1
|
Etherington GJ, Gil EG, Haerty W, Oliferenko S, Nieduszynski CA. Schizosaccharomyces versatilis represents a distinct evolutionary lineage of fission yeast. Yeast 2024; 41:95-107. [PMID: 38146786 DOI: 10.1002/yea.3919] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 12/27/2023] Open
Abstract
The fission yeast species Schizosaccharomyces japonicus is currently divided into two varieties-S. japonicus var. japonicus and S. japonicus var. versatilis. Here we examine the var. versatilis isolate CBS5679. The CBS5679 genome shows 88% identity to the reference genome of S. japonicus var. japonicus at the coding sequence level, with phylogenetic analyses suggesting that it has split from the S. japonicus lineage 25 million years ago. The CBS5679 genome contains a reciprocal translocation between chromosomes 1 and 2, together with several large inversions. The products of genes linked to the major translocation are associated with 'metabolism' and 'cellular assembly' ontology terms. We further show that CBS5679 does not generate viable progeny with the reference strain of S. japonicus. Although CBS5679 shares closer similarity to the 'type' strain of var. versatilis as compared to S. japonicus, it is not identical to the type strain, suggesting population structure within var. versatilis. We recommend that the taxonomic status of S. japonicus var. versatilis is raised, with it being treated as a separate species, Schizosaccharomyces versatilis.
Collapse
Affiliation(s)
| | - Elisa Gomez Gil
- Oliferenko Lab, The Francis Crick Institute, London, UK
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London, UK
| | - Wilfried Haerty
- Research Faculty, The Earlham Institute, Norwich Research Park, Norwich, UK
| | - Snezhana Oliferenko
- Oliferenko Lab, The Francis Crick Institute, London, UK
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London, UK
| | - Conrad A Nieduszynski
- Research Faculty, The Earlham Institute, Norwich Research Park, Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
2
|
Brysch-Herzberg M, Jia GS, Sipiczki M, Seidel M, Zhang WC, Du LL. Reinstatement of the fission yeast species Schizosaccharomyces versatilis Wickerham et Duprat, a sibling species of Schizosaccharomyces japonicus. Yeast 2024; 41:108-127. [PMID: 38450805 DOI: 10.1002/yea.3922] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 03/08/2024] Open
Abstract
Schizosaccharomyces japonicus Yukawa et Maki (1931) and Schizosaccharomyces versatilis Wickerham et Duprat (1945) have been treated as varieties of S. japonicus or as conspecific, based on various approaches including mating trials and nDNA/nDNA optical reassociation studies. However, the type strains of S. japonicus and S. versatilis differ by five substitutions (99.15% identity) and one 1-bp indel in the sequences of the D1/D2 domain of the 26S rRNA gene, and 23 substitutions (96.3% identity) and 31-bp indels in the sequences of internal transcribed spacer (ITS) of rRNA, suggesting that they may not be conspecific. To reassess their taxonomic status, we conducted mating trials and whole-genome analyses. Mating trials using the type strains showed a strong but incomplete prezygotic sterility barrier, yielding interspecies mating products at two orders of magnitude lower efficiency than intraspecies matings. These mating products, which were exclusively allodiploid hybrids, were unable to undergo the haplontic life cycle of the parents. We generated chromosome-level gap-less genome assemblies for both type strains. Whole genome sequences yielded an average nucleotide identity (ANI) of 86.4%, indicating clear separation of S. japonicus and S. versatilis. Based on these findings, we propose the reinstatement of S. versatilis as a distinct species (holotype strain: CBS 103T and ex-types: NRRL Y-1026, NBRC 1607, ATCC 9987, PYCC 7100; Mycobank no.: 847838).
Collapse
Affiliation(s)
- Michael Brysch-Herzberg
- Laboratory for Wine Microbiology, Department International Business, Heilbronn University, Heilbronn, Germany
| | - Guo-Song Jia
- National Institute of Biological Sciences, Beijing, China
| | - Matthias Sipiczki
- Department of Genetics and Applied Microbiology, University of Debrecen, Debrecen, Hungary
| | - Martin Seidel
- Laboratory for Wine Microbiology, Department International Business, Heilbronn University, Heilbronn, Germany
| | - Wen-Cai Zhang
- National Institute of Biological Sciences, Beijing, China
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| |
Collapse
|
3
|
Peces-Pérez R, Vaquero C, Callejo MJ, Morata A. Biomodulation of Physicochemical Parameters, Aromas, and Sensory Profile of Craft Beers by Using Non- Saccharomyces Yeasts. ACS OMEGA 2022; 7:17822-17840. [PMID: 35664572 PMCID: PMC9161265 DOI: 10.1021/acsomega.2c01035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Beer is an alcoholic beverage produced by the metabolism of yeasts and made from water, malt, and hops. In recent years, the interest in craft beers has increased considerably due to the demand for new beverages and the consumer's willingness to pay higher prices. This article explores the sensorial changes produced in craft beers by using different Saccharomyces and non-Saccharomyces yeasts with several instrumental and sensory analyses performed. After a primary fermentation process with Saccharomyces cerevisiae or Lachancea thermotolerans, it was observed that green beer brewed with L. thermotolerans had a lower pH (3.41) due to the significant production of l-lactic acid (3.98 g/L) compared to that brewed with S. cerevisiae. Following, the bottle conditioning was carried out with a culture of S. cerevisiae, L. thermotolerans, Hanseniaspora vineae, or Schizosaccharomyces pombe. Of note is the increased production of aromatic esters, including 2-phenylethyl acetate in the H. vineae conditioning, which is associated with a high aromatic quality, as well as ethyl lactate in all samples, whose main fermentation was carried out with L. thermotolerans. Although this research is at an early stage, future complementary studies may shed more light on this topic.
Collapse
Affiliation(s)
- Rosa Peces-Pérez
- enotecUPM,
Chemistry and Food Technology Department, ETSIAAB, Universidad Politécnica de Madrid, Avenida Puerta de Hierro 2, Madrid, 28040, Spain
| | - Cristian Vaquero
- enotecUPM,
Chemistry and Food Technology Department, ETSIAAB, Universidad Politécnica de Madrid, Avenida Puerta de Hierro 2, Madrid, 28040, Spain
| | - María Jesús Callejo
- enotecUPM,
Chemistry and Food Technology Department, ETSIAAB, Universidad Politécnica de Madrid, Avenida Puerta de Hierro 2, Madrid, 28040, Spain
| | - Antonio Morata
- enotecUPM,
Chemistry and Food Technology Department, ETSIAAB, Universidad Politécnica de Madrid, Avenida Puerta de Hierro 2, Madrid, 28040, Spain
| |
Collapse
|
4
|
Brysch-Herzberg M, Tobias A, Seidel M, Wittmann R, Wohlmann E, Fischer R, Dlauchy D, Peter G. Schizosaccharomyces osmophilus sp. nov., an osmophilic fission yeast occurring in bee bread of different solitary bee species. FEMS Yeast Res 2019; 19:5499025. [DOI: 10.1093/femsyr/foz038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 05/25/2019] [Indexed: 12/12/2022] Open
Affiliation(s)
- Michael Brysch-Herzberg
- Laboratory for Wine Microbiology, Department International Business, Heilbronn University, Max-Planck-Str. 39, 74081 Heilbronn, Germany
| | - Andrea Tobias
- National Collection of Agricultural and Industrial Microorganisms, Faculty of Food Science, Szent István University, Somlói út 14–16. H-1118 Budapest, Hungary
| | - Martin Seidel
- Laboratory for Wine Microbiology, Department International Business, Heilbronn University, Max-Planck-Str. 39, 74081 Heilbronn, Germany
| | - Rupert Wittmann
- Laboratory for Wine Microbiology, Department International Business, Heilbronn University, Max-Planck-Str. 39, 74081 Heilbronn, Germany
| | - Elke Wohlmann
- Karlsruhe Institute of Technology – KIT, Institute for Applied Bioscience, Department of Microbiology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| | - Reinhard Fischer
- Karlsruhe Institute of Technology – KIT, Institute for Applied Bioscience, Department of Microbiology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| | - Dénes Dlauchy
- National Collection of Agricultural and Industrial Microorganisms, Faculty of Food Science, Szent István University, Somlói út 14–16. H-1118 Budapest, Hungary
| | - Gabor Peter
- National Collection of Agricultural and Industrial Microorganisms, Faculty of Food Science, Szent István University, Somlói út 14–16. H-1118 Budapest, Hungary
| |
Collapse
|
5
|
Abstract
There are numerous yeast species related to wine making, particularly non-Saccharomyces, that deserve special attention due to the great potential they have when it comes to making certain changes in the composition of the wine. Among them, Schizosaccharomyces pombe stands out for its particular metabolism that gives it certain abilities such as regulating the acidity of wine through maloalcoholic fermentation. In addition, this species is characterized by favouring the formation of stable pigments in wine and releasing large quantities of polysaccharides during ageing on lees. Moreover, its urease activity and its competition for malic acid with lactic acid bacteria make it a safety tool by limiting the formation of ethyl carbamate and biogenic amines in wine. However, it also has certain disadvantages such as its low fermentation speed or the development of undesirable flavours and aromas. In this chapter, the main oenological uses of Schizosaccharomyces pombe that have been proposed in recent years will be reviewed and discussed.
Collapse
|
6
|
Jeffares DC. The natural diversity and ecology of fission yeast. Yeast 2018; 35:253-260. [PMID: 29084364 DOI: 10.1002/yea.3293] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 12/17/2022] Open
Abstract
While the fission yeast is a powerful model of eukaryote biology, there have been few studies of quantitative genetics, phenotypic or genetic diversity. Here I survey the small collection of fission yeast diversity research. I discuss what we can infer about the ecology and origins of Schizosaccharomyces pombe from microbiology field studies and the few strains that have been collected.
Collapse
Affiliation(s)
- Daniel C Jeffares
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| |
Collapse
|
7
|
Hu W, Suo F, Du LL. Bulk Segregant Analysis Reveals the Genetic Basis of a Natural Trait Variation in Fission Yeast. Genome Biol Evol 2015; 7:3496-510. [PMID: 26615217 PMCID: PMC4700965 DOI: 10.1093/gbe/evv238] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although the fission yeast Schizosaccharomyces pombe is a well-established model organism, studies of natural trait variations in this species remain limited. To assess the feasibility of segregant-pool-based mapping of phenotype-causing genes in natural strains of fission yeast, we investigated the cause of a maltose utilization defect (Mal(-)) of the S. pombe strain CBS5557 (originally known as Schizosaccharomyces malidevorans). Analyzing the genome sequence of CBS5557 revealed 955 nonconservative missense substitutions, and 61 potential loss-of-function variants including 47 frameshift indels, 13 early stop codons, and 1 splice site mutation. As a side benefit, our analysis confirmed 146 sequence errors in the reference genome and improved annotations of 27 genes. We applied bulk segregant analysis to map the causal locus of the Mal(-) phenotype. Through sequencing the segregant pools derived from a cross between CBS5557 and the laboratory strain, we located the locus to within a 2.23-Mb chromosome I inversion found in most S. pombe isolates including CBS5557. To map genes within the inversion region that occupies 18% of the genome, we created a laboratory strain containing the same inversion. Analyzing segregants from a cross between CBS5557 and the inversion-containing laboratory strain narrowed down the locus to a 200-kb interval and led us to identify agl1, which suffers a 5-bp deletion in CBS5557, as the causal gene. Interestingly, loss of agl1 through a 34-kb deletion underlies the Mal(-) phenotype of another S. pombe strain CGMCC2.1628. This work adapts and validates the bulk segregant analysis method for uncovering trait-gene relationship in natural fission yeast strains.
Collapse
Affiliation(s)
- Wen Hu
- PTN Graduate Program, School of Life Sciences, Tsinghua University, Beijing, China National Institute of Biological Sciences, Beijing, China
| | - Fang Suo
- National Institute of Biological Sciences, Beijing, China
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing, China
| |
Collapse
|
8
|
Naumov GI, Kondratieva VI, Naumova ES. Hybrid sterility of the yeast Schizosaccharomyces pombe: Genetic genus and many species in statu nascendi? Microbiology (Reading) 2015. [DOI: 10.1134/s0026261715010099] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
9
|
|
10
|
Helston RM, Box JA, Tang W, Baumann P. Schizosaccharomyces cryophilus sp. nov., a new species of fission yeast. FEMS Yeast Res 2010; 10:779-86. [PMID: 20618870 PMCID: PMC2991054 DOI: 10.1111/j.1567-1364.2010.00657.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The genus Schizosaccharomyces is presently comprised of three species, namely Schizosaccharomyces pombe, Schizosaccharomyces octosporus and Schizosaccharomyces japonicus. Here, we describe a hitherto unknown species, Schizosaccharomyces cryophilus, named for its preference for growth at lower temperatures than the other fission yeast species. Although morphologically similar to S. octosporus, analysis of several rapidly evolving sequences, including the D1/D2 divergent domain of the large subunit (LSU) rRNA gene, the RNA subunit of RNAse P and the internal transcribed spacer elements, revealed significant divergence from any previously characterized Schizosaccharomyces strain. Based on phylogenetic analysis of the D1/D2 domain of the LSU rRNA gene, S. octosporus is the closest known relative of S. cryophilus, with the sequences of the two species differing by 25 nucleotide substitutions (>4%). Sequencing of the S. cryophilus genome and phylogenetic analysis of all 1 : 1 protein orthologs confirmed this observation, and together with morphological and physiological characterization, supports the assignment of S. cryophilus as a new species within the genus Schizosaccharomyces. The type strain of the new species is NRRL Y-48691(T) (=NBRC 106824(T)=CBS 11777(T)).
Collapse
MESH Headings
- Cluster Analysis
- Cold Temperature
- DNA, Fungal/chemistry
- DNA, Fungal/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- DNA, Ribosomal Spacer/chemistry
- DNA, Ribosomal Spacer/genetics
- Fungal Proteins/genetics
- Genes, rRNA
- Genome, Fungal
- Molecular Sequence Data
- Phylogeny
- RNA, Fungal/genetics
- RNA, Ribosomal/genetics
- Ribonuclease P/genetics
- Schizosaccharomyces/classification
- Schizosaccharomyces/cytology
- Schizosaccharomyces/genetics
- Schizosaccharomyces/physiology
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Rachel M. Helston
- Howard Hughes Medical Institute and Stowers Institute for Medical Research, Kansas City, MO 64110, U.S.A
| | - Jessica A. Box
- Howard Hughes Medical Institute and Stowers Institute for Medical Research, Kansas City, MO 64110, U.S.A
| | - Wen Tang
- Howard Hughes Medical Institute and Stowers Institute for Medical Research, Kansas City, MO 64110, U.S.A
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, U.S.A
| | - Peter Baumann
- Howard Hughes Medical Institute and Stowers Institute for Medical Research, Kansas City, MO 64110, U.S.A
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, U.S.A
| |
Collapse
|
11
|
Kondrat'eva VI, Naumov GI. The phenomenon of spore killing in Schizosaccharomyces pombe hybrids. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2001; 379:385-8. [PMID: 12918382 DOI: 10.1023/a:1011624918673] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- V I Kondrat'eva
- State Research Institute of Genetics and Selection of Industrial Microorganisms, Pervyi Dorozhnyi pr. 7, Moscow, 113545 Russia
| | | |
Collapse
|
12
|
Abstract
The budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe are as different from each other as either is from animals: their ancestors separated about 420 to 330 million years ago. Now that S. pombe is poised to join the post-genome era, its evolutionary position should become much clearer.
Collapse
Affiliation(s)
- M Sipiczki
- Department of Genetics, University of Debrecen and Research Group for Microbial Development, Hungarian Academy of Sciences, Debrecen, H-4010 Hungary.
| |
Collapse
|
13
|
Naehring J, Kiefer S, Wolf K. Nucleotide sequence of the Schizosaccharomyces japonicus var. versatilis ribosomal RNA gene cluster and its phylogenetic implications. Curr Genet 1995; 28:353-9. [PMID: 8590481 DOI: 10.1007/bf00326433] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fission yeasts form a small but heterogeneous group of ascomycetes and it is still unclear whether they should be subdivided into three genera (Schizosaccharomyces, Octosporomyces, Hasegawaea) or remain a single genus (Schizosaccharomyces). In order to decide whether a new genus Hasegawaea should be established for the species Schizosaccharomyces japonicus and Schizosaccharomyces versatilis, we have characterized the entire rDNA cluster in Schizosaccharomyces japonicus var. versatilis and compared it with the homologous region from Schizosaccharomyces pombe and with complete rRNA gene sequences from other yeast genera. From a phage genomic library a recombinant lambda phage containing the entire rDNA repeat unit was isolated. In this paper we report the primary sequence of the 18s, 5.8s and 25s rRNA coding regions. The S. japonicus var. versatilis rRNA genes are 1823 (18s), 158 (5.8s) and 3422 (25s) nucleotides long. The two sequences of the larger rRNA genes exhibit 95.7% (18s) and 93% (25s) similarity with the homologous genes from S. pombe. The differences between the rRNA genes of S. japonicus and S. pombe, however, are much smaller than the intrageneric differences within the rDNA sequences of other yeast genera. Therefore, subdivision of fission yeasts into the genera Schizosaccharomyces and Hasegawaea does not to seem to be justified.
Collapse
MESH Headings
- Base Sequence
- Cloning, Molecular
- Conserved Sequence
- DNA, Ribosomal/genetics
- Genes, Fungal/genetics
- Molecular Sequence Data
- Multigene Family
- Phylogeny
- Promoter Regions, Genetic/genetics
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Ribosomal/biosynthesis
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal, 5.8S/chemistry
- RNA, Ribosomal, 5.8S/genetics
- Repetitive Sequences, Nucleic Acid
- Schizosaccharomyces/chemistry
- Schizosaccharomyces/genetics
Collapse
Affiliation(s)
- J Naehring
- Institut für Biologie IV (Mikrobiologie), Rheinisch-Westfälische Technische Hochschule Aachen, Germany
| | | | | |
Collapse
|
14
|
Sipiczki M. Phylogenesis of fission yeasts. Contradictions surrounding the origin of a century old genus. Antonie Van Leeuwenhoek 1995; 68:119-49. [PMID: 8546451 DOI: 10.1007/bf00873099] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The phylogenesis of fungi is controversial due to their simple morphology and poor fossilization. Traditional classification supported by morphological studies and physiological traits placed the fission yeasts in one group with ascomycetous yeasts. The rRNA sequence comparisons, however, revealed an enormous evolutionary gap between Saccharomyces and Schizosaccharomyces. As shown in this review, the protein sequences also show a large gap which is almost as large as that separating Schizosaccharomyces from higher animals. Since the two yeasts share features (both cytological and molecular) in common which are also characteristic of ascomycetous fungi, their separation must have taken place later than the sequence differences may suggest. Possible reasons for the paradox are discussed. The sequence data also suggest a slower evolutionary rate in the Schizosaccharomyces lineage than in the Saccharomyces branch. In the fission yeast lineage two ramifications can be supposed. First S. japonicus (Hasegawaea japonica) branched off, then S. octosporus (Octosporomyces octosporus) separated from S. pombe.
Collapse
Affiliation(s)
- M Sipiczki
- Department of Genetics, University of Debrecen, Hungary
| |
Collapse
|