Streptomyces roseoverticillatus 63 (Sr-63) against Xanthomonas oryzae pv. oryzae (Xoo), which is the cause of a disastrous bacterial leaf blight disease with rice worldwide. The disease suppression was achieved under greenhouse conditions. A foliar spray of the fermentation broth of Sr-63 significantly reduced the leaf blight symptoms with rice in Xoo inoculated rice plants. Furthermore, we observed that the carbazomycin B, isolated from the fermentation broth of Sr-63, was demonstrated to have antibacterial activity against Xoo with a minimum inhibitory concentration (MIC) of 8 μg mL-1. The results indicated that carbzomycin B hampered the membrane formation of Xoo, reduced the production of xanthomonadin and extracellular polymeric substance (EPS). The fourier transform infrared spectroscopic (FT-IR) indicated that carbazomycin B changed the components of the cell membrane, then caused a change of the cell surface hydrophobicity of Xoo. Scanning electron microscopy revealed that the Xoo cells treated with carbazomycin B exhibited apparent structural deformation. The results also indicated that carbazomycin B had a negative impact on the metabolism of Xoo, carbazomycin B reduced the activity of malate dehydrogenase (MDH) activity and suppressed the protein expression of Xoo. Overall, our data suggests that Streptomyces roseoverticillatus 63 is a promising biocontrol agent that could be used to combat the bacterial leaf blight diseases of rice.
Collapse
Affiliation(s)
| | | | | | | | | | - Donghua Jiang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
9
|
Danchik C, Casadevall A. Role of Cell Surface Hydrophobicity in the Pathogenesis of Medically-Significant Fungi. Front Cell Infect Microbiol 2021; 10:594973. [PMID: 33569354 PMCID: PMC7868426 DOI: 10.3389/fcimb.2020.594973] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/09/2020] [Indexed: 01/08/2023] Open
Abstract
Cell surface hydrophobicity (CSH) is an important cellular biophysical parameter which affects both cell-cell and cell-surface interactions. In dimorphic fungi, multiple factors including the temperature-induced shift between mold and yeast forms have strong effects on CSH with higher hydrophobicity more common at the lower temperatures conducive to filamentous cell growth. Some strains of Cryptococcus neoformans exhibit high CSH despite the presence of the hydrophilic capsule. Among individual yeast colonies from the same isolate, distinct morphologies can correspond to differences in CSH. These differences in CSH are frequently associated with altered virulence in medically-significant fungi and can impact the efficacy of antifungal therapies. The mechanisms for the maintenance of CSH in pathogenic fungi remain poorly understood, but an appreciation of this fundamental cellular parameter is important for understanding its contributions to such phenomena as biofilm formation and virulence.
Collapse
Affiliation(s)
- Carina Danchik
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
10
|
Evaluation of Biofilm Formation in Candida tropicalis Using a Silicone-Based Platform with Synthetic Urine Medium. Microorganisms 2020; 8:microorganisms8050660. [PMID: 32369936 PMCID: PMC7284471 DOI: 10.3390/microorganisms8050660] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/20/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022] Open
Abstract
Molecular mechanisms of biofilm formation in Candida tropicalis and current methods for biofilm analyses in this fungal pathogen are limited. (2) Methods: Biofilm biomass and crystal violet staining of the wild-type and each gene mutant strain of C. tropicalis were evaluated on silicone under synthetic urine culture conditions. (3) Results: Seven media were tested to compare the effects on biofilm growth with or without silicone. Results showed that biofilm cells of C. tropicalis were unable to form firm biofilms on the bottom of 12-well polystyrene plates. However, on a silicone-based platform, Roswell Park Memorial Institute 1640 (RPMI 1640), yeast nitrogen base (YNB) + 1% glucose, and synthetic urine media were able to induce strong biofilm growth. In particular, replacement of Spider medium with synthetic urine in the adherence step and the developmental stage is necessary to gain remarkably increased biofilms. Interestingly, unlike Candida albicans, the C. tropicalisROB1 deletion strain but not the other five biofilm-associated mutants did not cause a significant reduction in biofilm formation, suggesting that the biofilm regulatory circuits of the two species are divergent. (4) Conclusions: This system for C. tropicalis biofilm analyses will become a useful tool to unveil the biofilm regulatory network in C. tropicalis.
Collapse
|
11
|
Liu L, Yu B, Sun W, Liang C, Ying H, Zhou S, Niu H, Wang Y, Liu D, Chen Y. Calcineurin signaling pathway influences Aspergillus niger biofilm formation by affecting hydrophobicity and cell wall integrity. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:54. [PMID: 32190119 PMCID: PMC7075038 DOI: 10.1186/s13068-020-01692-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/02/2020] [Indexed: 05/14/2023]
Abstract
BACKGROUND Biofilms, as a kind of fixed-cell community, can greatly improve industrial fermentation efficiency in immobilized fermentation, but the regulation process is still unclear, which restricts their application. Ca2+ was reported to be a key factor affecting biofilm formation. However, the effect of Ca2+ on biofilm structure and microbiology was yet only studied in bacteria. How Ca2+-mediated calcineurin signaling pathway (CSP) alters biofilm formation in bacteria and fungi has rarely been reported. On this basis, we investigated the regulation of CSP on the formation of biofilm in Aspergillus niger. RESULTS Deletion of the key genes MidA, CchA, CrzA or CnaA in the CSP lowered the Ca2+ concentration in the mycelium to a different extent, inhibited the formation of A. niger biofilm, reduced the hydrophobicity and adhesion of spores, destroyed the cell wall integrity of hyphae, and reduced the flocculation ability of hyphae. qRT-PCR results showed that the expression of spore hydrophobic protein RodA, galactosaminogalactan (GAG) biosynthesis genes (uge3, uge5, agd3, gtb3), and α-1,3-glucan biosynthesis genes (ags1, ags3) in the ∆MidA, ∆CchA, ∆CrzA, ∆CnaA strains were significantly down-regulated compared with those of the wild type (WT). In addition, the transcription levels of the chitin synthesis gene (chsB, chsD) and β-1,3-glucan synthesis gene (FksA) were consistent with the change in chitin and β-1,3-glucan contents in mutant strains. CONCLUSION These results indicated that CSP affected the hydrophobicity and adhesion of spores, the integrity of mycelial cell walls and flocculation by affecting Ca2+ levels in mycelium, which in turn affected biofilm formation. This work provides a possible explanation for how CSP changes the formation of A. niger biofilm, and reveals a pathway for controlling biofilm formation in industrial immobilized fermentation.
Collapse
Affiliation(s)
- Li Liu
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816 People’s Republic of China
| | - Bin Yu
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816 People’s Republic of China
| | - Wenjun Sun
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816 People’s Republic of China
| | - Caice Liang
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816 People’s Republic of China
| | - Hanjie Ying
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816 People’s Republic of China
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, 450001 China
| | - Shengmin Zhou
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237 China
| | - Huanqing Niu
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816 People’s Republic of China
| | - Yibing Wang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237 China
| | - Dong Liu
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816 People’s Republic of China
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, 450001 China
| | - Yong Chen
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816 People’s Republic of China
| |
Collapse
|
12
|
Pathirana RU, McCall AD, Norris HL, Edgerton M. Filamentous Non- albicans Candida Species Adhere to Candida albicans and Benefit From Dual Biofilm Growth. Front Microbiol 2019; 10:1188. [PMID: 31231324 PMCID: PMC6558389 DOI: 10.3389/fmicb.2019.01188] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/10/2019] [Indexed: 12/18/2022] Open
Abstract
Non-albicans Candida species (NACS) are often isolated along with Candida albicans in cases of oropharyngeal candidiasis. C. albicans readily forms biofilms in conjunction with other oral microbiota including both bacteria and yeast. Adhesion between species is important to the establishment of these mixed biofilms, but interactions between C. albicans and many NACS are not well-characterized. We adapted a real-time flow biofilm model to study adhesion interactions and biofilm establishment in C. albicans and NACS in mono- and co-culture. Out of five NACS studied, only the filamenting species C. tropicalis and C. dubliniensis were capable of adhesion with C. albicans, while C. parapsilosis, C. lusitaniae, and C. krusei were not. Over the early phase (0-4 h) of biofilm development, both mono- and co-culture followed similar kinetics of attachment and detachment events, indicating that initial biofilm formation is not influenced by inter-species interactions. However, the NACS showed a preference for inter-species cell-cell interactions with C. albicans, and at later time points (5-11 h) we found that dual-species interactions impacted biofilm surface coverage. Dual-species biofilms of C. tropicalis and C. albicans grew more slowly than C. albicans alone, but achieved higher surface coverage than C. tropicalis alone. Biofilms of C. dubliniensis with C. albicans increased surface coverage more rapidly than either species alone. We conclude that dual culture biofilm of C. albicans with C. tropicalis or C. dubliniensis offers a growth advantage for both NACS. Furthermore, the growth and maintenance, but not initial establishment, of dual-species biofilms is likely facilitated by interspecies cell-cell adherence.
Collapse
Affiliation(s)
- Ruvini U Pathirana
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, United States
| | - Andrew D McCall
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, United States
| | - Hannah L Norris
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, United States
| | - Mira Edgerton
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
13
|
Galán-Ladero MÁ, Blanco-Blanco MT, Fernández-Calderón MC, Lucio L, Gutiérrez-Martín Y, Blanco MT, Pérez-Giraldo C. Candida tropicalis biofilm formation and expression levels of the CTRG ALS-like genes in sessile cells. Yeast 2018; 36:107-115. [PMID: 30477048 DOI: 10.1002/yea.3370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/19/2018] [Accepted: 11/22/2018] [Indexed: 02/06/2023] Open
Abstract
Candida tropicalis is an emergent pathogen with a high rate of mortality associated with it; however, less is known about its pathogenic capacity. Biofilm formation (BF) has important clinical repercussions, and it begins with adherence to a substrate. The adherence capacity depends principally on the cell surface hydrophobicity (CSH) and, at a later stage, on specific adherence due to adhesins. The ALS family in C. tropicalis, implicated in adhesion and BF, is represented in several CTRG genes. In this study, we determined the biofilm-forming ability, the primary adherence, and the CSH of C. tropicalis, including six isolates from blood and seven from urine cultures. We also compared the expression of four CTRG ALS-like genes (CTRG_01028, CTRG_02293, CTRG_03786, and CTRG_03797) in sessile versus planktonic cells, selected for their possible contribution to BF. All the C. tropicalis strains were biofilm producers, related to its filamentation capacity; all the strains displayed a high adherence ability correlated to the CSH, and all the strains expressed the CTRG genes in both types of growth. Urine isolates present, although not significantly, higher CSH, adherence, and biofilm formation than blood isolates. This study reveals that three CTRG ALS-like genes-except CTRG_03797-were more upregulated in biofilm cells, although with a considerable variation in expression across the strains studied and between the CTRG genes. C. tropicalis present a high biofilm capacity, and the overexpression of several CTRG ALS-like genes in the sessile cells suggests a role by the course of the biofilm formation.
Collapse
Affiliation(s)
| | | | - María Coronada Fernández-Calderón
- Area of Microbiology, Faculty of Medicine, University of Extremadura, Badajoz, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, CIBER BBN, Badajoz, Spain
| | - Leopoldo Lucio
- Area of Microbiology, Faculty of Medicine, University of Extremadura, Badajoz, Spain.,Laboratorio de Salud Pública Badajoz, Servicio Extremeño de Salud, Badajoz, Spain
| | - Yolanda Gutiérrez-Martín
- Bioscience Applied Techniques Services, Servicio de Apoyo a la Investigación UEx, Badajoz, Spain
| | - María Teresa Blanco
- Area of Microbiology, Faculty of Medicine, University of Extremadura, Badajoz, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, CIBER BBN, Badajoz, Spain
| | - Ciro Pérez-Giraldo
- Area of Microbiology, Faculty of Medicine, University of Extremadura, Badajoz, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, CIBER BBN, Badajoz, Spain
| |
Collapse
|
14
|
Lee YT, Fang YY, Sun YW, Hsu HC, Weng SM, Tseng TL, Lin TH, Shieh JC. THR1 mediates GCN4 and CDC4 to link morphogenesis with nutrient sensing and the stress response in Candida albicans. Int J Mol Med 2018; 42:3193-3208. [PMID: 30320368 PMCID: PMC6202100 DOI: 10.3892/ijmm.2018.3930] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/08/2018] [Indexed: 12/31/2022] Open
Abstract
Candida albicans (C. albicans) CDC4 (CaCDC4), encoding the F-box protein for the substrate specificity of the Skp1-cullin-F-box E3 ubiquitin ligase complex, suppresses the yeast-to-filament transition in C. albicans. In our previous study, Thr1 was identified as a CaCdc4-associated protein using affinity purification. THR1 encodes a homoserine kinase, which is involved in the threonine biosynthesis pathway. The present study generated a strain with repressible CaCDC4 expression and continuous THR1 expression. Colony and cell morphology analyses, as well as immunoblotting, revealed that the Thr1 protein was detectable under conditions in which the expression of CaCDC4 was repressed and that the filaments resulting from the repressed expression of CaCDC4 were suppressed by the constitutive expression of THR1 in C. albicans. Additionally, by using the CaSAT1-flipper method, the present study produced null mutants of THR1, GCN4, and CaCDC4. The phenotypic consequences were evaluated by growth curves, spotting assays, microscopic analysis, reverse transcription-polymerase chain reaction and XTT-based biofilm formation ability. The results revealed that fewer cells lacking THR1 entered the stationary phase but had no apparent morphological alteration. It was observed that the expression of THR1 was upregulated concurrently with GCN4 during nutrient depletion and that cells lacking GCN4 rescued the lethality of cells in the absence of THR1 in conditions accumulating homoserine in the threonine biosynthesis pathway. Of note, it was found that cells with either CaCDC4 or THR1 loss were sensitive to oxidative stress and osmotic stress, with those with THR1 loss being more sensitive. In addition, it was observed that cells with loss of either CaCDC4 or THR1 exhibited the ability to increase biofilm formation, with those lacking CaCDC4 exhibiting a greater extent of enhancement. It was concluded that CaCDC4 is important in the coordination of morphogenesis, nutrient sensing, and the stress response through THR1 in C. albicans.
Collapse
Affiliation(s)
- Yuan-Ti Lee
- Institute of Medicine and School of Medicine, Chung Shan Medical University, Taichung City 40201, Taiwan, R.O.C
| | - Yi-Ya Fang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan, R.O.C
| | - Yu Wen Sun
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan, R.O.C
| | - Hsiao-Chi Hsu
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan, R.O.C
| | - Shan-Mei Weng
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan, R.O.C
| | - Tzu-Ling Tseng
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan, R.O.C
| | - Ting-Hui Lin
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan, R.O.C
| | - Jia-Ching Shieh
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan, R.O.C
| |
Collapse
|
15
|
Kumari A, Mankotia S, Chaubey B, Luthra M, Singh R. Role of biofilm morphology, matrix content and surface hydrophobicity in the biofilm-forming capacity of various Candida species. J Med Microbiol 2018; 67:889-892. [PMID: 29717970 DOI: 10.1099/jmm.0.000747] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The present study aimed to evaluate the role of biofilm morphology, matrix content and surface hydrophobicity in the biofilm-forming capacity of Candida albicans and non-albicans Candida (NAC) spp. Biofilm formation was determined by microtitre plate assay and bright-field and scanning electron microscopy. The matrix carbohydrates, proteins and e-DNA were quantified by phenol-sulfuric acid, bicinchoninic acid and UV spectroscopy, respectively. Specific glycosyl residues were detected by dot blot. The cell-surface hydrophobicity was determined by hydrocarbon adhesion assay. Candida tropicalis was found to exhibit the highest adherence to polystyrene. It formed dense biofilms with extensive pseudohyphae and hyphal elements, high hydrophobicity and the greatest amount of matrix carbohydrates, proteins and e-DNA. C. albicans displayed higher adherence and a complex biofilm morphology with larger aggregates than Candida parapsilosis and Candida krusei, but had lower matrix content and hydrophobicity. Thus, the combinatorial effect of increased filamentation, maximum matrix content and high hydrophobicity contributes to the enhanced biofilm-forming capacity of C. tropicalis.
Collapse
Affiliation(s)
- Anjna Kumari
- Department of Microbial Biotechnology, Panjab University, Chandigarh 160014, India
| | - Sakshi Mankotia
- Department of Microbial Biotechnology, Panjab University, Chandigarh 160014, India
| | - Bhawna Chaubey
- Department of Microbial Biotechnology, Panjab University, Chandigarh 160014, India
| | - Monika Luthra
- Department of Microbial Biotechnology, Panjab University, Chandigarh 160014, India
| | - Rachna Singh
- Department of Microbial Biotechnology, Panjab University, Chandigarh 160014, India
| |
Collapse
|
16
|
Jahanshiri Z, Manifar S, Moosa H, Asghari-Paskiabi F, Mahmoodzadeh H, Shams-Ghahfarokhi M, Razzaghi-Abyaneh M. Oropharyngeal candidiasis in head and neck cancer patients in Iran: Species identification, antifungal susceptibility and pathogenic characterization. J Mycol Med 2018; 28:361-366. [PMID: 29602636 DOI: 10.1016/j.mycmed.2018.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Oropharyngeal candidiasis (OPC) is the most frequent opportunistic fungal infection in head and neck cancer patients. This study was done to identify the Candida species, which cause OPC, and to evaluate their antifungal susceptibility pattern and pathogenic characteristics in Iranian head and neck cancer patients treated by radiotherapy. MATERIAL AND METHODS The oral clinical samples were determined by culturing on CHROMagar, carbohydrate assimilation and ITS sequencing methods. Biofilm formation, phospholipase and proteinase activity and antifungal susceptibility were examined too. RESULTS Among 54 patients with confirmed OPC, 39 (72.22%) patients were male and 15 (27.77%) were female. The most frequently Candida species from a total of 60 isolates was C. albicans (53.3%), followed by C. tropicalis (21.66%), C. glabrata (15%), C. kefyr (5%) and C. dubliniensis (1.66%). All the isolates were high-producers of biofilm. All of Candida isolates were proteinase positive and 47 isolates (81.04%) represented phospholipase activity. The maximum and minimum rates of antifungal resistance belonged to ketoconazole (93.75% of C. albicans and 89.28% of Candida non-albicans) and fluconazole (62.50% and 42.85% of C. albicans and Candida non-albicans), respectively. The most effective antifungal against all candida isolates was fluconazole. CONCLUSION Our data can estimate abundance of OPC in male and female head and neck cancer patients and is helpful to use effective strategies for antifungal treatment, prophylaxis, and preventive therapies in these patients.
Collapse
Affiliation(s)
- Z Jahanshiri
- Department of Mycology, Pasteur Institute of Iran, 12, Farvardin street, Tehran 13164, Iran.
| | - S Manifar
- Department of Oral Medicine, School of Dentistry, Tehran University of Medical Sciences, Cancer Institute of Tehran, Imam Khomeini Hospital Complex, Tehran, Iran
| | - H Moosa
- Department of Mycology, Pasteur Institute of Iran, 12, Farvardin street, Tehran 13164, Iran
| | - F Asghari-Paskiabi
- Department of Mycology, Pasteur Institute of Iran, 12, Farvardin street, Tehran 13164, Iran
| | - H Mahmoodzadeh
- Department of General Surgery, Tehran University of Medical Sciences, Cancer Institute of Tehran, Imam Khomeini Hospital Complex, Tehran, Iran
| | - M Shams-Ghahfarokhi
- Department of Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - M Razzaghi-Abyaneh
- Department of Mycology, Pasteur Institute of Iran, 12, Farvardin street, Tehran 13164, Iran
| |
Collapse
|
17
|
Zuza-Alves DL, Silva-Rocha WP, Chaves GM. An Update on Candida tropicalis Based on Basic and Clinical Approaches. Front Microbiol 2017; 8:1927. [PMID: 29081766 PMCID: PMC5645804 DOI: 10.3389/fmicb.2017.01927] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/21/2017] [Indexed: 01/12/2023] Open
Abstract
Candida tropicalis has emerged as one of the most important Candida species. It has been widely considered the second most virulent Candida species, only preceded by C. albicans. Besides, this species has been recognized as a very strong biofilm producer, surpassing C. albicans in most of the studies. In addition, it produces a wide range of other virulence factors, including: adhesion to buccal epithelial and endothelial cells; the secretion of lytic enzymes, such as proteinases, phospholipases, and hemolysins, bud-to-hyphae transition (also called morphogenesis) and the phenomenon called phenotypic switching. This is a species very closely related to C. albicans and has been easily identified with both phenotypic and molecular methods. In addition, no cryptic sibling species were yet described in the literature, what is contradictory to some other medically important Candida species. C. tropicalis is a clinically relevant species and may be the second or third etiological agent of candidemia, specifically in Latin American countries and Asia. Antifungal resistance to the azoles, polyenes, and echinocandins has already been described. Apart from all these characteristics, C. tropicalis has been considered an osmotolerant microorganism and this ability to survive to high salt concentration may be important for fungal persistence in saline environments. This physiological characteristic makes this species suitable for use in biotechnology processes. Here we describe an update of C. tropicalis, focusing on all these previously mentioned subjects.
Collapse
Affiliation(s)
| | | | - Guilherme M. Chaves
- Laboratory of Medical and Molecular Mycology, Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
18
|
Yu SB, Li WG, Liu XS, Che J, Lu JX, Wu Y. The Activities of Adhesion and Biofilm Formation by Candida tropicalis Clinical Isolates Display Significant Correlation with Its Multilocus Sequence Typing. Mycopathologia 2017; 182:459-469. [PMID: 28084573 DOI: 10.1007/s11046-017-0111-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/06/2017] [Indexed: 01/30/2023]
Abstract
Adhesion and biofilm formation, which can occur on abiotic and biotic surfaces, are key components in Candida pathogenicity. The aims of this study were to infer about the C. tropicalis clinical isolates ability to adhere and form biofilm on abiotic and biotic surfaces and to correlate that with the multilocus sequence typing and other virulence factors. Adhesion and biofilm formation were measured in 68 C. tropicalis isolates from 3 hospitals in China on abiotic (polystyrene) and biotic (human urinary bladder epithelial cell) surfaces by crystal violet assay and 2,3-bis (2-methoxy-4-nitro-5-sulfo-phenyl)-2H-tetrazolium-5-carboxanilide reduction assay. In our study, almost all C. tropicalis isolates could adhere and produce biofilm on abiotic and biotic surfaces in a strain-dependent manner. The isolates from blood showed relatively lower adhesion and biofilm capacity on polystyrene surface, but had strong secreted aspartyl proteinase activity. Moreover, significant differences were found among MLST groups for adhesion and biofilm capacity. C. tropicalis in multilocus sequence typing group5 and group6 showed high adhesion and biofilm, while isolates in group1 exhibited low adhesion and biofilm formation. Overall, it is important to note that C. tropicalis isolates adhere to and produce biofilm on abiotic and biotic surfaces with strain specificity. These data will play an important role in subsequent research on the pathogenesis of C. tropicalis.
Collapse
Affiliation(s)
- Shuan Bao Yu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wen Ge Li
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiao Shu Liu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jie Che
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jin Xing Lu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuan Wu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
19
|
Yu S, Li W, Liu X, Che J, Wu Y, Lu J. Distinct Expression Levels of ALS, LIP, and SAP Genes in Candida tropicalis with Diverse Virulent Activities. Front Microbiol 2016; 7:1175. [PMID: 27524980 PMCID: PMC4965447 DOI: 10.3389/fmicb.2016.01175] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/15/2016] [Indexed: 01/12/2023] Open
Abstract
Candia tropicalis is an increasingly important human pathogen, causing nosocomial fungemia among patients with neutropenia or malignancy. However, limited research has been published concerning its pathogenicity. Based on the phenotypes of C. tropicalis in our previous study, we selected nine representative strains with different activities of virulence factors (adhesion, biofilm formation, secreted aspartic proteinases, and hemolysins), and one reference strain, ATCC750. The present study aimed to investigate the filamentation ability, the expression of virulence genes (ALST1-3, LIP1, LIP4, and SAPT1-4) and the cell damage of C. tropicalis strains with diverse virulences. C. tropicalis exhibited strain-dependent filamentation ability, which was positively correlated with biofilm formation. Reverse transcriptase PCR analysis showed that the ALST3 and SAPT3 genes had the highest expression in their corresponding genes for most C. tropicalis. The expressions of virulence genes, except ALST3 on polystyrene, were upregulated compared with growth in the planktonic and on human urinary bladder epithelial cell line (TCC-SUP) surface. Clustering analysis of virulence genes showed that isolates had a high biofilm forming ability on polystyrene formed a group. Lactate dehydrogenase assays showed that the cell damage induced by C. tropicalis markedly increased with longer infection time (24 and 48 h). Strain FXCT01, isolated from blood, caused the most serious cell damage; while ZRCT52, which had no filamentation ability, caused the least cell damage. Correlation analysis demonstrated significant correlation existed between adhesion on epithelial cells or the expression of ALST2-3 and cell damage. Overall, our results supported the view that adhesion and filamentation may play significant roles in the cell damage caused by C. tropicalis.
Collapse
Affiliation(s)
- Shuanbao Yu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention Beijing, China
| | - Wenge Li
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention Beijing, China
| | - Xiaoshu Liu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention Beijing, China
| | - Jie Che
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention Beijing, China
| | - Yuan Wu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention Beijing, China
| | - Jinxing Lu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention Beijing, China
| |
Collapse
|
20
|
Jia W, Zhang H, Li C, Li G, Liu X, Wei J. The calcineruin inhibitor cyclosporine a synergistically enhances the susceptibility of Candida albicans biofilms to fluconazole by multiple mechanisms. BMC Microbiol 2016; 16:113. [PMID: 27316338 PMCID: PMC4912705 DOI: 10.1186/s12866-016-0728-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 06/06/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Biofilms produced by Candida albicans (C. albicans) are intrinsically resistant to fungicidal agents, which are a main cause of the pathogenesis of catheter infections. Several lines of evidence have demonstrated that calcineurin inhibitor FK506 or cyclosporine A (CsA) can remarkably enhance the antifungal activity of fluconazole (FLC) against biofilm-producing C. albicans strain infections. The aim of present study is thus to interrogate the mechanism underpinning the synergistic effect of FLC and calcineurin inhibitors. RESULTS Twenty four clinical C. albicans strains isolated from bloodstream showed a distinct capacity of biofilm formation. A combination of calcineurin inhibitor CsA and FLC exhibited a dose-dependent synergistic antifungal effect on the growth and biofilm formation of C. albicans isolates as determined by a XTT assay and fluorescent microscopy assay. The synergistic effect was accompanied with a significantly down-regulated expression of adhesion-related genes ALS3, hypha-related genes HWP1, ABC transporter drug-resistant genes CDR1 and MDR1, and FLC targeting gene, encoding sterol 14alpha-demethylase (ERG11) in clinical C. albicans isolates. Furthermore, an addition of CsA significantly reduced the cellular surface hydrophobicity but increased intracellular calcium concentration as determined by a flow cytometry assay (p < 0.05). CONCLUSION The results presented in this report demonstrated that the synergistic effect of CsA and FLC on inhibited C. albicans biofilm formation and enhanced susceptibility to FLC was in part through a mechanism involved in suppressing the expression of biofilm related and drug-resistant genes, and reducing cellular surface hydrophobicity, as well as evoking intracellular calcium concentration.
Collapse
Affiliation(s)
- Wei Jia
- Ningxia Key laboratory of Clinical and Pathogenic Microbiology, the General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China.,Center of Laboratory Medicine, the General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Haiyun Zhang
- The First People's Hospital of Mudanjiang City, Mudanjiang, Helongjiang, 157011, China
| | - Caiyun Li
- Department of Laboratory Medicine, College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Gang Li
- Ningxia Key laboratory of Clinical and Pathogenic Microbiology, the General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China.,Center of Laboratory Medicine, the General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Xiaoming Liu
- Ningxia Key laboratory of Clinical and Pathogenic Microbiology, the General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
| | - Jun Wei
- Ningxia Key laboratory of Clinical and Pathogenic Microbiology, the General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China. .,Center of Laboratory Medicine, the General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
| |
Collapse
|
21
|
Hsu PH, Chiang PC, Liu CH, Chang YW. Characterization of Cell Wall Proteins in Saccharomyces cerevisiae Clinical Isolates Elucidates Hsp150p in Virulence. PLoS One 2015; 10:e0135174. [PMID: 26270963 PMCID: PMC4535956 DOI: 10.1371/journal.pone.0135174] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/17/2015] [Indexed: 11/25/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae has recently been described as an emerging opportunistic fungal pathogen. Fungal cell wall mannoproteins have been demonstrated to be involved in adhesion to inert surfaces and might be engaged in virulence. In this study, we observed four clinical isolates of S. cerevisiae with relatively hydrophobic cell surfaces. Yeast cell wall subproteome was evaluated quantitatively by liquid chromatography/tandem mass spectrometry. We identified totally 25 cell wall proteins (CWPs) from log-phase cells, within which 15 CWPs were quantified. The abundance of Scw10p, Pst1p, and Hsp150p/Pir2p were at least 2 folds higher in the clinical isolates than in S288c lab strain. Hsp150p is one of the members in Pir family conserved in pathogenic fungi Candida glabrata and Candida albicans. Overexpression of Hsp150p in lab strain increased cell wall integrity and potentially enhanced the virulence of yeast. Altogether, these results demonstrated that quantitative cell wall subproteome was analyzed in clinical isolates of S. cerevisiae, and several CWPs, especially Hsp150p, were found to be expressed at higher levels which presumably contribute to strain virulence and fungal pathogenicity.
Collapse
Affiliation(s)
- Pang-Hung Hsu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
- * E-mail: (YC); (PH)
| | - Pei-Chi Chiang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Chia-Hsun Liu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Ya-Wen Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
- * E-mail: (YC); (PH)
| |
Collapse
|
22
|
Fernandes T, Silva S, Henriques M. Candida tropicalis biofilm's matrix--involvement on its resistance to amphotericin B. Diagn Microbiol Infect Dis 2015; 83:165-9. [PMID: 26189843 DOI: 10.1016/j.diagmicrobio.2015.06.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 06/19/2015] [Accepted: 06/22/2015] [Indexed: 11/15/2022]
Abstract
Candida tropicalis has emerged as one of the most prevalent fungal pathogens, and its ability to form biofilms has been considered one of the most important virulence factors, since they represent high tolerance to antifungal agents. However, the mechanisms of biofilm resistance to antifungal agents remain poorly understood. Thus, the main goal of this study was to infer about the ability of amphotericin B (AMB) to control and combat C. tropicalis biofilms. Additionally, it was also intended to determine the influence of matrix components in biofilm resistance. AMB was unable to totally prevent biofilm formation and to eradicate C. tropicalis preformed biofilms. Moreover, AMB led to a significant increase of the biofilm production due to an augment of the total protein and carbohydrate contents of the matrix. The C. tropicalis biofilm matrix assumes an important role on its resistance to AMB.
Collapse
Affiliation(s)
- Tânia Fernandes
- Centre of Biological Engineering, Laboratório de investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Sónia Silva
- Centre of Biological Engineering, Laboratório de investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| | - Mariana Henriques
- Centre of Biological Engineering, Laboratório de investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| |
Collapse
|
23
|
Effects of Streptococcus sanguinis Bacteriocin on Cell Surface Hydrophobicity, Membrane Permeability, and Ultrastructure of Candida Thallus. BIOMED RESEARCH INTERNATIONAL 2015; 2015:514152. [PMID: 26064919 PMCID: PMC4429188 DOI: 10.1155/2015/514152] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 04/05/2015] [Accepted: 04/10/2015] [Indexed: 11/18/2022]
Abstract
Candida albicans (C.a) and Candida tropicalis (C.t) were treated with Streptococcus sanguinis bacteriocin (S.s bacteriocin), respectively; the bacteriostatic dynamics of S.s bacteriocin, their effects on cell surface hydrophobicity, leakage of inorganic phosphorus and macromolecular substance, cytosolic calcium concentration, and ultrastructure changes of Candida thallus were detected and analyzed. The results showed that inhibitory effect of S.s bacteriocin on C.a and C.t reached peak level at 24 h, the cell-surface hydrophobicity decreased significantly (P < 0.05) after S.s bacteriocin treatment, and there was leakage of cytoplasmic inorganic phosphorus and macromolecular substance from C.a and C.t; cytosolic calcium concentration decreased greatly. After 24 h treatment by S.s bacteriocin, depressive deformity and defect could be found in the cell surface of C.a and C.t; the thallus displayed irregular forms: C.a was shrunken, there was unclear margins abutting upon cell wall and cell membrane, nucleus disappeared, and cytoplasm was inhomogeneous; likewise, C.t was first plasmolysis, and then the cytoplasm was shrunk, the ultrastructure of cell wall and cell membrane was continuously damaged, and the nucleus was karyolysis. It was illustrated that S.s bacteriocin had similar antifungal effect on C.a and C.t; their cell surface hydrophobicity, membrane permeability, and ultrastructure were changed significantly on exposure to S.s bacteriocin.
Collapse
|
24
|
Cordeiro RDA, Oliveira JSD, Castelo-Branco DDSCM, Teixeira CEC, Marques FJDF, Bittencourt PV, Carvalho VL, Bandeira TDJPG, Brilhante RSN, Moreira JLB, Pereira-Neto WDA, Sidrim JJC, Rocha MFG. Candida tropicalis isolates obtained from veterinary sources show resistance to azoles and produce virulence factors. Med Mycol 2014; 53:145-52. [DOI: 10.1093/mmy/myu081] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
25
|
Sherry L, Rajendran R, Lappin DF, Borghi E, Perdoni F, Falleni M, Tosi D, Smith K, Williams C, Jones B, Nile CJ, Ramage G. Biofilms formed by Candida albicans bloodstream isolates display phenotypic and transcriptional heterogeneity that are associated with resistance and pathogenicity. BMC Microbiol 2014; 14:182. [PMID: 24996549 PMCID: PMC4105547 DOI: 10.1186/1471-2180-14-182] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 06/24/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Candida albicans infections have become increasingly recognised as being biofilm related. Recent studies have shown that there is a relationship between biofilm formation and poor clinical outcomes in patients infected with biofilm proficient strains. Here we have investigated a panel of clinical isolates in an attempt to evaluate their phenotypic and transcriptional properties in an attempt to differentiate and define levels of biofilm formation. RESULTS Biofilm formation was shown to be heterogeneous; with isolates being defined as either high or low biofilm formers (LBF and HBF) based on different biomass quantification. These categories could also be differentiated using a cell surface hydrophobicity assay with 24 h biofilms. HBF isolates were more resistance to amphotericin B (AMB) treatment than LBF, but not voriconazole (VRZ). In a Galleria mellonella model of infection HBF mortality was significantly increased in comparison to LBF. Histological analysis of the HBF showed hyphal elements intertwined indicative of the biofilm phenotype. Transcriptional analysis of 23 genes implicated in biofilm formation showed no significant differential expression profiles between LBF and HBF, except for Cdr1 at 4 and 24 h. Cluster analysis showed similar patterns of expression for different functional classes of genes, though correlation analysis of the 4 h biofilms with overall biomass at 24 h showed that 7 genes were correlated with high levels of biofilm, including Als3, Eap1, Cph1, Sap5, Plb1, Cdr1 and Zap1. CONCLUSIONS Our findings show that biofilm formation is variable amongst C. albicans isolates, and categorising isolates depending on this can be used to predict how pathogenic the isolate will behave clinically. We have shown that looking at individual genes in less informative than looking at multiple genes when trying to categorise isolates at LBF or HBF. These findings are important when developing biofilm-specific diagnostics as these could be used to predict how best to treat patients infected with C. albicans. Further studies are required to evaluate this clinically.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Gordon Ramage
- Infection and Immunity Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, 378 Sauchiehall Street, Glasgow G2 3JZ, UK.
| |
Collapse
|
26
|
Calcineurin controls hyphal growth, virulence, and drug tolerance of Candida tropicalis. EUKARYOTIC CELL 2014; 13:844-54. [PMID: 24442892 DOI: 10.1128/ec.00302-13] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Candida tropicalis, a species closely related to Candida albicans, is an emerging fungal pathogen associated with high mortality rates of 40 to 70%. Like C. albicans and Candida dubliniensis, C. tropicalis is able to form germ tubes, pseudohyphae, and hyphae, but the genes involved in hyphal growth machinery and virulence remain unclear in C. tropicalis. Recently, echinocandin- and azole-resistant C. tropicalis isolates have frequently been isolated from various patients around the world, making treatment difficult. However, studies of the C. tropicalis genes involved in drug tolerance are limited. Here, we investigated the roles of calcineurin and its potential target, Crz1, for core stress responses and pathogenesis in C. tropicalis. We demonstrate that calcineurin and Crz1 are required for hyphal growth, micafungin tolerance, and virulence in a murine systemic infection model, while calcineurin but not Crz1 is essential for tolerance of azoles, caspofungin, anidulafungin, and cell wall-perturbing agents, suggesting that calcineurin has both Crz1-dependent and -independent functions in C. tropicalis. In addition, we found that calcineurin and Crz1 have opposite roles in controlling calcium tolerance. Calcineurin serves as a negative regulator, while Crz1 plays a positive role for calcium tolerance in C. tropicalis.
Collapse
|