1
|
Jiang L, Xu H, Wei M, Gu Y, Yan H, Pan L, Wei C. Transcriptional expression of PHR2 is positively controlled by the calcium signaling transcription factor Crz1 through its binding motif in the promoter. Microbiol Spectr 2024; 12:e0168923. [PMID: 38054721 PMCID: PMC10783099 DOI: 10.1128/spectrum.01689-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE The fungal cell wall consists of glucans, mannoproteins, and chitin and is essential for cell viability, morphogenesis, and pathogenesis. The enzymes of the GH72 family are responsible for ß-(1,3)-glucan elongation and branching, which is crucial for the formation of the glucan-chitin polymer at the bud neck of yeast cells. In the human fungal pathogen Candida albicans, there are five GH72 enzyme-encoding genes: PHR1, PHR2, PHR3, PGA4, and PGA5. It is known that expression of PHR1 and PHR2 is controlled by the pH-responsive Rim101 pathway through the transcription factor Rim101. In this study, we have demonstrated that the transcription expression of PHR2 is also controlled by the transcription factor Crz1 through its binding motif in the promoter. Therefore, we have uncovered a dual-control mechanism by which PHR2 expression is negatively regulated via CaRim101 through the pH-responsive pathway and positively modulated by CaCrz1 through the calcium/calcineurin signaling pathway.
Collapse
Affiliation(s)
- Linghuo Jiang
- Laboratory of Yeast Biology and Fermentation Technology, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Huihui Xu
- Department of Food Science, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Min Wei
- Laboratory of Yeast Biology and Fermentation Technology, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Yiying Gu
- Laboratory of Yeast Biology and Fermentation Technology, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Hongbo Yan
- Department of Food Science, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Lingxin Pan
- Laboratory of Yeast Biology and Fermentation Technology, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Chunyu Wei
- Laboratory of Yeast Biology and Fermentation Technology, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| |
Collapse
|
2
|
Zhang W, Yao Z, Guo R, Cao J, Li W, Hao C, Zhang X. Identification of novel homozygous nonsense SLC10A7 variant causing short stature, amelogenesis imperfecta, and skeletal dysplasia with scoliosis and surgical management of spine. Orphanet J Rare Dis 2023; 18:371. [PMID: 38037133 PMCID: PMC10691085 DOI: 10.1186/s13023-023-02975-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 11/18/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Short stature, amelogenesis imperfecta, and skeletal dysplasia with scoliosis is a rare, autosomal recessive, skeletal disorder first described in 2018. This syndrome starts with pre- and postnatal developmental delay, and gradually presents with variable facial dysmorphisms, a short stature, amelogenesis imperfecta, and progressive skeletal dysplasia affecting the limbs, joints, hands, feet, and spine. CASE PRESENTATION We identified a homozygous novel nonsense mutation in exon 1 of SLC10A7 (NM_001300842.2: c.100G > T / p.Gly34*) segregating with the typical disease phenotype in a Han Chinese family. We reviewed the 12-year surgical treatment history with seven interventions on spine. CONCLUSION To date, only 12 cases of the SLC10A7 mutation have been reported, mainly from consanguineous families. Our patient showed a relatively severe and broad clinical phenotype compared with previously reported cases. In this patient, annual check-ups and timely surgeries led to a good outcome.
Collapse
Affiliation(s)
- Wenyan Zhang
- Beijing Key Laboratory for Genetics of Birth Defects, MOE Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, Beijing Pediatric Research Institute, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Ziming Yao
- Department of Orthopedics, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Ruolan Guo
- Beijing Key Laboratory for Genetics of Birth Defects, MOE Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, Beijing Pediatric Research Institute, Capital Medical University, National Center for Children's Health, Beijing, China
- Henan Key Laboratory of Pediatric Inherited & Metabolic Diseases, Henan Children's Hospital, Zhengzhou Hospital of Beijing Children's Hospital, Zhengzhou, China
| | - Jun Cao
- Department of Orthopedics, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Wei Li
- Beijing Key Laboratory for Genetics of Birth Defects, MOE Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, Beijing Pediatric Research Institute, Capital Medical University, National Center for Children's Health, Beijing, China
- Henan Key Laboratory of Pediatric Inherited & Metabolic Diseases, Henan Children's Hospital, Zhengzhou Hospital of Beijing Children's Hospital, Zhengzhou, China
| | - Chanjuan Hao
- Beijing Key Laboratory for Genetics of Birth Defects, MOE Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, Beijing Pediatric Research Institute, Capital Medical University, National Center for Children's Health, Beijing, China.
- Henan Key Laboratory of Pediatric Inherited & Metabolic Diseases, Henan Children's Hospital, Zhengzhou Hospital of Beijing Children's Hospital, Zhengzhou, China.
| | - Xuejun Zhang
- Department of Orthopedics, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.
| |
Collapse
|
3
|
Wannowius M, Karakus E, Geyer J. Functional Analysis of Rare Genetic Variants in the Negative Regulator of Intracellular Calcium Signaling RCAS/SLC10A7. Front Mol Biosci 2021; 8:741946. [PMID: 34671644 PMCID: PMC8521665 DOI: 10.3389/fmolb.2021.741946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/15/2021] [Indexed: 12/05/2022] Open
Abstract
The solute carrier family 10 member SLC10A7 is a negative regulator of intracellular calcium signaling (RCAS). In cell culture, SLC10A7 expression is negatively correlated with store-operated calcium entry (SOCE) via the plasma membrane. SLC10A7-deficient cells have significantly increased calcium influx after treatment with thapsigargin for depletion of ER calcium stores, whereas SLC10A7/RCAS overexpression limits calcium influx. Genetic variants in the human SLC10A7 gene are associated with skeletal dysplasia and amelogenesis imperfecta and reveal loss of function on cellular calcium influx. More recently, an additional disease-related genetic variant (P303L) as well as some novel genetic variants (V235F, T221M, I136M, L210F, P285L, and G146S) have been identified. In the present study, these variants were expressed in HEK293 cells to study their subcellular localization and their effect on cellular calcium influx. All variants were properly sorted to the ER compartment and closely co-localized with the STIM protein, a functional component of SOCE. The variants P303L and L210F showed significantly reduced effects on cellular calcium influx compared to the wild type but still maintained some degree of residual activity. This might explain the milder phenotype of patients bearing the P303L variant and might indicate disease potential for the newly identified L210F variant. In contrast, all other variants behaved like the wild type. In conclusion, the occurrence of variants in the SLC10A7 gene should be considered in patients with skeletal dysplasia and amelogenesis imperfecta. In addition to the already established variants, the present study identifies another potential disease-related SLC10A7/RCAS variant, namely, L210F, which seems to be most frequent in South Asian populations.
Collapse
Affiliation(s)
- Marie Wannowius
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Emre Karakus
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Joachim Geyer
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
4
|
Cation Transporters of Candida albicans-New Targets to Fight Candidiasis? Biomolecules 2021; 11:biom11040584. [PMID: 33923411 PMCID: PMC8073359 DOI: 10.3390/biom11040584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023] Open
Abstract
Candidiasis is the wide-spread fungal infection caused by numerous strains of yeast, with the prevalence of Candida albicans. The current treatment of candidiasis is becoming rather ineffective and costly owing to the emergence of resistant strains; hence, the exploration of new possible drug targets is necessary. The most promising route is the development of novel antibiotics targeting this pathogen. In this review, we summarize such candidates found in C. albicans and those involved in the transport of (metal) cations, as the latter are essential for numerous processes within the cell; hence, disruption of their fluxes can be fatal for C. albicans.
Collapse
|
5
|
The orphan solute carrier SLC10A7 is a novel negative regulator of intracellular calcium signaling. Sci Rep 2020; 10:7248. [PMID: 32350310 PMCID: PMC7190670 DOI: 10.1038/s41598-020-64006-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
SLC10A7 represents an orphan member of the Solute Carrier Family SLC10. Recently, mutations in the human SLC10A7 gene were associated with skeletal dysplasia, amelogenesis imperfecta, and decreased bone mineral density. However, the exact molecular function of SLC10A7 and the mechanisms underlying these pathologies are still unknown. For this reason, the role of SLC10A7 on intracellular calcium signaling was investigated. SLC10A7 protein expression was negatively correlated with store-operated calcium entry (SOCE) via the plasma membrane. Whereas SLC10A7 knockout HAP1 cells showed significantly increased calcium influx after thapsigargin, ionomycin and ATP/carbachol treatment, SLC10A7 overexpression reduced this calcium influx. Intracellular Ca2+ levels were higher in the SLC10A7 knockout cells and lower in the SLC10A7-overexpressing cells. The SLC10A7 protein co-localized with STIM1, Orai1, and SERCA2. Most of the previously described human SLC10A7 mutations had no effect on the calcium influx and thus were confirmed to be functionally inactive. In the present study, SLC10A7 was established as a novel negative regulator of intracellular calcium signaling that most likely acts via STIM1, Orai1 and/or SERCA2 inhibition. Based on this, SLC10A7 is suggested to be named as negative regulator of intracellular calcium signaling (in short: RCAS).
Collapse
|
6
|
Noppes S, Müller SF, Bennien J, Holtemeyer M, Palatini M, Leidolf R, Alber J, Geyer J. Homo- and heterodimerization is a common feature of the solute carrier family SLC10 members. Biol Chem 2020; 400:1371-1384. [PMID: 31256060 DOI: 10.1515/hsz-2019-0148] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 06/11/2019] [Indexed: 12/23/2022]
Abstract
The solute carrier family SLC10 consists of seven members, including the bile acid transporters Na+/taurocholate co-transporting polypeptide (NTCP) and apical sodium-dependent bile acid transporter (ASBT), the steroid sulfate transporter SOAT as well as four orphan carriers (SLC10A3, SLC10A4, SLC10A5 and SLC10A7). Previously, homodimerization of NTCP, ASBT and SOAT was described and there is increasing evidence that carrier oligomerization is an important regulatory factor for protein sorting and transport function. In the present study, homo- and heterodimerization were systematically analyzed among all SLC10 carriers (except for SLC10A3) using the yeast-two-hybrid membrane protein system. Strong homodimerization occurred for NTCP/NTCP, ASBT/ASBT and SLC10A7/SLC10A7. Heterodimerization was observed for most of the SLC10 carrier combinations. Heterodimerization of NTCP was additionally investigated by co-localization of NTCP-GFP and NTCP-mScarlet with respective SLC10 carrier constructs. NTCP co-localized with SLC10A4, SLC10A5, SOAT and SLC10A7. This co-localization was most pronounced for SLC10A4 and was additionally confirmed by co-immunoprecipitation. Interestingly, SLC10 carrier co-expression decreased the taurocholate transport function of NTCP for most of the analyzed constructs, indicating that SLC10 carrier heterodimerization is of functional relevance. In conclusion, homo- and heterodimerization is a common feature of the SLC10 carriers. The relevance of this finding for regulation and transport function of the SLC10 carriers in vivo needs further investigation.
Collapse
Affiliation(s)
- Saskia Noppes
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Schubertstr. 81, D-35392 Giessen, Germany
| | - Simon Franz Müller
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Schubertstr. 81, D-35392 Giessen, Germany
| | - Josefine Bennien
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Schubertstr. 81, D-35392 Giessen, Germany
| | - Matthias Holtemeyer
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Schubertstr. 81, D-35392 Giessen, Germany
| | - Massimo Palatini
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Schubertstr. 81, D-35392 Giessen, Germany
| | - Regina Leidolf
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Schubertstr. 81, D-35392 Giessen, Germany
| | - Jörg Alber
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Schubertstr. 81, D-35392 Giessen, Germany
| | - Joachim Geyer
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Schubertstr. 81, D-35392 Giessen, Germany
| |
Collapse
|
7
|
Lange M, Peiter E. Calcium Transport Proteins in Fungi: The Phylogenetic Diversity of Their Relevance for Growth, Virulence, and Stress Resistance. Front Microbiol 2020; 10:3100. [PMID: 32047484 PMCID: PMC6997533 DOI: 10.3389/fmicb.2019.03100] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/20/2019] [Indexed: 12/26/2022] Open
Abstract
The key players of calcium (Ca2+) homeostasis and Ca2+ signal generation, which are Ca2+ channels, Ca2+/H+ antiporters, and Ca2+-ATPases, are present in all fungi. Their coordinated action maintains a low Ca2+ baseline, allows a fast increase in free Ca2+ concentration upon a stimulus, and terminates this Ca2+ elevation by an exponential decrease – hence forming a Ca2+ signal. In this respect, the Ca2+ signaling machinery is conserved in different fungi. However, does the similarity of the genetic inventory that shapes the Ca2+ peak imply that if “you’ve seen one, you’ve seen them all” in terms of physiological relevance? Individual studies have focused mostly on a single species, and mechanisms elucidated in few model organisms are usually extrapolated to other species. This mini-review focuses on the physiological relevance of the machinery that maintains Ca2+ homeostasis for growth, virulence, and stress responses. It reveals common and divergent functions of homologous proteins in different fungal species. In conclusion, for the physiological role of these Ca2+ transport proteins, “seen one,” in many cases, does not mean: “seen them all.”
Collapse
Affiliation(s)
- Mario Lange
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Edgar Peiter
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
8
|
Xu H, Fang T, Omran RP, Whiteway M, Jiang L. RNA sequencing reveals an additional Crz1-binding motif in promoters of its target genes in the human fungal pathogen Candida albicans. Cell Commun Signal 2020; 18:1. [PMID: 31900175 PMCID: PMC6942403 DOI: 10.1186/s12964-019-0473-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/25/2019] [Indexed: 02/06/2023] Open
Abstract
Background The calcium/calcineurin signaling pathway is mediated by the transcription factors NFAT (nuclear factor of activated T cells) in mammals and Crz1 (calcineurin-responsive zinc finger 1) in yeasts and other lower eukaryotes. A previous microarray analysis identified a putative Crz1-binding motif in promoters of its target genes in Candida albicans, but it has not been experimentally demonstrated. Methods An inactivation mutant for CaCRZ1 was generated through CRISPR/Cas9 approach. Transcript profiling was carried out by RNA sequencing of the wild type and the inactivation mutant for CaCRZ1 in response to 0.2 M CaCl2. Gene promoters were scanned by the online MEME (Multiple Em for Motif Elicitation) software. Gel electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) analysis were used for in vitro and in vivo CaCrz1-binding experiments, respectively. Results RNA sequencing reveals that expression of 219 genes is positively, and expression of 59 genes is negatively, controlled by CaCrz1 in response to calcium stress. These genes function in metabolism, cell cycling, protein fate, cellular transport, signal transduction, transcription, and cell wall biogenesis. Forty of these positively regulated 219 genes have previously been identified by DNA microarray analysis. Promoter analysis of these common 40 genes reveals a consensus motif [5′-GGAGGC(G/A)C(T/A)G-3′], which is different from the putative CaCrz1-binding motif [5′-G(C/T)GGT-3′] identified in the previous study, but similar to Saccharomyces cerevisiae ScCrz1-binding motif [5′-GNGGC(G/T)CA-3′]. EMSA and ChIP assays indicate that CaCrz1 binds in vitro and in vivo to both motifs in the promoter of its target gene CaUTR2. Promoter mutagenesis demonstrates that these two CaCrz1-binding motifs play additive roles in the regulation of CaUTR2 expression. In addition, the CaCRZ1 gene is positively regulated by CaCrz1. CaCrz1 can bind in vitro and in vivo to its own promoter, suggesting an autoregulatory mechanism for CaCRZ1 expression. Conclusions CaCrz1 differentially binds to promoters of its target genes to regulate their expression in response to calcium stress. CaCrz1 also regulates its own expression through the 5′-TGAGGGACTG-3′ site in its promoter. Video abstract
Collapse
Affiliation(s)
- Huihui Xu
- Laboratory for Yeast Molecular and Cell Biology, Department of Food Science, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Tianshu Fang
- Laboratory for Yeast Molecular and Cell Biology, Department of Food Science, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Raha Parvizi Omran
- Department of Biology, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Malcolm Whiteway
- Department of Biology, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Linghuo Jiang
- Laboratory for Yeast Molecular and Cell Biology, Department of Food Science, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China.
| |
Collapse
|
9
|
Xu H, Whiteway M, Jiang L. The tricarboxylic acid cycle, cell wall integrity pathway, cytokinesis and intracellular pH homeostasis are involved in the sensitivity of Candida albicans cells to high levels of extracellular calcium. Genomics 2019; 111:1226-1230. [DOI: 10.1016/j.ygeno.2018.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/19/2018] [Accepted: 08/02/2018] [Indexed: 12/15/2022]
|
10
|
Paganini C, Costantini R, Superti-Furga A, Rossi A. Bone and connective tissue disorders caused by defects in glycosaminoglycan biosynthesis: a panoramic view. FEBS J 2019; 286:3008-3032. [PMID: 31286677 DOI: 10.1111/febs.14984] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/22/2019] [Accepted: 07/04/2019] [Indexed: 02/06/2023]
Abstract
Glycosaminoglycans (GAGs) are a heterogeneous family of linear polysaccharides that constitute the carbohydrate moiety covalently attached to the protein core of proteoglycans, macromolecules present on the cell surface and in the extracellular matrix. Several genetic disorders of bone and connective tissue are caused by mutations in genes encoding for glycosyltransferases, sulfotransferases and transporters that are responsible for the synthesis of sulfated GAGs. Phenotypically, these disorders all reflect alterations in crucial biological functions of GAGs in the development, growth and homoeostasis of cartilage and bone. To date, up to 27 different skeletal phenotypes have been linked to mutations in 23 genes encoding for proteins involved in GAG biosynthesis. This review focuses on recent genetic, molecular and biochemical studies of bone and connective tissue disorders caused by GAG synthesis defects. These insights and future research in the field will provide a deeper understanding of the molecular pathogenesis of these disorders and will pave the way for developing common therapeutic strategies that might be targeted to a range of individual phenotypes.
Collapse
Affiliation(s)
- Chiara Paganini
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Italy
| | - Rossella Costantini
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Italy
| | - Andrea Superti-Furga
- Division of Genetic Medicine, Lausanne University Hospital, University of Lausanne, Switzerland
| | - Antonio Rossi
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Italy
| |
Collapse
|
11
|
The protein kinase Cmk2 negatively regulates the calcium/calcineurin signalling pathway and expression of calcium pump genes PMR1 and PMC1 in budding yeast. Cell Commun Signal 2019; 17:7. [PMID: 30665402 PMCID: PMC6341702 DOI: 10.1186/s12964-019-0320-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/14/2019] [Indexed: 12/16/2022] Open
Abstract
Through a genome-wide screen we have identified calcium-tolerant deletion mutants for five genes in the budding yeast Saccharomyces cerevisiae. In addition to CNB1 and RCN1 that are known to play a role in the calcium signalling pathway, the protein kinase gene CMK2, the sphingolipid homeostasis-related gene ORM2 and the gene SIF2 encoding the WD40 repeat-containing subunit of Set3C histone deacetylase complex are involved in the calcium sensitivity of yeast cells to extracellular calcium. Cmk2 and the transcription factor Crz1 have opposite functions in the response of yeast cells to calcium stress. Deletion of CMK2 elevates the level of calcium/calcineurin signalling and increases the expression level of PMR1 and PMC1, which is dependent on Crz1. Effects of Cmk2 on calcium sensitivity and calcium/calcineurin signalling are dependent on its kinase activity. Therefore, Cmk2 is a negative feedback controller of the calcium/calcineurin signalling pathway. Furthermore, the cmk2 crz1 double deletion mutant is more resistant than the crz1 deletion mutant, suggesting that Cmk2 has an additional Crz1-independent role in promoting calcium tolerance.
Collapse
|
12
|
Dubail J, Huber C, Chantepie S, Sonntag S, Tüysüz B, Mihci E, Gordon CT, Steichen-Gersdorf E, Amiel J, Nur B, Stolte-Dijkstra I, van Eerde AM, van Gassen KL, Breugem CC, Stegmann A, Lekszas C, Maroofian R, Karimiani EG, Bruneel A, Seta N, Munnich A, Papy-Garcia D, De La Dure-Molla M, Cormier-Daire V. SLC10A7 mutations cause a skeletal dysplasia with amelogenesis imperfecta mediated by GAG biosynthesis defects. Nat Commun 2018; 9:3087. [PMID: 30082715 PMCID: PMC6078967 DOI: 10.1038/s41467-018-05191-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 06/14/2018] [Indexed: 01/10/2023] Open
Abstract
Skeletal dysplasia with multiple dislocations are severe disorders characterized by dislocations of large joints and short stature. The majority of them have been linked to pathogenic variants in genes encoding glycosyltransferases, sulfotransferases or epimerases required for glycosaminoglycan synthesis. Using exome sequencing, we identify homozygous mutations in SLC10A7 in six individuals with skeletal dysplasia with multiple dislocations and amelogenesis imperfecta. SLC10A7 encodes a 10-transmembrane-domain transporter located at the plasma membrane. Functional studies in vitro demonstrate that SLC10A7 mutations reduce SLC10A7 protein expression. We generate a Slc10a7−/− mouse model, which displays shortened long bones, growth plate disorganization and tooth enamel anomalies, recapitulating the human phenotype. Furthermore, we identify decreased heparan sulfate levels in Slc10a7−/− mouse cartilage and patient fibroblasts. Finally, we find an abnormal N-glycoprotein electrophoretic profile in patient blood samples. Together, our findings support the involvement of SLC10A7 in glycosaminoglycan synthesis and specifically in skeletal development. The majority of skeletal dysplasia are caused by pathogenic variants in genes required for glycosaminoglycan (GAG) metabolism. Here, Dubail et al. identify genetic variants in the solute carrier family protein SLC10A7 in families with skeletal dysplasia and amelogenesis imperfecta that disrupt GAG synthesis.
Collapse
Affiliation(s)
- Johanne Dubail
- Department of Genetics, INSERM UMR 1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, AP-HP, Hôpital Necker Enfants Malades, 75015 Paris, France
| | - Céline Huber
- Department of Genetics, INSERM UMR 1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, AP-HP, Hôpital Necker Enfants Malades, 75015 Paris, France
| | - Sandrine Chantepie
- Cell Growth and Tissue Repair CRRET Laboratory, Université Paris-Est Créteil, EA 4397 CNRS 9215, Créteil, F-94010, France
| | | | - Beyhan Tüysüz
- Department of Pediatric Genetics, Cerrahpasa Medicine School, Istanbul University, 34290 Istanbul, Turkey
| | - Ercan Mihci
- Akdeniz University Paediatric Genetic Deaprtment, 07059 Antalya, Turkey
| | - Christopher T Gordon
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR 1163, Institut Imagine, 75015 Paris, France
| | | | - Jeanne Amiel
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR 1163, Institut Imagine, 75015 Paris, France
| | - Banu Nur
- Department of Pediatric Genetics, Cerrahpasa Medicine School, Istanbul University, 34290 Istanbul, Turkey
| | - Irene Stolte-Dijkstra
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9700 Groningen, The Netherlands
| | - Albertien M van Eerde
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, 3508 Utrecht, The Netherlands
| | - Koen L van Gassen
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, 3508 Utrecht, The Netherlands
| | - Corstiaan C Breugem
- Division of Paediatric Plastic Surgery, Wilhelmina Children´s Hopsital, 3584 Utrecht, The Netherlands
| | - Alexander Stegmann
- Department of Human Genetics, Radboud University Medical Center, 6525 Nijmegen, The Netherlands.,Department of Clinical Genetics, Maastricht University Medical Center, 6202 Maastricht, The Netherlands
| | - Caroline Lekszas
- Institute of Human Genetics, Julius Maximilians University Würzburg, 97074 Würzburg, Germany
| | - Reza Maroofian
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George's, University of London, Cranmer Terrace, London SW17 ORE, UK
| | - Ehsan Ghayoor Karimiani
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George's, University of London, Cranmer Terrace, London SW17 ORE, UK.,Next Generation Genetic Clinic, 9175954353 Mashhad, Iran.,Razavi Cancer Research Center, Razavi Hospital, Imam Reza International University, 9198613636 Mashhad, Iran
| | - Arnaud Bruneel
- AP-HP, Biochimie Métabolique et cellulaire, Hôpital Bichat, 75018 Paris, France
| | - Nathalie Seta
- AP-HP, Biochimie Métabolique et cellulaire, Hôpital Bichat, 75018 Paris, France
| | - Arnold Munnich
- Department of Genetics, INSERM UMR 1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, AP-HP, Hôpital Necker Enfants Malades, 75015 Paris, France
| | - Dulce Papy-Garcia
- Cell Growth and Tissue Repair CRRET Laboratory, Université Paris-Est Créteil, EA 4397 CNRS 9215, Créteil, F-94010, France
| | - Muriel De La Dure-Molla
- Department of Genetics, INSERM UMR 1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, AP-HP, Hôpital Necker Enfants Malades, 75015 Paris, France.,Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, INSERM UMRS 1138, University Paris-Descartes, University Pierre et Marie Curie-Paris, 75006 Paris, France
| | - Valérie Cormier-Daire
- Department of Genetics, INSERM UMR 1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, AP-HP, Hôpital Necker Enfants Malades, 75015 Paris, France.
| |
Collapse
|
13
|
Jiang L, Wang J, Asghar F, Snyder N, Cunningham KW. CaGdt1 plays a compensatory role for the calcium pump CaPmr1 in the regulation of calcium signaling and cell wall integrity signaling in Candida albicans. Cell Commun Signal 2018; 16:33. [PMID: 29954393 PMCID: PMC6025805 DOI: 10.1186/s12964-018-0246-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/12/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Saccharomyces cerevisiae ScGdt1 and mammalian TMEM165 are two members of the UPF0016 membrane protein family that is likely to form a new group of Ca2+/H+ antiporter and/or a Mn2+ transporter in the Golgi apparatus. We have previously shown that Candida albicans CaGDT1 is a functional ortholog of ScGDT1 in the response of S. cerevisiae to calcium stress. However, how CaGdt1 together with the Golgi calcium pump CaPmr1 regulate calcium homeostasis and cell wall integrity in this fungal pathogen remains unknown. METHODS Chemical sensitivity was tested by dilution assay. Cell survival was examined by measuring colony-forming units and staining with Annexin V-FITC and propidium iodide. Calcium signaling was examined by expression of downstream target gene CaUTR2, while cell wall integrity signaling was revealed by detection of phosphorylated Mkc1 and Cek1. Subcellular localization of CaGdt1 was examined through direct and indirect immunofluorescent approaches. Transcriptomic analysis was carried out with RNA sequencing. RESULTS This study shows that Candida albicans CaGDT1 is also a functional ortholog of ScGDT1 in the response of S. cerevisiae to cell wall stress. CaGdt1 is localized in the Golgi apparatus but at distinct sites from CaPmr1 in C. albicans. Loss of CaGDT1 increases the sensitivity of cell lacking CaPMR1 to cell wall and ER stresses. Deletion of CaGDT1 and/or CaPMR1 increases calcium uptake and activates the calcium/calcineurin signaling. Transcriptomic profiling reveals that core functions shared by CaGdt1 and CaPmr1 are involved in the regulation of cellular transport of metal ions and amino acids. However, CaGdt1 has distinct functions from CaPmr1. Chitin synthase gene CHS2 is up regulated in all three mutants, while CHS3 is only up regulated in the pmr1/pmr1 and the gdt1/gdt1 pmr1/pmr1 mutants. Five genes (DIE2, STT3, OST3, PMT1 and PMT4) of glycosylation pathway and one gene (SWI4) of the cell wall integrity (CWI) pathway are upregulated due to deletion of CaGDT1 and/or CaPMR1. Consistently, deletion of either CaPMR1 or CaGDT1 activates the CaCek1-mediated CWI signaling in a cell wall stress-independent fashion. Calcineurin function is required for the integrity of the cell wall and vacuolar compartments of cells lacking both GDT1 and CaPMR1. CONCLUSIONS CaPmr1 is the major player in the regulation of calcium homeostasis and cell wall stress, while CaGdt1 plays a compensatory role for CaPmr1 in the Golgi compartment in C. albicans.
Collapse
Affiliation(s)
- Linghuo Jiang
- Laboratory for Yeast Molecular and Cell Biology, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China.
| | - Junjun Wang
- Department of Food Engineering, Weihai Ocean Vocational College, Weihai, Shandong, China
| | - Faiza Asghar
- Laboratory for Yeast Molecular and Cell Biology, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
| | - Nathan Snyder
- Department of Biology, the Johns Hopkins University, Baltimore, MD, USA
| | - Kyle W Cunningham
- Department of Biology, the Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
14
|
Zhao Y, Yan H, Happeck R, Peiter-Volk T, Xu H, Zhang Y, Peiter E, van Oostende Triplet C, Whiteway M, Jiang L. The plasma membrane protein Rch1 is a negative regulator of cytosolic calcium homeostasis and positively regulated by the calcium/calcineurin signaling pathway in budding yeast. Eur J Cell Biol 2016; 95:164-74. [DOI: 10.1016/j.ejcb.2016.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 12/22/2015] [Accepted: 01/11/2016] [Indexed: 01/19/2023] Open
|
15
|
Xu D, Cheng J, Cao C, Wang L, Jiang L. Genetic interactions between Rch1 and the high-affinity calcium influx system Cch1/Mid1/Ecm7 in the regulation of calcium homeostasis, drug tolerance, hyphal development and virulence in Candida albicans. FEMS Yeast Res 2015; 15:fov079. [PMID: 26323599 DOI: 10.1093/femsyr/fov079] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2015] [Indexed: 12/13/2022] Open
Abstract
The high-affinity calcium influx system (HACS) consisted of CaCch1, CaMid1 and CaEcm7 controls calcium influx into the cell in response to environmental stimuli. The plasma membrane protein CaRch1 is a negative regulator of calcium influx in Candida albicans. In this study, we show that deletion of any of the HACS components suppresses the calcium hypersensitivity of, and the elevated activation level of calcium/calcineurin signaling in, C. albicans cells lacking CaRCH1. In contrast, CaRCH1 is epistatic to the HACS system in the tolerance of antifungal drugs. In addition, cells lacking CaRCH1 are sensitive to tunicamycin, show a delay in in vitro filamentation and an altered colony surface morphology, and are attenuated in virulence in a mouse systemic model. Cells lacking CaCCH1 and CaMID1, but not CaECM7, are sensitive to tunicamycin. Deletion of CaRCH1 increases the tunicamycin sensitivity of cells lacking CaECM7 or CaMID1, but not CaCCH1. Furthermore, deletion of CaRCH1 suppresses the defect in hyphal development due to the deletion of CaCCH1 or CaECM7, and increases the virulence of cells lacking any of the HACS components. Therefore, CaRch1 genetically interacts with the HACS components in different fashions for these functions.
Collapse
Affiliation(s)
- Dayong Xu
- The National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China College of Life Sciences, Huaibei Normal University, Huaibei 235000, Anhui, China
| | - Jianqing Cheng
- School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Chunlei Cao
- The National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Litong Wang
- The National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Linghuo Jiang
- The National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
16
|
Wang Y, Wang J, Cheng J, Xu D, Jiang L. Genetic interactions between the Golgi Ca2+/H+ exchanger Gdt1 and the plasma membrane calcium channel Cch1/Mid1 in the regulation of calcium homeostasis, stress response and virulence in Candida albicans. FEMS Yeast Res 2015. [PMID: 26208803 DOI: 10.1093/femsyr/fov069] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The Golgi-localized Saccharomyces cerevisiae ScGdt1 is a member of the cation/Ca(2+) exchanger superfamily. We show here that Candida albicans CaGdt1 is the functional homolog of ScGdt1 in calcium sensitivity, and shows genetic interactions with CaCch1 or CaMid1 in response to ER stresses. In addition, similar to ScCCH1 and ScMID1, deletion of either CaCCH1 or CaMID1 leads to a growth sensitivity of cells to cold stress, which can be suppressed by deletion of CaGDT1. Furthermore, deletion of CaCCH1 leads to a severe delay in filamentation of C. albicans cells, and this defect is abolished by deletion of CaGDT1. In contrast, CaGDT1 does not show genetic interaction with CaMID1 in filamentation. Interestingly, C. albicans cells lacking both CaMID1 and CaGDT1 exhibit an intermediate virulence between C. albicans cells lacking CaCCH1 (non-virulent) and C. albicans cells lacking CaGDT1 (partially virulent), while C. albicans cells lacking both CaCCH1 and CaGDT1 are not virulent in a mouse model of systemic candidiasis. Therefore, CaGdt1 genetically interacts with the plasma membrane calcium channel, CaCch1/CaMid1, in the response of C. albicans cells to cold and ER stresses and antifungal drug challenge as well as in filamentation and virulence.
Collapse
Affiliation(s)
- Yanan Wang
- The National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Junjun Wang
- The National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jianqing Cheng
- School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Dayong Xu
- The National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Linghuo Jiang
- The National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
17
|
Schmidt S, Moncada M, Burger S, Geyer J. Expression, sorting and transport studies for the orphan carrier SLC10A4 in neuronal and non-neuronal cell lines and in Xenopus laevis oocytes. BMC Neurosci 2015; 16:35. [PMID: 26084360 PMCID: PMC4472396 DOI: 10.1186/s12868-015-0174-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/05/2015] [Indexed: 11/10/2022] Open
Abstract
Background SLC10A4 belongs to the solute carrier family SLC10 whose founding members are the Na+/taurocholate co-transporting polypeptide (NTCP, SLC10A1) and the apical sodium-dependent bile acid transporter (ASBT, SLC10A2). These carriers maintain the enterohepatic circulation of bile acids between the liver and the gut. SLC10A4 was identified as a novel member of the SLC10 carrier family with the highest phylogenetic relationship to NTCP. The SLC10A4 protein was detected in synaptic vesicles of cholinergic and monoaminergic neurons of the peripheral and central nervous system, suggesting a transport function for any kind of neurotransmitter. Therefore, in the present study, we performed systematic transport screenings for SLC10A4 and also aimed to identify the vesicular sorting domain of the SLC10A4 protein. Results We detected a vesicle-like expression pattern of the SLC10A4 protein in the neuronal cell lines SH-SY5Y and CAD. Differentiation of these cells to the neuronal phenotype altered neither SLC10A4 gene expression nor its vesicular expression pattern. Functional transport studies with different neurotransmitters, bile acids and steroid sulfates were performed in SLC10A4-transfected HEK293 cells, SLC10A4-transfected CAD cells and in Xenopus laevis oocytes. For these studies, transport by the dopamine transporter DAT, the serotonin transporter SERT, the choline transporter CHT1, the vesicular monoamine transporter VMAT2, the organic cation transporter Oct1, and NTCP were used as positive control. SLC10A4 failed to show transport activity for dopamine, serotonin, norepinephrine, histamine, acetylcholine, choline, acetate, aspartate, glutamate, gamma-aminobutyric acid, pregnenolone sulfate, dehydroepiandrosterone sulfate, estrone-3-sulfate, and adenosine triphosphate, at least in the transport assays used. When the C-terminus of SLC10A4 was replaced by the homologous sequence of NTCP, the SLC10A4-NTCP chimeric protein revealed clear plasma membrane expression in CAD and HEK293 cells. But this chimera also did not show any transport activity, even when the N-terminal domain of SLC10A4 was deleted by mutagenesis. Conclusions Although different kinds of assays were used to screen for transport function, SLC10A4 failed to show transport activity for a series of neurotransmitters and neuromodulators, indicating that SLC10A4 does not seem to represent a typical neurotransmitter transporter such as DAT, SERT, CHT1 or VMAT2.
Collapse
Affiliation(s)
- Stephanie Schmidt
- Institute of Pharmacology and Toxicology, Justus Liebig University of Giessen, Schubertstr. 81, 35392, Giessen, Germany.
| | - Marcela Moncada
- Institute of Pharmacology and Toxicology, Justus Liebig University of Giessen, Schubertstr. 81, 35392, Giessen, Germany.
| | - Simone Burger
- Institute of Pharmacology and Toxicology, Justus Liebig University of Giessen, Schubertstr. 81, 35392, Giessen, Germany.
| | - Joachim Geyer
- Institute of Pharmacology and Toxicology, Justus Liebig University of Giessen, Schubertstr. 81, 35392, Giessen, Germany.
| |
Collapse
|